// Copyright 2022 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/number.h" #include #include #include #include #include "src/tint/debug.h" namespace tint { std::ostream& operator<<(std::ostream& out, ConversionFailure failure) { switch (failure) { case ConversionFailure::kExceedsPositiveLimit: return out << "value exceeds positive limit for type"; case ConversionFailure::kExceedsNegativeLimit: return out << "value exceeds negative limit for type"; } return out << ""; } f16::type f16::Quantize(f16::type value) { if (value > kHighest) { return std::numeric_limits::infinity(); } if (value < kLowest) { return -std::numeric_limits::infinity(); } // Below value must be within the finite range of a f16. // Assert we use binary32 (i.e. float) as underlying type, which has 4 bytes. static_assert(std::is_same()); const uint32_t sign_mask = 0x80000000u; // Mask for the sign bit const uint32_t exponent_mask = 0x7f800000u; // Mask for 8 exponent bits uint32_t u32; memcpy(&u32, &value, 4); if ((u32 & ~sign_mask) == 0) { return value; // +/- zero } if ((u32 & exponent_mask) == exponent_mask) { // exponent all 1's return value; // inf or nan } // We are now going to quantize a f32 number into subnormal f16 and store the result value back // into a f32 variable. Notice that all subnormal f16 values are just normal f32 values. Below // will show that we can do this quantization by just masking out 13 or more lowest mantissa // bits of the original f32 number. // // Note: // f32 has 1 sign bit, 8 exponent bits for biased exponent (i.e. unbiased exponent + 127), and // 23 mantissa bits. Binary form: s_eeeeeeee_mmmmmmmmmmmmmmmmmmmmmmm // f16 has 1 sign bit, 5 exponent bits for biased exponent (i.e. unbiased exponent + 15), and // 10 mantissa bits. Binary form: s_eeeee_mmmmmmmmmm // The largest finite f16 number has a biased exponent of 11110 in binary, or 30 decimal, and so // a unbiased exponent of 30 - 15 = 15. // The smallest finite f16 number has a biased exponent of 00001 in binary, or 1 decimal, and so // a unbiased exponent of 1 - 15 = -14. // // We may follow the argument below: // 1. All normal or subnormal f16 values, range from 0x1.p-24 to 0x1.ffcp15, are exactly // representable by normal f32 number. // 1.1. We can denote the set of all f32 number that are exact representation of finite f16 // values by `R`. // 1.2. We can do the quantization by mapping a normal f32 value v (in the f16 finite range) // to a certain f32 number v' in the set R, which is the largest (by the meaning of absolute // value) one among all values in R that are no larger than v. // 2. We can decide whether a given normal f32 number v is in the set R, by looking at its // mantissa bits and biased exponent `e`. Recall that biased exponent e is unbiased exponent + // 127, and in the range of 1 to 254 for normal f32 number. // 2.1. If e >= 143, i.e. abs(v) >= 2^16 > f16::kHighest = 0x1.ffcp15, v is larger than any // finite f16 value and can not be in set R. // 2.2. If 142 >= e >= 113, or f16::kHighest >= abs(v) >= f16::kSmallest = 2^-14, v falls in // the range of normal f16 values. In this case, v is in the set R iff the lowest 13 mantissa // bits are all 0. (See below for proof) // 2.2.1. If we let v' be v with lowest 13 mantissa bits masked to 0, v' will be in set R // and the largest one in set R that no larger than v. Such v' is the quantized value of v. // 2.3. If 112 >= e >= 103, i.e. 2^-14 > abs(v) >= f16::kSmallestSubnormal = 2^-24, v falls in // the range of subnormal f16 values. In this case, v is in the set R iff the lowest 126-e // mantissa bits are all 0. Notice that 