#include "common.hpp" #include "../internal.hpp" #include "../webgpu/gpu.hpp" #include "model/shader.hpp" #include "stream/shader.hpp" #include "texture.hpp" #include #include #include #include #include #include #include namespace aurora::gfx { static Module Log("aurora::gfx"); using webgpu::g_device; using webgpu::g_instance; using webgpu::g_queue; #ifdef AURORA_GFX_DEBUG_GROUPS std::vector g_debugGroupStack; #endif constexpr uint64_t UniformBufferSize = 3145728; // 3mb constexpr uint64_t VertexBufferSize = 3145728; // 3mb constexpr uint64_t IndexBufferSize = 1048576; // 1mb constexpr uint64_t StorageBufferSize = 8388608; // 8mb constexpr uint64_t TextureUploadSize = 25165824; // 24mb constexpr uint64_t StagingBufferSize = UniformBufferSize + VertexBufferSize + IndexBufferSize + StorageBufferSize + TextureUploadSize; struct ShaderState { stream::State stream; model::State model; }; struct ShaderDrawCommand { ShaderType type; union { stream::DrawData stream; model::DrawData model; }; }; enum class CommandType { SetViewport, SetScissor, Draw, }; struct Command { CommandType type; #ifdef AURORA_GFX_DEBUG_GROUPS std::vector debugGroupStack; #endif union Data { struct SetViewportCommand { float left; float top; float width; float height; float znear; float zfar; bool operator==(const SetViewportCommand& rhs) const { return left == rhs.left && top == rhs.top && width == rhs.width && height == rhs.height && znear == rhs.znear && zfar == rhs.zfar; } bool operator!=(const SetViewportCommand& rhs) const { return !(*this == rhs); } } setViewport; struct SetScissorCommand { uint32_t x; uint32_t y; uint32_t w; uint32_t h; bool operator==(const SetScissorCommand& rhs) const { return x == rhs.x && y == rhs.y && w == rhs.w && h == rhs.h; } bool operator!=(const SetScissorCommand& rhs) const { return !(*this == rhs); } } setScissor; ShaderDrawCommand draw; } data; }; } // namespace aurora::gfx namespace aurora { // For types that we can't ensure are safe to hash with has_unique_object_representations, // we create specialized methods to handle them. Note that these are highly dependent on // the structure definition, which could easily change with Dawn updates. template <> inline HashType xxh3_hash(const wgpu::BindGroupDescriptor& input, HashType seed) { constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label const auto hash = xxh3_hash_s(reinterpret_cast(&input) + offset, sizeof(wgpu::BindGroupDescriptor) - offset - sizeof(void*) /* skip entries */, seed); return xxh3_hash_s(input.entries, sizeof(wgpu::BindGroupEntry) * input.entryCount, hash); } template <> inline HashType xxh3_hash(const wgpu::SamplerDescriptor& input, HashType seed) { constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label return xxh3_hash_s(reinterpret_cast(&input) + offset, sizeof(wgpu::SamplerDescriptor) - offset - 2 /* skip padding */, seed); } } // namespace aurora namespace aurora::gfx { using NewPipelineCallback = std::function; std::mutex g_pipelineMutex; static bool g_hasPipelineThread = false; static size_t g_pipelinesPerFrame = 0; #ifdef NDEBUG constexpr size_t BuildPipelinesPerFrame = 5; #else constexpr size_t BuildPipelinesPerFrame = 1; #endif static std::thread g_pipelineThread; static std::atomic_bool g_pipelineThreadEnd; static std::condition_variable g_pipelineCv; static absl::flat_hash_map g_pipelines; static std::deque> g_queuedPipelines; static absl::flat_hash_map g_cachedBindGroups; static absl::flat_hash_map g_cachedSamplers; std::atomic_uint32_t queuedPipelines; std::atomic_uint32_t createdPipelines; static ByteBuffer g_verts; static