// Copyright 2018 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dawn_native/vulkan/RenderPipelineVk.h" #include "dawn_native/vulkan/DeviceVk.h" #include "dawn_native/vulkan/FencedDeleter.h" #include "dawn_native/vulkan/PipelineLayoutVk.h" #include "dawn_native/vulkan/RenderPassCache.h" #include "dawn_native/vulkan/ShaderModuleVk.h" #include "dawn_native/vulkan/TextureVk.h" #include "dawn_native/vulkan/UtilsVulkan.h" #include "dawn_native/vulkan/VulkanError.h" namespace dawn_native { namespace vulkan { namespace { VkVertexInputRate VulkanInputRate(wgpu::InputStepMode stepMode) { switch (stepMode) { case wgpu::InputStepMode::Vertex: return VK_VERTEX_INPUT_RATE_VERTEX; case wgpu::InputStepMode::Instance: return VK_VERTEX_INPUT_RATE_INSTANCE; default: UNREACHABLE(); } } VkFormat VulkanVertexFormat(wgpu::VertexFormat format) { switch (format) { case wgpu::VertexFormat::UChar2: return VK_FORMAT_R8G8_UINT; case wgpu::VertexFormat::UChar4: return VK_FORMAT_R8G8B8A8_UINT; case wgpu::VertexFormat::Char2: return VK_FORMAT_R8G8_SINT; case wgpu::VertexFormat::Char4: return VK_FORMAT_R8G8B8A8_SINT; case wgpu::VertexFormat::UChar2Norm: return VK_FORMAT_R8G8_UNORM; case wgpu::VertexFormat::UChar4Norm: return VK_FORMAT_R8G8B8A8_UNORM; case wgpu::VertexFormat::Char2Norm: return VK_FORMAT_R8G8_SNORM; case wgpu::VertexFormat::Char4Norm: return VK_FORMAT_R8G8B8A8_SNORM; case wgpu::VertexFormat::UShort2: return VK_FORMAT_R16G16_UINT; case wgpu::VertexFormat::UShort4: return VK_FORMAT_R16G16B16A16_UINT; case wgpu::VertexFormat::Short2: return VK_FORMAT_R16G16_SINT; case wgpu::VertexFormat::Short4: return VK_FORMAT_R16G16B16A16_SINT; case wgpu::VertexFormat::UShort2Norm: return VK_FORMAT_R16G16_UNORM; case wgpu::VertexFormat::UShort4Norm: return VK_FORMAT_R16G16B16A16_UNORM; case wgpu::VertexFormat::Short2Norm: return VK_FORMAT_R16G16_SNORM; case wgpu::VertexFormat::Short4Norm: return VK_FORMAT_R16G16B16A16_SNORM; case wgpu::VertexFormat::Half2: return VK_FORMAT_R16G16_SFLOAT; case wgpu::VertexFormat::Half4: return VK_FORMAT_R16G16B16A16_SFLOAT; case wgpu::VertexFormat::Float: return VK_FORMAT_R32_SFLOAT; case wgpu::VertexFormat::Float2: return VK_FORMAT_R32G32_SFLOAT; case wgpu::VertexFormat::Float3: return VK_FORMAT_R32G32B32_SFLOAT; case wgpu::VertexFormat::Float4: return VK_FORMAT_R32G32B32A32_SFLOAT; case wgpu::VertexFormat::UInt: return VK_FORMAT_R32_UINT; case wgpu::VertexFormat::UInt2: return VK_FORMAT_R32G32_UINT; case wgpu::VertexFormat::UInt3: return VK_FORMAT_R32G32B32_UINT; case wgpu::VertexFormat::UInt4: return VK_FORMAT_R32G32B32A32_UINT; case wgpu::VertexFormat::Int: return VK_FORMAT_R32_SINT; case wgpu::VertexFormat::Int2: return VK_FORMAT_R32G32_SINT; case wgpu::VertexFormat::Int3: return VK_FORMAT_R32G32B32_SINT; case wgpu::VertexFormat::Int4: return VK_FORMAT_R32G32B32A32_SINT; default: UNREACHABLE(); } } VkPrimitiveTopology VulkanPrimitiveTopology(wgpu::PrimitiveTopology topology) { switch (topology) { case wgpu::PrimitiveTopology::PointList: return VK_PRIMITIVE_TOPOLOGY_POINT_LIST; case wgpu::PrimitiveTopology::LineList: return VK_PRIMITIVE_TOPOLOGY_LINE_LIST; case wgpu::PrimitiveTopology::LineStrip: return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP; case wgpu::PrimitiveTopology::TriangleList: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; case wgpu::PrimitiveTopology::TriangleStrip: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; default: UNREACHABLE(); } } bool ShouldEnablePrimitiveRestart(wgpu::PrimitiveTopology topology) { // Primitive restart is always enabled in WebGPU but Vulkan validation rules ask that // primitive restart be only enabled on primitive topologies that support restarting. switch (topology) { case wgpu::PrimitiveTopology::PointList: case wgpu::PrimitiveTopology::LineList: case wgpu::PrimitiveTopology::TriangleList: return false; case wgpu::PrimitiveTopology::LineStrip: case wgpu::PrimitiveTopology::TriangleStrip: return true; default: UNREACHABLE(); } } VkFrontFace VulkanFrontFace(wgpu::FrontFace face) { switch (face) { case wgpu::FrontFace::CCW: return VK_FRONT_FACE_COUNTER_CLOCKWISE; case wgpu::FrontFace::CW: return VK_FRONT_FACE_CLOCKWISE; } } VkCullModeFlagBits VulkanCullMode(wgpu::CullMode mode) { switch (mode) { case wgpu::CullMode::None: return VK_CULL_MODE_NONE; case wgpu::CullMode::Front: return VK_CULL_MODE_FRONT_BIT; case wgpu::CullMode::Back: return VK_CULL_MODE_BACK_BIT; } } VkBlendFactor VulkanBlendFactor(wgpu::BlendFactor factor) { switch (factor) { case wgpu::BlendFactor::Zero: return VK_BLEND_FACTOR_ZERO; case wgpu::BlendFactor::One: return VK_BLEND_FACTOR_ONE; case wgpu::BlendFactor::SrcColor: return VK_BLEND_FACTOR_SRC_COLOR; case wgpu::BlendFactor::OneMinusSrcColor: return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR; case wgpu::BlendFactor::SrcAlpha: return VK_BLEND_FACTOR_SRC_ALPHA; case wgpu::BlendFactor::OneMinusSrcAlpha: return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; case wgpu::BlendFactor::DstColor: return VK_BLEND_FACTOR_DST_COLOR; case wgpu::BlendFactor::OneMinusDstColor: return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; case wgpu::BlendFactor::DstAlpha: return VK_BLEND_FACTOR_DST_ALPHA; case wgpu::BlendFactor::OneMinusDstAlpha: return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA; case wgpu::BlendFactor::SrcAlphaSaturated: return VK_BLEND_FACTOR_SRC_ALPHA_SATURATE; case wgpu::BlendFactor::BlendColor: return VK_BLEND_FACTOR_CONSTANT_COLOR; case wgpu::BlendFactor::OneMinusBlendColor: return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR; default: UNREACHABLE(); } } VkBlendOp VulkanBlendOperation(wgpu::BlendOperation operation) { switch (operation) { case wgpu::BlendOperation::Add: return VK_BLEND_OP_ADD; case wgpu::BlendOperation::Subtract: return VK_BLEND_OP_SUBTRACT; case wgpu::BlendOperation::ReverseSubtract: return VK_BLEND_OP_REVERSE_SUBTRACT; case wgpu::BlendOperation::Min: return VK_BLEND_OP_MIN; case wgpu::BlendOperation::Max: return VK_BLEND_OP_MAX; default: UNREACHABLE(); } } VkColorComponentFlags VulkanColorWriteMask(wgpu::ColorWriteMask mask, bool isDeclaredInFragmentShader) { // Vulkan and Dawn color write masks match, static assert it and return the mask static_assert(static_cast(wgpu::ColorWriteMask::Red) == VK_COLOR_COMPONENT_R_BIT, ""); static_assert(static_cast(wgpu::ColorWriteMask::Green) == VK_COLOR_COMPONENT_G_BIT, ""); static_assert(static_cast(wgpu::ColorWriteMask::Blue) == VK_COLOR_COMPONENT_B_BIT, ""); static_assert(static_cast(wgpu::ColorWriteMask::Alpha) == VK_COLOR_COMPONENT_A_BIT, ""); // According to Vulkan SPEC (Chapter 14.3): "The input values to blending or color // attachment writes are undefined for components which do not correspond to a fragment // shader outputs", we set the color write mask to 0 to prevent such undefined values // being written into the color attachments. return isDeclaredInFragmentShader ? static_cast(mask) : static_cast(0); } VkPipelineColorBlendAttachmentState ComputeColorDesc(const ColorStateDescriptor* descriptor, bool isDeclaredInFragmentShader) { VkPipelineColorBlendAttachmentState attachment; attachment.blendEnable = BlendEnabled(descriptor) ? VK_TRUE : VK_FALSE; attachment.srcColorBlendFactor = VulkanBlendFactor(descriptor->colorBlend.srcFactor); attachment.dstColorBlendFactor = VulkanBlendFactor(descriptor->colorBlend.dstFactor); attachment.colorBlendOp = VulkanBlendOperation(descriptor->colorBlend.operation); attachment.srcAlphaBlendFactor = VulkanBlendFactor(descriptor->alphaBlend.srcFactor); attachment.dstAlphaBlendFactor = VulkanBlendFactor(descriptor->alphaBlend.dstFactor); attachment.alphaBlendOp = VulkanBlendOperation(descriptor->alphaBlend.operation); attachment.colorWriteMask = VulkanColorWriteMask(descriptor->writeMask, isDeclaredInFragmentShader); return