126-e is in range 14 to 23, inclusive. (See below for // proof) // 2.3.1. If we let v' be v with lowest 126-e mantissa bits masked to 0, v' will be in set R // and the largest on in set R that no larger than v. Such v' is the quantized value of v. // 2.4. If 2^-24 > abs(v) > 0, i.e. 103 > e, v is smaller than any finite f16 value and not // equal to 0.0, thus can not be in set R. // 2.5. If abs(v) = 0, v is in set R and is just +-0.0. // // Proof for 2.2: // Any normal f16 number, in binary form, s_eeeee_mmmmmmmmmm, has value // (s==0?1:-1)*(1+uint(mmmmm_mmmmm)*(2^-10))*2^(uint(eeeee)-15) // in which unit(bbbbb) means interprete binary pattern "bbbbb" as unsigned binary number, // and we have 1 <= uint(eeeee) <= 30. // This value is equal to a normal f32 number with binary // s_EEEEEEEE_mmmmmmmmmm0000000000000 // where uint(EEEEEEEE) = uint(eeeee) + 112, so that unbiased exponent keep unchanged // uint(EEEEEEEE) - 127 = uint(eeeee) - 15 // and its value is // (s==0?1:-1)*(1+uint(mmmmm_mmmmm_00000_00000_000)*(2^-23))*2^(uint(EEEEEEEE)-127) // == (s==0?1:-1)*(1+uint(mmmmm_mmmmm)*(2^-10))*2^(uint(eeeee)-15) // Notice that uint(EEEEEEEE) is in range [113, 142], showing that it is a normal f32 number. // So we proof that any normal f16 number can be exactly representd by a normal f32 number // with biased exponent in range [113,142] and the lowest 13 mantissa bits 0. // On the other hand, since mantissa bits mmmmmmmmmm are arbitrary, the value of any f32 // that has a biased exponent in range [113, 142] and lowest 13 mantissa bits zero is equal // to a normal f16 value. Hence we proof 2.2. // // Proof for 2.3: // Any subnormal f16 number has a binary form of s_00000_mmmmmmmmmm, and its value is // (s==0?1:-1)*uint(mmmmmmmmmm)*(2^-10)*(2^-14) = (s==0?1:-1)*uint(mmmmmmmmmm)*(2^-24). // We discuss on bit pattern of mantissa bits mmmmmmmmmm. // Case 1: mantissa bits has no leading zero bit, s_00000_1mmmmmmmmm // In this case the value is // (s==0?1:-1)*uint(1mmmm_mmmmm)*(2^-10)*(2^-14) // == (s==0?1:-1)*(uint(1_mmmmm_mmmm)*(2^-9))*(2^-15) // == (s==0?1:-1)*(1+uint(mmmmm_mmmm)*(2^-9))*(2^-15) // == (s==0?1:-1)*(1+uint(mmmmm_mmmm0_00000_00000_000)*(2^-23))*(2^-15) // which is equal to the value of normal f32 number // s_EEEEEEEE_mmmmm_mmmm0_00000_00000_000 // where uint(EEEEEEEE) = -15 + 127 = 112. Hence we proof that any subnormal f16 number // with no leading zero mantissa bit can be exactly represented by a f32 number with // biased exponent 112 and the lowest 14 mantissa bits zero, and the value of any f32 // number with biased exponent 112 and the lowest 14 mantissa bits zero are equal to a // subnormal f16 number with no leading zero mantissa bit. // Case 2: mantissa bits has 1 leading zero bit, s_00000_01mmmmmmmm // In this case the value is // (s==0?1:-1)*uint(01mmm_mmmmm)*(2^-10)*(2^-14) // == (s==0?1:-1)*(uint(01_mmmmm_mmm)*(2^-8))*(2^-16) // == (s==0?1:-1)*(1+uint(mmmmm_mmm)*(2^-8))*(2^-16) // == (s==0?1:-1)*(1+uint(mmmmm_mmm00_00000_00000_000)*(2^-23))*(2^-16) // which is equal to the value of normal f32 number // s_EEEEEEEE_mmmmm_mmm00_00000_00000_000 // where uint(EEEEEEEE) = -16 + 127 = 111. Hence we proof that any subnormal f16 number // with 1 leading zero mantissa bit can be exactly represented by a f32 number with // biased exponent 111 and the lowest 15 mantissa bits zero, and the value of any f32 // number with biased exponent 111 and the lowest 15 mantissa bits zero are equal to a // subnormal f16 number with 1 leading zero mantissa bit. // Case 3 to case 8: ...... // Case 9: mantissa bits has 8 leading zero bit, s_00000_000000001m // In this