// Copyright 2020 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "tests/DawnTest.h" #include "common/Assert.h" #include "common/Constants.h" #include "utils/ComboRenderPipelineDescriptor.h" #include "utils/WGPUHelpers.h" class StorageTextureTests : public DawnTest { public: // TODO(jiawei.shao@intel.com): support all formats that can be used in storage textures. static std::vector GetExpectedData() { constexpr size_t kDataCount = kWidth * kHeight; std::vector outputData(kDataCount); for (size_t i = 0; i < kDataCount; ++i) { outputData[i] = static_cast(i + 1u); } return outputData; } wgpu::Texture CreateTexture(wgpu::TextureFormat format, wgpu::TextureUsage usage, uint32_t width = kWidth, uint32_t height = kHeight) { wgpu::TextureDescriptor descriptor; descriptor.size = {width, height, 1}; descriptor.format = format; descriptor.usage = usage; return device.CreateTexture(&descriptor); } wgpu::Buffer CreateEmptyBufferForTextureCopy(uint32_t texelSize) { ASSERT(kWidth * texelSize <= kTextureBytesPerRowAlignment); const size_t uploadBufferSize = kTextureBytesPerRowAlignment * (kHeight - 1) + kWidth * texelSize; wgpu::BufferDescriptor descriptor; descriptor.size = uploadBufferSize; descriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst; return device.CreateBuffer(&descriptor); } // TODO(jiawei.shao@intel.com): support all formats that can be used in storage textures. wgpu::Texture CreateTextureWithTestData(const std::vector& initialTextureData, uint32_t texelSize) { ASSERT(kWidth * texelSize <= kTextureBytesPerRowAlignment); const size_t uploadBufferSize = kTextureBytesPerRowAlignment * (kHeight - 1) + kWidth * texelSize; std::vector uploadBufferData(uploadBufferSize / texelSize); const size_t texelCountPerRow = kTextureBytesPerRowAlignment / texelSize; for (size_t y = 0; y < kHeight; ++y) { for (size_t x = 0; x < kWidth; ++x) { uint32_t data = initialTextureData[kWidth * y + x]; size_t indexInUploadBuffer = y * texelCountPerRow + x; uploadBufferData[indexInUploadBuffer] = data; } } wgpu::Buffer uploadBuffer = utils::CreateBufferFromData(device, uploadBufferData.data(), uploadBufferSize, wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst); wgpu::Texture outputTexture = CreateTexture(wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopyDst); wgpu::BufferCopyView bufferCopyView = utils::CreateBufferCopyView(uploadBuffer, 0, kTextureBytesPerRowAlignment, 0); wgpu::TextureCopyView textureCopyView; textureCopyView.texture = outputTexture; wgpu::Extent3D copyExtent = {kWidth, kHeight, 1}; wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); encoder.CopyBufferToTexture(&bufferCopyView, &textureCopyView, ©Extent); wgpu::CommandBuffer commandBuffer = encoder.Finish(); queue.Submit(1, &commandBuffer); return outputTexture; } wgpu::ComputePipeline CreateComputePipeline(const char* computeShader) { wgpu::ShaderModule csModule = utils::CreateShaderModule(device, utils::SingleShaderStage::Compute, computeShader); wgpu::ComputePipelineDescriptor computeDescriptor; computeDescriptor.layout = nullptr; computeDescriptor.computeStage.module = csModule; computeDescriptor.computeStage.entryPoint = "main"; return device.CreateComputePipeline(&computeDescriptor); } wgpu::RenderPipeline CreateRenderPipeline(const char* vertexShader, const char* fragmentShader) { wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, vertexShader); wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, utils::SingleShaderStage::Fragment, fragmentShader); utils::ComboRenderPipelineDescriptor desc(device); desc.vertexStage.module = vsModule; desc.cFragmentStage.module = fsModule; desc.cColorStates[0].format = kOutputAttachmentFormat; desc.primitiveTopology = wgpu::PrimitiveTopology::PointList; return device.CreateRenderPipeline(&desc); } void CheckDrawsGreen(const char* vertexShader, const char* fragmentShader, wgpu::Texture readonlyStorageTexture) { wgpu::RenderPipeline pipeline = CreateRenderPipeline(vertexShader, fragmentShader); wgpu::BindGroup bindGroup = utils::MakeBindGroup( device, pipeline.GetBindGroupLayout(0), {{0, readonlyStorageTexture.CreateView()}}); // Clear the output attachment to red at the beginning of the render pass. wgpu::Texture outputTexture = CreateTexture(kOutputAttachmentFormat, wgpu::TextureUsage::OutputAttachment | wgpu::TextureUsage::CopySrc, 1, 1); utils::ComboRenderPassDescriptor renderPassDescriptor({outputTexture.CreateView()}); renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; renderPassDescriptor.cColorAttachments[0].clearColor = {1.f, 0.f, 0.f, 1.f}; wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor); renderPassEncoder.SetBindGroup(0, bindGroup); renderPassEncoder.SetPipeline(pipeline); renderPassEncoder.Draw(1); renderPassEncoder.EndPass(); wgpu::CommandBuffer commandBuffer = encoder.Finish(); queue.Submit(1, &commandBuffer); // Check if the contents