ByteBuffer g_uniforms; static ByteBuffer g_indices; static ByteBuffer g_storage; static ByteBuffer g_textureUpload; wgpu::Buffer g_vertexBuffer; wgpu::Buffer g_uniformBuffer; wgpu::Buffer g_indexBuffer; wgpu::Buffer g_storageBuffer; static std::array g_stagingBuffers; static wgpu::SupportedLimits g_cachedLimits; static ShaderState g_state; static PipelineRef g_currentPipeline; // for imgui debug size_t g_drawCallCount; size_t g_mergedDrawCallCount; size_t g_lastVertSize; size_t g_lastUniformSize; size_t g_lastIndexSize; size_t g_lastStorageSize; using CommandList = std::vector; struct RenderPass { TextureHandle resolveTarget; ClipRect resolveRect; Vec4 clearColor{0.f, 0.f, 0.f, 0.f}; CommandList commands; bool clear = true; }; static std::vector g_renderPasses; static u32 g_currentRenderPass = UINT32_MAX; std::vector g_textureUploads; static ByteBuffer g_serializedPipelines{}; static u32 g_serializedPipelineCount = 0; template static void serialize_pipeline_config(ShaderType type, const PipelineConfig& config) { static_assert(std::has_unique_object_representations_v); g_serializedPipelines.append(&type, sizeof(type)); const u32 configSize = sizeof(config); g_serializedPipelines.append(&configSize, sizeof(configSize)); g_serializedPipelines.append(&config, configSize); ++g_serializedPipelineCount; } template static PipelineRef find_pipeline(ShaderType type, const PipelineConfig& config, NewPipelineCallback&& cb, bool serialize = true) { PipelineRef hash = xxh3_hash(config, static_cast(type)); bool found = false; { std::scoped_lock guard{g_pipelineMutex}; found = g_pipelines.contains(hash); if (!found) { const auto ref = std::find_if(g_queuedPipelines.begin(), g_queuedPipelines.end(), [=](auto v) { return v.first == hash; }); if (g_hasPipelineThread) { if (ref != g_queuedPipelines.end()) { found = true; } } else { if (ref != g_queuedPipelines.end()) { found = true; } else if (g_pipelinesPerFrame < BuildPipelinesPerFrame) { g_pipelines.try_emplace(hash, cb()); if (serialize) { serialize_pipeline_config(type, config); } ++g_pipelinesPerFrame; createdPipelines++; found = true; } } } if (!found) { g_queuedPipelines.emplace_back(std::pair{hash, std::move(cb)}); if (serialize) { serialize_pipeline_config(type, config); } } } if (!found) { g_pipelineCv.notify_one(); queuedPipelines++; } return hash; } static inline void push_command(CommandType type, const Command::Data& data) { if (g_currentRenderPass == UINT32_MAX) UNLIKELY { Log.report(LOG_WARNING, FMT_STRING("Dropping command {}"), magic_enum::enum_name(type)); return; } g_renderPasses[g_currentRenderPass].commands.push_back({ .type = type, #ifdef AURORA_GFX_DEBUG_GROUPS .debugGroupStack = g_debugGroupStack, #endif .data = data, }); } static inline Command& get_last_draw_command(ShaderType type) { CHECK(g_currentRenderPass != UINT32_MAX, "No last command"); auto& last = g_renderPasses[g_currentRenderPass].commands.back(); if (last.type != CommandType::Draw || last.data.draw.type != type) UNLIKELY { FATAL("Last command invalid: {} {}, expected {} {}", magic_enum::enum_name(last.type), magic_enum::enum_name(last.data.draw.type), magic_enum::enum_name(CommandType::Draw), magic_enum::enum_name(type)); } return last; } static void push_draw_command(ShaderDrawCommand data) { push_command(CommandType::Draw, Command::Data{.draw = data}); ++g_drawCallCount; } static Command::Data::SetViewportCommand g_cachedViewport; void set_viewport(float left, float top, float width, float height, float znear, float zfar) noexcept { Command::Data::SetViewportCommand cmd{left, top, width, height, znear, zfar}; if (cmd != g_cachedViewport) { push_command(CommandType::SetViewport, Command::Data{.setViewport = cmd}); g_cachedViewport = cmd; } } static Command::Data::SetScissorCommand g_cachedScissor; void set_scissor(uint32_t x, uint32_t y, uint32_t w, uint32_t h) noexcept { Command::Data::SetScissorCommand cmd{x, y, w, h}; if (cmd != g_cachedScissor) { push_command(CommandType::SetScissor, Command::Data{.setScissor = cmd}); g_cachedScissor = cmd; } } void resolve_pass(TextureHandle texture, ClipRect rect, bool clear, Vec4 clearColor) { auto& currentPass = aurora::gfx::g_renderPasses[g_currentRenderPass]; currentPass.resolveTarget = std::move(texture); currentPass.resolveRect = rect; auto& newPass = g_renderPasses.emplace_back(); newPass.clearColor = clearColor; newPass.clear = clear; ++g_currentRenderPass; } template <> const stream::State& get_state() { return g_state.stream; } template <> void push_draw_command(stream::DrawData data) { push_draw_command(ShaderDrawCommand{.type = ShaderType::Stream, .stream = data}); } template <> void merge_draw_command(stream::DrawData data) { auto& last = get_last_draw_command(ShaderType::Stream).data.draw.stream; CHECK(last.vertRange.offset + last.vertRange.size == data.vertRange.offset, "Invalid vertex merge range: {} -> {}", last.vertRange.offset + last.vertRange.size, data.vertRange.offset); CHECK(last.indexRange.offset + last.indexRange.size == data.indexRange.offset, "Invalid index merge range: {} -> {}", last.indexRange.offset + last.indexRange.size, data.indexRange.offset); last.vertRange.size += data.vertRange.size; last.indexRange.size += data.indexRange.size; last.indexCount += data.indexCount; ++g_mergedDrawCallCount; } template <> PipelineRef pipeline_ref(stream::PipelineConfig config) { return find_pipeline(ShaderType::Stream, config, [=]() { return create_pipeline(g_state.stream, config); }); } template <> void push_draw_command(model::DrawData data) { push_draw_command(ShaderDrawCommand{.type = ShaderType::Model, .model = data}); } template <> PipelineRef pipeline_ref(model::PipelineConfig config) { return find_pipeline(ShaderType::Model, config, [=]() { return create_pipeline(g_state.model, config); }); } static void pipeline_worker() { bool hasMore = false; while (g_hasPipelineThread || g_pipelinesPerFrame < BuildPipelinesPerFrame) { std::pair cb; { std::unique_lock lock{g_pipelineMutex}; if (g_hasPipelineThread) { if (!hasMore) { g_pipelineCv.wait(lock, [] { return !g_queuedPipelines.empty() || g_pipelineThreadEnd; }); } } else if (g_queuedPipelines.empty()) { return; } if (g_pipelineThreadEnd) { break; } cb = std::move(g_queuedPipelines.front()); } auto result = cb.second(); // std::this_thread::sleep_for(std::chrono::milliseconds{1500}); { std::scoped_lock lock{g_pipelineMutex}; ASSERT(g_pipelines.try_emplace(cb.first, std::move(result)).second, "Duplicate pipeline {}", cb.first); g_queuedPipelines.pop_front(); hasMore = !g_queuedPipelines.empty(); } if (!g_hasPipelineThread) { ++g_pipelinesPerFrame; } createdPipelines++; queuedPipelines--; } } void initialize() { // No async pipelines for OpenGL (ES) if (webgpu::g_backendType == wgpu::BackendType::OpenGL || webgpu::g_backendType == wgpu::BackendType::OpenGLES || webgpu::g_backendType == wgpu::BackendType::WebGPU) { g_hasPipelineThread = false; } else { g_pipelineThreadEnd = false; g_pipelineThread = std::thread(pipeline_worker); g_hasPipelineThread = true; } // For uniform & storage buffer offset alignments g_device.GetLimits(&g_cachedLimits); const auto createBuffer = [](wgpu::Buffer& out, wgpu::BufferUsage