case the value is // (s==0?1:-1)*uint(00000_0001m)*(2^-10)*(2^-14) // == (s==0?1:-1)*(uint(000000001_m)*(2^-1))*(2^-23) // == (s==0?1:-1)*(1+uint(m)*(2^-1))*(2^-23) // == (s==0?1:-1)*(1+uint(m0000_00000_00000_00000_000)*(2^-23))*(2^-23) // which is equal to the value of normal f32 number // s_EEEEEEEE_m0000_00000_00000_00000_000 // where uint(EEEEEEEE) = -23 + 127 = 104. Hence we proof that any subnormal f16 number // with 8 leading zero mantissa bit can be exactly represented by a f32 number with // biased exponent 104 and the lowest 22 mantissa bits zero, and the value of any f32 // number with biased exponent 104 and the lowest 22 mantissa bits zero are equal to a // subnormal f16 number with 8 leading zero mantissa bit. // Case 10: mantissa bits has 9 leading zero bit, s_00000_0000000001 // In this case the value is just +-2^-24 = +-0x1.0p-24, // the f32 number has biased exponent 103 and all 23 mantissa bits zero. // Case 11: mantissa bits has 10 leading zero bit, s_00000_0000000000, just 0.0 // Concluding all these case, we proof that any subnormal f16 number with N leading zero // mantissa bit can be exactly represented by a f32 number with biased exponent 112-N and the // lowest 14+N mantissa bits zero, and the value of any f32 number with biased exponent 112-N (= // e) and the lowest 14+N (= 126-e) mantissa bits zero are equal to a subnormal f16 number with // N leading zero mantissa bit. N is in range [0, 9], so the f32 number's biased exponent e is // in range [103, 112], or unbiased exponent in [-24, -15]. float abs_value = std::fabs(value); if (abs_value >= kSmallest) { // Value falls in the normal f16 range, quantize it to a normal f16 value by masking out // lowest 13 mantissa bits. u32 = u32 & ~((1u << 13) - 1); } else if (abs_value >= kSmallestSubnormal) { // Value should be quantized to a subnormal f16 value. // Get the biased exponent `e` of f32 value, e.g. value 127 representing exponent 2^0. uint32_t biased_exponent_original = (u32 & exponent_mask) >> 23; // Since we ensure that kSmallest = 0x1f-14 > abs(value) >= kSmallestSubnormal = 0x1f-24, // value will have a unbiased exponent in range -24 to -15 (inclusive), and the // corresponding biased exponent in f32 is in range 103 to 112 (inclusive). TINT_ASSERT(Semantic, (103 <= biased_exponent_original) && (biased_exponent_original <= 112)); // As we have proved, masking out the lowest 126-e mantissa bits of input value will result // in a valid subnormal f16 value, which is exactly the required quantization result. uint32_t discard_bits = 126 - biased_exponent_original; // In range 14 to 23 (inclusive) TINT_ASSERT(Semantic, (14 <= discard_bits) && (discard_bits <= 23)); uint32_t discard_mask = (1u << discard_bits) - 1; u32 = u32 & ~discard_mask; } else { // value is too small that it can't even be represented as subnormal f16 number. Quantize // to zero. return value > 0 ? 0.0 : -0.0; } memcpy(&value, &u32, 4); return value; } uint16_t f16::BitsRepresentation() const { constexpr uint16_t f16_nan = 0x7e00u; constexpr uint16_t f16_pos_inf = 0x7c00u; constexpr uint16_t f16_neg_inf = 0xfc00u; // Assert we use binary32 (i.e. float) as underlying type, which has 4 bytes. static_assert(std::is_same()); // The stored value in f16 object must be already quantized, so it should be either NaN, +/- // Inf, or exactly representable by normal or subnormal f16. if (std::isnan(value)) { return f16_nan; } if (std::isinf(value)) { return value > 0 ? f16_pos_inf : f16_neg_inf; } // Now quantized_value must be a finite f16 exactly-representable value. // The following table shows exponent cases for all