attachment; } VkStencilOp VulkanStencilOp(wgpu::StencilOperation op) { switch (op) { case wgpu::StencilOperation::Keep: return VK_STENCIL_OP_KEEP; case wgpu::StencilOperation::Zero: return VK_STENCIL_OP_ZERO; case wgpu::StencilOperation::Replace: return VK_STENCIL_OP_REPLACE; case wgpu::StencilOperation::IncrementClamp: return VK_STENCIL_OP_INCREMENT_AND_CLAMP; case wgpu::StencilOperation::DecrementClamp: return VK_STENCIL_OP_DECREMENT_AND_CLAMP; case wgpu::StencilOperation::Invert: return VK_STENCIL_OP_INVERT; case wgpu::StencilOperation::IncrementWrap: return VK_STENCIL_OP_INCREMENT_AND_WRAP; case wgpu::StencilOperation::DecrementWrap: return VK_STENCIL_OP_DECREMENT_AND_WRAP; default: UNREACHABLE(); } } VkPipelineDepthStencilStateCreateInfo ComputeDepthStencilDesc( const DepthStencilStateDescriptor* descriptor) { VkPipelineDepthStencilStateCreateInfo depthStencilState; depthStencilState.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; depthStencilState.pNext = nullptr; depthStencilState.flags = 0; // Depth writes only occur if depth is enabled depthStencilState.depthTestEnable = (descriptor->depthCompare == wgpu::CompareFunction::Always && !descriptor->depthWriteEnabled) ? VK_FALSE : VK_TRUE; depthStencilState.depthWriteEnable = descriptor->depthWriteEnabled ? VK_TRUE : VK_FALSE; depthStencilState.depthCompareOp = ToVulkanCompareOp(descriptor->depthCompare); depthStencilState.depthBoundsTestEnable = false; depthStencilState.minDepthBounds = 0.0f; depthStencilState.maxDepthBounds = 1.0f; depthStencilState.stencilTestEnable = StencilTestEnabled(descriptor) ? VK_TRUE : VK_FALSE; depthStencilState.front.failOp = VulkanStencilOp(descriptor->stencilFront.failOp); depthStencilState.front.passOp = VulkanStencilOp(descriptor->stencilFront.passOp); depthStencilState.front.depthFailOp = VulkanStencilOp(descriptor->stencilFront.depthFailOp); depthStencilState.front.compareOp = ToVulkanCompareOp(descriptor->stencilFront.compare); depthStencilState.back.failOp = VulkanStencilOp(descriptor->stencilBack.failOp); depthStencilState.back.passOp = VulkanStencilOp(descriptor->stencilBack.passOp); depthStencilState.back.depthFailOp = VulkanStencilOp(descriptor->stencilBack.depthFailOp); depthStencilState.back.compareOp = ToVulkanCompareOp(descriptor->stencilBack.compare); // Dawn doesn't have separate front and back stencil masks. depthStencilState.front.compareMask = descriptor->stencilReadMask; depthStencilState.back.compareMask = descriptor->stencilReadMask; depthStencilState.front.writeMask = descriptor->stencilWriteMask; depthStencilState.back.writeMask = descriptor->stencilWriteMask; // The stencil reference is always dynamic depthStencilState.front.reference = 0; depthStencilState.back.reference = 0; return depthStencilState; } } // anonymous namespace // static ResultOrError RenderPipeline::Create( Device* device, const RenderPipelineDescriptor* descriptor) { std::unique_ptr pipeline = std::make_unique(device, descriptor); DAWN_TRY(pipeline->Initialize(descriptor)); return pipeline.release(); } MaybeError RenderPipeline::Initialize(const RenderPipelineDescriptor* descriptor) { Device* device = ToBackend(GetDevice()); VkPipelineShaderStageCreateInfo shaderStages[2]; { shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStages[0].pNext = nullptr; shaderStages[0].flags = 0; shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shaderStages[0].pSpecializationInfo = nullptr; shaderStages[0].module = ToBackend(descriptor->vertexStage.module)->GetHandle(); shaderStages[0].pName = descriptor->vertexStage.entryPoint; shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStages[1].pNext = nullptr; shaderStages[1].flags = 0; shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderStages[1].pSpecializationInfo = nullptr; shaderStages[1].module = ToBackend(descriptor->fragmentStage->module)->GetHandle(); shaderStages[1].pName = descriptor->fragmentStage->entryPoint; } PipelineVertexInputStateCreateInfoTemporaryAllocations tempAllocations; VkPipelineVertexInputStateCreateInfo vertexInputCreateInfo = ComputeVertexInputDesc(&tempAllocations); VkPipelineInputAssemblyStateCreateInfo inputAssembly; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.pNext = nullptr; inputAssembly.flags = 0; inputAssembly.topology = VulkanPrimitiveTopology(GetPrimitiveTopology()); inputAssembly.primitiveRestartEnable = ShouldEnablePrimitiveRestart(GetPrimitiveTopology()); // A dummy viewport/scissor info. The validation layers force use to provide at least one // scissor and one viewport here, even if we choose to make them dynamic. VkViewport viewportDesc; viewportDesc.x = 0.0f; viewportDesc.y = 0.0f; viewportDesc.width = 1.0f; viewportDesc.height = 1.0f; viewportDesc.minDepth = 0.0f; viewportDesc.maxDepth = 1.0f; VkRect2D scissorRect; scissorRect.offset.x = 0; scissorRect.offset.y = 0; scissorRect.extent.width = 1; scissorRect.extent.height = 1; VkPipelineViewportStateCreateInfo viewport; viewport.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewport.pNext = nullptr; viewport.flags = 0; viewport.viewportCount = 1; viewport.pViewports = &viewportDesc; viewport.scissorCount = 1; viewport.pScissors = &scissorRect; VkPipelineRasterizationStateCreateInfo rasterization; rasterization.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterization.pNext = nullptr; rasterization.flags = 0; rasterization.depthClampEnable = VK_FALSE; rasterization.rasterizerDiscardEnable = VK_FALSE; rasterization.polygonMode = VK_POLYGON_MODE_FILL; rasterization.cullMode = VulkanCullMode(GetCullMode()); rasterization.frontFace = VulkanFrontFace(GetFrontFace()); rasterization.depthBiasEnable = VK_FALSE; rasterization.depthBiasConstantFactor = 0.0f; rasterization.depthBiasClamp = 0.0f; rasterization.depthBiasSlopeFactor = 0.0f; rasterization.lineWidth = 1.0f; VkPipelineMultisampleStateCreateInfo multisample; multisample.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisample.pNext = nullptr; multisample.flags = 0; multisample.rasterizationSamples = VulkanSampleCount(GetSampleCount()); multisample.sampleShadingEnable = VK_FALSE; multisample.minSampleShading = 0.0f; multisample.pSampleMask = nullptr; multisample.alphaToCoverageEnable = VK_FALSE; multisample.alphaToOneEnable = VK_FALSE; VkPipelineDepthStencilStateCreateInfo depthStencilState = ComputeDepthStencilDesc(GetDepthStencilStateDescriptor()); // Initialize the "blend state info" that will be chained in the "create info" from the data // pre-computed in the ColorState std::array colorBlendAttachments; const ShaderModuleBase::FragmentOutputBaseTypes& fragmentOutputBaseTypes = descriptor->fragmentStage->module->GetFragmentOutputBaseTypes(); for (uint32_t i : IterateBitSet(GetColorAttachmentsMask())) { const ColorStateDescriptor* colorStateDescriptor = GetColorStateDescriptor(i); bool isDeclaredInFragmentShader = fragmentOutputBaseTypes[i] != Format::Other; colorBlendAttachments[i] = ComputeColorDesc(colorStateDescriptor, isDeclaredInFragmentShader); } VkPipelineColorBlendStateCreateInfo colorBlend; colorBlend.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlend.pNext = nullptr; colorBlend.flags = 0; // LogicOp isn't supported so we disable it. colorBlend.logicOpEnable = VK_FALSE; colorBlend.logicOp = VK_LOGIC_OP_CLEAR; // TODO(cwallez@chromium.org): Do we allow holes in the color attachments? colorBlend.attachmentCount = static_cast(GetColorAttachmentsMask().count()); colorBlend.pAttachments = colorBlendAttachments.data(); // The blend constant is always dynamic so we fill in a dummy value colorBlend.blendConstants[0] = 0.0f; colorBlend.blendConstants[1] = 0.0f; colorBlend.blendConstants[2] = 0.0f; colorBlend.blendConstants[3] = 0.0f; // Tag all state as dynamic but stencil masks. VkDynamicState dynamicStates[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }; VkPipelineDynamicStateCreateInfo dynamic; dynamic.