usage, uint64_t size, const char* label) { if (size <= 0) { return; } const wgpu::BufferDescriptor descriptor{ .label = label, .usage = usage, .size = size, }; out = g_device.CreateBuffer(&descriptor); }; createBuffer(g_uniformBuffer, wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, UniformBufferSize, "Shared Uniform Buffer"); createBuffer(g_vertexBuffer, wgpu::BufferUsage::Vertex | wgpu::BufferUsage::CopyDst, VertexBufferSize, "Shared Vertex Buffer"); createBuffer(g_indexBuffer, wgpu::BufferUsage::Index | wgpu::BufferUsage::CopyDst, IndexBufferSize, "Shared Index Buffer"); createBuffer(g_storageBuffer, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst, StorageBufferSize, "Shared Storage Buffer"); for (int i = 0; i < g_stagingBuffers.size(); ++i) { const auto label = fmt::format(FMT_STRING("Staging Buffer {}"), i); createBuffer(g_stagingBuffers[i], wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, StagingBufferSize, label.c_str()); } map_staging_buffer(); g_state.stream = stream::construct_state(); g_state.model = model::construct_state(); { // Load serialized pipeline cache std::string path = std::string{g_config.configPath} + "/pipeline_cache.bin"; std::ifstream file(path, std::ios::in | std::ios::binary | std::ios::ate); if (file) { const auto size = file.tellg(); file.seekg(0, std::ios::beg); constexpr size_t headerSize = sizeof(g_serializedPipelineCount); if (size != -1 && size > headerSize) { g_serializedPipelines.append_zeroes(size_t(size) - headerSize); file.read(reinterpret_cast(&g_serializedPipelineCount), headerSize); file.read(reinterpret_cast(g_serializedPipelines.data()), size_t(size) - headerSize); } } } if (g_serializedPipelineCount > 0) { size_t offset = 0; while (offset < g_serializedPipelines.size()) { ShaderType type = *reinterpret_cast(g_serializedPipelines.data() + offset); offset += sizeof(ShaderType); u32 size = *reinterpret_cast(g_serializedPipelines.data() + offset); offset += sizeof(u32); switch (type) { case ShaderType::Stream: { if (size != sizeof(stream::PipelineConfig)) { break; } const auto config = *reinterpret_cast(g_serializedPipelines.data() + offset); if (config.version != gx::GXPipelineConfigVersion) { break; } find_pipeline( type, config, [=]() { return stream::create_pipeline(g_state.stream, config); }, false); } break; case ShaderType::Model: { if (size != sizeof(model::PipelineConfig)) { break; } const auto config = *reinterpret_cast(g_serializedPipelines.data() + offset); if (config.version != gx::GXPipelineConfigVersion) { break; } find_pipeline( type, config, [=]() { return model::create_pipeline(g_state.model, config); }, false); } break; default: Log.report(LOG_WARNING, FMT_STRING("Unknown pipeline type {}"), static_cast(type)); break; } offset += size; } } } void shutdown() { if (g_hasPipelineThread) { g_pipelineThreadEnd = true; g_pipelineCv.notify_all(); g_pipelineThread.join(); } { // Write serialized pipelines to file const auto path = std::string{g_config.configPath} + "pipeline_cache.bin"; std::ofstream file(path, std::ios::out | std::ios::trunc | std::ios::binary); if (file) { file.write(reinterpret_cast(&g_serializedPipelineCount), sizeof(g_serializedPipelineCount)); file.write(reinterpret_cast(g_serializedPipelines.data()), g_serializedPipelines.size()); } g_serializedPipelines.clear(); g_serializedPipelineCount = 0; } gx::shutdown(); g_textureUploads.clear(); g_cachedBindGroups.clear(); g_cachedSamplers.clear(); g_pipelines.clear(); g_queuedPipelines.clear(); g_vertexBuffer = {}; g_uniformBuffer = {}; g_indexBuffer = {}; g_storageBuffer = {}; g_stagingBuffers.fill({}); g_renderPasses.clear(); g_currentRenderPass = UINT32_MAX; g_state = {}; queuedPipelines = 0; createdPipelines = 0; } static size_t currentStagingBuffer = 0; static bool bufferMapped = false; void map_staging_buffer() { bufferMapped = false; g_stagingBuffers[currentStagingBuffer].MapAsync( wgpu::MapMode::Write, 0, StagingBufferSize, [](WGPUBufferMapAsyncStatus status, void* userdata) { if (status == WGPUBufferMapAsyncStatus_DestroyedBeforeCallback) { return; } ASSERT(status == WGPUBufferMapAsyncStatus_Success, "Buffer mapping failed: {}", static_cast(status)); *static_cast(userdata) = true; }, &bufferMapped); } void begin_frame() { while (!bufferMapped) { #ifdef EMSCRIPTEN emscripten_sleep(0); #else g_device.Tick(); #endif } size_t bufferOffset = 0; auto& stagingBuf = g_stagingBuffers[currentStagingBuffer]; const auto mapBuffer = [&](ByteBuffer& buf, uint64_t size) { if (size <= 0) { return; } buf = ByteBuffer{static_cast(stagingBuf.GetMappedRange(bufferOffset, size)), static_cast(size)}; bufferOffset += size; }; mapBuffer(g_verts, VertexBufferSize); mapBuffer(g_uniforms, UniformBufferSize); mapBuffer(g_indices, IndexBufferSize); mapBuffer(g_storage, StorageBufferSize); mapBuffer(g_textureUpload, TextureUploadSize); g_drawCallCount = 0; g_mergedDrawCallCount = 0; g_renderPasses.emplace_back(); g_renderPasses[0].clearColor = gx::g_gxState.clearColor; g_currentRenderPass = 0; // push_command(CommandType::SetViewport, Command::Data{.setViewport = g_cachedViewport}); // push_command(CommandType::SetScissor, Command::Data{.setScissor = g_cachedScissor}); if (!g_hasPipelineThread) { g_pipelinesPerFrame = 0; } } void end_frame(const wgpu::CommandEncoder& cmd) { uint64_t bufferOffset = 0; const auto writeBuffer = [&](ByteBuffer& buf, wgpu::Buffer& out, uint64_t size, std::string_view label) { const auto writeSize = buf.size(); // Only need to copy this many bytes if (writeSize > 0) { cmd.CopyBufferToBuffer(g_stagingBuffers[currentStagingBuffer], bufferOffset, out, 0, ALIGN(writeSize, 4)); buf.clear(); } bufferOffset += size; return writeSize; }; g_stagingBuffers[currentStagingBuffer].Unmap(); g_lastVertSize = writeBuffer(g_verts, g_vertexBuffer, VertexBufferSize, "Vertex"); g_lastUniformSize = writeBuffer(g_uniforms, g_uniformBuffer, UniformBufferSize, "Uniform"); g_lastIndexSize = writeBuffer(g_indices, g_indexBuffer, IndexBufferSize, "Index"); g_lastStorageSize = writeBuffer(g_storage, g_storageBuffer, StorageBufferSize, "Storage"); { // Perform texture copies for (const auto& item : g_textureUploads) { const wgpu::ImageCopyBuffer buf{ .layout = wgpu::TextureDataLayout{ .offset = item.layout.offset + bufferOffset, .bytesPerRow = ALIGN(item.layout.bytesPerRow, 256), .rowsPerImage = item.layout.rowsPerImage, }, .buffer = g_stagingBuffers[currentStagingBuffer], }; cmd.CopyBufferToTexture(&buf, &item.tex, &item.size); } g_textureUploads.clear(); g_textureUpload.clear(); } currentStagingBuffer = (currentStagingBuffer + 1) % g_stagingBuffers.size(); map_staging_buffer(); g_currentRenderPass = UINT32_MAX; if (!g_hasPipelineThread) { pipeline_worker(); } } void render(wgpu::CommandEncoder& cmd) { for (u32 i = 0; i < g_renderPasses.size(); ++i) { const auto& passInfo = g_renderPasses[i]; if (i == g_renderPasses.size() - 1) { ASSERT(!passInfo.resolveTarget, "Final render pass must not have resolve target"); } const std::array attachments{ wgpu::RenderPassColorAttachment{ .view = webgpu::g_frameBuffer.view, .resolveTarget = webgpu::g_graphicsConfig.msaaSamples > 1 ? webgpu::g_frameBufferResolved.view : nullptr, .loadOp = passInfo.clear ? wgpu::LoadOp::Clear : wgpu::LoadOp::Load, .storeOp = wgpu::StoreOp::Store, .clearValue = { .r = passInfo.clearColor.x(), .g = passInfo.clearColor.y(), .b = passInfo.clearColor.z(), .a = passInfo.clearColor.w(), }, }, }; const wgpu::RenderPassDepthStencilAttachment depthStencilAttachment{ .view = webgpu::g_depthBuffer.view, .depthLoadOp = passInfo.clear ? wgpu::LoadOp::Clear : wgpu::LoadOp::Load, .depthStoreOp = wgpu::StoreOp::Store, .depthClearValue = 1.f, }; const auto label = fmt::format(FMT_STRING("Render pass {}"), i); const wgpu::RenderPassDescriptor renderPassDescriptor{ .label = label.c_str(), .colorAttachmentCount = attachments.size(), .colorAttachments = attachments.data(), .depthStencilAttachment = &depthStencilAttachment, }; auto pass = cmd.BeginRenderPass(&renderPassDescriptor); render_pass(pass, i); pass.End(); if (passInfo.resolveTarget) { wgpu::ImageCopyTexture src{ .origin = wgpu::Origin3D{ .x = static_cast(passInfo.resolveRect.x), .y = static_cast(passInfo.resolveRect.y), }, }; if (webgpu::g_graphicsConfig.msaaSamples > 1) { src.texture = webgpu::g_frameBufferResolved.texture; } else { src.texture = webgpu::g_frameBuffer.texture; } const wgpu::ImageCopyTexture dst{ .texture = passInfo.resolveTarget->texture, }; const wgpu::Extent3D size{ .width = static_cast(passInfo.resolveRect.width), .height = static_cast(passInfo.resolveRect.height), .depthOrArrayLayers = 1, }; cmd.CopyTextureToTexture(&src, &dst, &size); } } g_renderPasses.clear(); } void render_pass(const wgpu::RenderPassEncoder& pass, u32 idx) { g_currentPipeline = UINTPTR_MAX; #ifdef AURORA_GFX_DEBUG_GROUPS std::vector lastDebugGroupStack; #endif for (const auto& cmd : g_renderPasses[idx].commands) { #ifdef AURORA_GFX_DEBUG_GROUPS { size_t firstDiff = lastDebugGroupStack.size(); for (size_t i = 0; i < lastDebugGroupStack.size(); ++i) { if (i >= cmd.debugGroupStack.size() || cmd.debugGroupStack[i] != lastDebugGroupStack[i]) { firstDiff = i; break; } } for (size_t i = firstDiff; i < lastDebugGroupStack.size(); ++i) { pass.PopDebugGroup(); } for (size_t i = firstDiff; i < cmd.debugGroupStack.size(); ++i) { pass.PushDebugGroup(cmd.debugGroupStack[i].c_str()); } lastDebugGroupStack = cmd.debugGroupStack; } #endif switch (cmd.type) { case CommandType::SetViewport: { const auto& vp = cmd.data.setViewport; pass.SetViewport(vp.left, vp.top, vp.width, vp.height, vp.znear, vp.zfar); } break; case CommandType::SetScissor: { const auto& sc = cmd.data.setScissor; pass.SetScissorRect(sc.x, sc.y, sc.w, sc.h); } break; case CommandType::Draw: { const auto& draw = cmd.data.draw; switch (draw.type) { case ShaderType::Stream: stream::render(g_state.stream, draw.stream, pass); break; case ShaderType::Model: model::render(g_state.model, draw.model, pass); break; } } break; } } #ifdef AURORA_GFX_DEBUG_GROUPS for (size_t i = 0; i < lastDebugGroupStack.size(); ++i) { pass.PopDebugGroup(); } #endif } bool bind_pipeline(PipelineRef ref, const wgpu::RenderPassEncoder& pass) { if (ref == g_currentPipeline) { return true; } std::lock_guard guard{g_pipelineMutex}; const auto it = g_pipelines.find(ref); if (it == g_pipelines.end()) { return false; } pass.SetPipeline(it->second); g_currentPipeline = ref; return true; } static inline Range push(ByteBuffer& target, const uint8_t* data, size_t length, size_t alignment) { size_t padding = 0; if (alignment != 0) { padding = alignment - length % alignment; } auto begin = target.size(); if (length == 0) { length = alignment; target.append_zeroes(alignment); } else { target.append(data, length); if (padding > 