finite f16 exactly-representable value. // --------------------------------------------------------------------------- // | Value category | Unbiased exp | F16 biased exp | F32 biased exp | // |------------------|----------------|------------------|------------------| // | +/- zero | \ | 0 | 0 | // | Subnormal f16 | [-24, -15] | 0 | [103, 112] | // | Normal f16 | [-14, 15] | [1, 30] | [113, 142] | // --------------------------------------------------------------------------- constexpr uint32_t max_f32_biased_exp_for_f16_normal_number = 142; constexpr uint32_t min_f32_biased_exp_for_f16_normal_number = 113; constexpr uint32_t max_f32_biased_exp_for_f16_subnormal_number = 112; constexpr uint32_t min_f32_biased_exp_for_f16_subnormal_number = 103; constexpr uint32_t f32_sign_mask = 0x80000000u; constexpr uint32_t f32_exp_mask = 0x7f800000u; constexpr uint32_t f32_mantissa_mask = 0x007fffffu; constexpr uint32_t f32_mantissa_bis_number = 23; constexpr uint32_t f32_exp_bias = 127; constexpr uint16_t f16_sign_mask = 0x8000u; constexpr uint16_t f16_exp_mask = 0x7c00u; constexpr uint16_t f16_mantissa_mask = 0x03ffu; constexpr uint32_t f16_mantissa_bis_number = 10; constexpr uint32_t f16_exp_bias = 15; uint32_t f32_bit_pattern; memcpy(&f32_bit_pattern, &value, 4); uint32_t f32_biased_exponent = (f32_bit_pattern & f32_exp_mask) >> f32_mantissa_bis_number; uint32_t f32_mantissa = f32_bit_pattern & f32_mantissa_mask; uint16_t f16_sign_part = static_cast((f32_bit_pattern & f32_sign_mask) >> 16); TINT_ASSERT(Semantic, (f16_sign_part & ~f16_sign_mask) == 0); if ((f32_bit_pattern & ~f32_sign_mask) == 0) { // +/- zero return f16_sign_part; } if ((min_f32_biased_exp_for_f16_normal_number <= f32_biased_exponent) && (f32_biased_exponent <= max_f32_biased_exp_for_f16_normal_number)) { // Normal f16 uint32_t f16_biased_exponent = f32_biased_exponent - f32_exp_bias + f16_exp_bias; uint16_t f16_exp_part = static_cast(f16_biased_exponent << f16_mantissa_bis_number); uint16_t f16_mantissa_part = static_cast( f32_mantissa >> (f32_mantissa_bis_number - f16_mantissa_bis_number)); TINT_ASSERT(Semantic, (f16_exp_part & ~f16_exp_mask) == 0); TINT_ASSERT(Semantic, (f16_mantissa_part & ~f16_mantissa_mask) == 0); return f16_sign_part | f16_exp_part | f16_mantissa_part; } if ((min_f32_biased_exp_for_f16_subnormal_number <= f32_biased_exponent) && (f32_biased_exponent <= max_f32_biased_exp_for_f16_subnormal_number)) { // Subnormal f16 // The resulting exp bits are always 0, and the mantissa bits should be handled specially. uint16_t f16_exp_part = 0; // The resulting subnormal f16 will have only 1 valid mantissa bit if the unbiased exponent // of value is of the minimum, i.e. -24; and have all 10 mantissa bits valid if the unbiased // exponent of value is of the maximum, i.e. -15. uint32_t f16_valid_mantissa_bits = f32_biased_exponent - min_f32_biased_exp_for_f16_subnormal_number + 1; // The resulting f16 mantissa part comes from right-shifting the f32 mantissa bits with // leading 1 added. uint16_t f16_mantissa_part = static_cast((f32_mantissa | (f32_mantissa_mask + 1)) >> (f32_mantissa_bis_number + 1 - f16_valid_mantissa_bits)); TINT_ASSERT(Semantic, (1 <= f16_valid_mantissa_bits) && (f16_valid_mantissa_bits <= f16_mantissa_bis_number)); TINT_ASSERT(Semantic, (f16_mantissa_part & ~((1u << f16_valid_mantissa_bits) - 1)) == 0); TINT_ASSERT(Semantic, (f16_mantissa_part != 0)); return f16_sign_part | f16_exp_part | f16_mantissa_part; } // Neither zero, subnormal f16 or normal f16, shall never hit. tint::diag::List diag; TINT_UNREACHABLE(Semantic, diag); return f16_nan; } } // namespace tint