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamic.pNext = nullptr; dynamic.flags = 0; dynamic.dynamicStateCount = sizeof(dynamicStates) / sizeof(dynamicStates[0]); dynamic.pDynamicStates = dynamicStates; // Get a VkRenderPass that matches the attachment formats for this pipeline, load ops don't // matter so set them all to LoadOp::Load VkRenderPass renderPass = VK_NULL_HANDLE; { RenderPassCacheQuery query; for (uint32_t i : IterateBitSet(GetColorAttachmentsMask())) { query.SetColor(i, GetColorAttachmentFormat(i), wgpu::LoadOp::Load, false); } if (HasDepthStencilAttachment()) { query.SetDepthStencil(GetDepthStencilFormat(), wgpu::LoadOp::Load, wgpu::LoadOp::Load); } query.SetSampleCount(GetSampleCount()); DAWN_TRY_ASSIGN(renderPass, device->GetRenderPassCache()->GetRenderPass(query)); } // The create info chains in a bunch of things created on the stack here or inside state // objects. VkGraphicsPipelineCreateInfo createInfo; createInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; createInfo.stageCount = 2; createInfo.pStages = shaderStages; createInfo.pVertexInputState = &vertexInputCreateInfo; createInfo.pInputAssemblyState = &inputAssembly; createInfo.pTessellationState = nullptr; createInfo.pViewportState = &viewport; createInfo.pRasterizationState = &rasterization; createInfo.pMultisampleState = &multisample; createInfo.pDepthStencilState = &depthStencilState; createInfo.pColorBlendState = &colorBlend; createInfo.pDynamicState = &dynamic; createInfo.layout = ToBackend(GetLayout())->GetHandle(); createInfo.renderPass = renderPass; createInfo.subpass = 0; createInfo.basePipelineHandle = VK_NULL_HANDLE; createInfo.basePipelineIndex = -1; return CheckVkSuccess( device->fn.CreateGraphicsPipelines(device->GetVkDevice(), VK_NULL_HANDLE, 1, &createInfo, nullptr, &mHandle), "CreateGraphicsPipeline"); } VkPipelineVertexInputStateCreateInfo RenderPipeline::ComputeVertexInputDesc( PipelineVertexInputStateCreateInfoTemporaryAllocations* tempAllocations) { // Fill in the "binding info" that will be chained in the create info uint32_t bindingCount = 0; for (uint32_t i : IterateBitSet(GetVertexBufferSlotsUsed())) { const VertexBufferInfo& bindingInfo = GetVertexBuffer(i); VkVertexInputBindingDescription* bindingDesc = &tempAllocations->bindings[bindingCount]; bindingDesc->binding = i; bindingDesc->stride = bindingInfo.arrayStride; bindingDesc->inputRate = VulkanInputRate(bindingInfo.stepMode); bindingCount++; } // Fill in the "attribute info" that will be chained in the create info uint32_t attributeCount = 0; for (uint32_t i : IterateBitSet(GetAttributeLocationsUsed())) { const VertexAttributeInfo& attributeInfo = GetAttribute(i); VkVertexInputAttributeDescription* attributeDesc = &tempAllocations->attributes[attributeCount]; attributeDesc->location = i; attributeDesc->binding = attributeInfo.vertexBufferSlot; attributeDesc->format = VulkanVertexFormat(attributeInfo.format); attributeDesc->offset = attributeInfo.offset; attributeCount++; } // Build the create info VkPipelineVertexInputStateCreateInfo mCreateInfo; mCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; mCreateInfo.pNext = nullptr; mCreateInfo.flags = 0; mCreateInfo.vertexBindingDescriptionCount = bindingCount; mCreateInfo.pVertexBindingDescriptions = tempAllocations->bindings.data(); mCreateInfo.vertexAttributeDescriptionCount = attributeCount; mCreateInfo.pVertexAttributeDescriptions = tempAllocations->attributes.data(); return mCreateInfo; } RenderPipeline::~RenderPipeline() { if (mHandle != VK_NULL_HANDLE) { ToBackend(GetDevice())->GetFencedDeleter()->DeleteWhenUnused(mHandle); mHandle = VK_NULL_HANDLE; } } VkPipeline RenderPipeline::GetHandle() const { return mHandle; } }} // namespace dawn_native::vulkan