0) { target.append_zeroes(padding); } } return {static_cast(begin), static_cast(length + padding)}; } static inline Range map(ByteBuffer& target, size_t length, size_t alignment) { size_t padding = 0; if (alignment != 0) { padding = alignment - length % alignment; } if (length == 0) { length = alignment; } auto begin = target.size(); target.append_zeroes(length + padding); return {static_cast(begin), static_cast(length + padding)}; } Range push_verts(const uint8_t* data, size_t length) { return push(g_verts, data, length, 0); } Range push_indices(const uint8_t* data, size_t length) { return push(g_indices, data, length, 0); } Range push_uniform(const uint8_t* data, size_t length) { return push(g_uniforms, data, length, g_cachedLimits.limits.minUniformBufferOffsetAlignment); } Range push_storage(const uint8_t* data, size_t length) { return push(g_storage, data, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment); } Range push_texture_data(const uint8_t* data, size_t length, u32 bytesPerRow, u32 rowsPerImage) { // For CopyBufferToTexture, we need an alignment of 256 per row (see Dawn kTextureBytesPerRowAlignment) const auto copyBytesPerRow = ALIGN(bytesPerRow, 256); const auto range = map(g_textureUpload, copyBytesPerRow * rowsPerImage, 0); u8* dst = g_textureUpload.data() + range.offset; for (u32 i = 0; i < rowsPerImage; ++i) { memcpy(dst, data, bytesPerRow); data += bytesPerRow; dst += copyBytesPerRow; } return range; } std::pair map_verts(size_t length) { const auto range = map(g_verts, length, 4); return {ByteBuffer{g_verts.data() + range.offset, range.size}, range}; } std::pair map_indices(size_t length) { const auto range = map(g_indices, length, 4); return {ByteBuffer{g_indices.data() + range.offset, range.size}, range}; } std::pair map_uniform(size_t length) { const auto range = map(g_uniforms, length, g_cachedLimits.limits.minUniformBufferOffsetAlignment); return {ByteBuffer{g_uniforms.data() + range.offset, range.size}, range}; } std::pair map_storage(size_t length) { const auto range = map(g_storage, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment); return {ByteBuffer{g_storage.data() + range.offset, range.size}, range}; } // TODO: should we avoid caching bind groups altogether? BindGroupRef bind_group_ref(const wgpu::BindGroupDescriptor& descriptor) { #ifdef EMSCRIPTEN const auto bg = g_device.CreateBindGroup(&descriptor); BindGroupRef id = reinterpret_cast(bg.Get()); g_cachedBindGroups.try_emplace(id, bg); #else const auto id = xxh3_hash(descriptor); if (!g_cachedBindGroups.contains(id)) { g_cachedBindGroups.try_emplace(id, g_device.CreateBindGroup(&descriptor)); } #endif return id; } const wgpu::BindGroup& find_bind_group(BindGroupRef id) { #ifdef EMSCRIPTEN return g_cachedBindGroups[id]; #else const auto it = g_cachedBindGroups.find(id); CHECK(it != g_cachedBindGroups.end(), "get_bind_group: failed to locate {:x}", id); return it->second; #endif } const wgpu::Sampler& sampler_ref(const wgpu::SamplerDescriptor& descriptor) { const auto id = xxh3_hash(descriptor); auto it = g_cachedSamplers.find(id); if (it == g_cachedSamplers.end()) { it = g_cachedSamplers.try_emplace(id, g_device.CreateSampler(&descriptor)).first; } return it->second; } uint32_t align_uniform(uint32_t value) { return ALIGN(value, g_cachedLimits.limits.minUniformBufferOffsetAlignment); } } // namespace aurora::gfx void push_debug_group(const char* label) { #ifdef AURORA_GFX_DEBUG_GROUPS aurora::gfx::g_debugGroupStack.emplace_back(label); #endif } void pop_debug_group() { #ifdef AURORA_GFX_DEBUG_GROUPS aurora::gfx::g_debugGroupStack.pop_back(); #endif }