in the output texture are all as expected (green). EXPECT_PIXEL_RGBA8_EQ(RGBA8::kGreen, outputTexture, 0, 0); } void CheckResultInStorageBuffer(wgpu::Texture readonlyStorageTexture, const std::string& computeShader) { wgpu::ComputePipeline pipeline = CreateComputePipeline(computeShader.c_str()); // Clear the content of the result buffer into 0. constexpr uint32_t kInitialValue = 0; wgpu::Buffer resultBuffer = utils::CreateBufferFromData(device, &kInitialValue, sizeof(kInitialValue), wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc); wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, readonlyStorageTexture.CreateView()}, {1, resultBuffer}}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::ComputePassEncoder computeEncoder = encoder.BeginComputePass(); computeEncoder.SetBindGroup(0, bindGroup); computeEncoder.SetPipeline(pipeline); computeEncoder.Dispatch(1); computeEncoder.EndPass(); wgpu::CommandBuffer commandBuffer = encoder.Finish(); queue.Submit(1, &commandBuffer); // Check if the contents in the result buffer are what we expect. constexpr uint32_t kExpectedValue = 1u; EXPECT_BUFFER_U32_RANGE_EQ(&kExpectedValue, resultBuffer, 0, 1u); } void WriteIntoStorageTextureInRenderPass(wgpu::Texture writeonlyStorageTexture, const char* kVertexShader, const char* kFragmentShader) { // Create a render pipeline that writes the expected pixel values into the storage texture // without fragment shader outputs. wgpu::RenderPipeline pipeline = CreateRenderPipeline(kVertexShader, kFragmentShader); wgpu::BindGroup bindGroup = utils::MakeBindGroup( device, pipeline.GetBindGroupLayout(0), {{0, writeonlyStorageTexture.CreateView()}}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); // TODO(jiawei.shao@intel.com): remove the output attachment when Dawn supports beginning a // render pass with no attachments. wgpu::Texture dummyOutputTexture = CreateTexture(kOutputAttachmentFormat, wgpu::TextureUsage::OutputAttachment | wgpu::TextureUsage::CopySrc, 1, 1); utils::ComboRenderPassDescriptor renderPassDescriptor({dummyOutputTexture.CreateView()}); wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor); renderPassEncoder.SetBindGroup(0, bindGroup); renderPassEncoder.SetPipeline(pipeline); renderPassEncoder.Draw(1); renderPassEncoder.EndPass(); wgpu::CommandBuffer commandBuffer = encoder.Finish(); queue.Submit(1, &commandBuffer); } void WriteIntoStorageTextureInComputePass(wgpu::Texture writeonlyStorageTexture, const char* computeShader) { // Create a compute pipeline that writes the expected pixel values into the storage texture. wgpu::ComputePipeline pipeline = CreateComputePipeline(computeShader); wgpu::BindGroup bindGroup = utils::MakeBindGroup( device, pipeline.GetBindGroupLayout(0), {{0, writeonlyStorageTexture.CreateView()}}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::ComputePassEncoder computePassEncoder = encoder.BeginComputePass(); computePassEncoder.SetBindGroup(0, bindGroup); computePassEncoder.SetPipeline(pipeline); computePassEncoder.Dispatch(1); computePassEncoder.EndPass(); wgpu::CommandBuffer commandBuffer = encoder.Finish(); queue.Submit(1, &commandBuffer); } void CheckOutputStorageTexture(wgpu::Texture writeonlyStorageTexture, uint32_t texelSize, const std::vector& expectedData) { // Copy the content from the write-only storage texture to the result buffer. wgpu::Buffer resultBuffer = CreateEmptyBufferForTextureCopy(texelSize); wgpu::BufferCopyView bufferCopyView = utils::CreateBufferCopyView(resultBuffer, 0, kTextureBytesPerRowAlignment, 0); wgpu::TextureCopyView textureCopyView; textureCopyView.texture = writeonlyStorageTexture; wgpu::Extent3D copyExtent = {kWidth, kHeight, 1}; wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); encoder.CopyTextureToBuffer(&textureCopyView, &bufferCopyView, ©Extent); wgpu::CommandBuffer commandBuffer = encoder.Finish(); queue.Submit(1, &commandBuffer); // Check if the contents in the result buffer are what we expect. for (size_t y = 0; y < kHeight; ++y) { const size_t resultBufferOffset = kTextureBytesPerRowAlignment * y; EXPECT_BUFFER_U32_RANGE_EQ(expectedData.data() + kWidth * y, resultBuffer, resultBufferOffset, kWidth); } } static constexpr size_t kWidth = 4u; static constexpr size_t kHeight = 4u; static constexpr wgpu::TextureFormat kOutputAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm; const char* kSimpleVertexShader = R"( #version 450 void main() { gl_Position = vec4(0.f, 0.f, 0.f, 1.f); gl_PointSize = 1.0f; })"; const char* kCommonReadOnlyTestCode_uimage2D = R"( bool doTest() { for (uint y = 0; y < 4; ++y) { for (uint x = 0; x < 4; ++x) { uvec4 expected = uvec4(1u + x + y * 4u, 0, 0, 1u); uvec4 pixel = imageLoad(srcImage, ivec2(x, y)); if (pixel != expected) { return false; } } } return true; })"; const char* kCommonWriteOnlyTestCode_uimage2D = R"( #version 450 layout(set = 0, binding = 0, r32ui) uniform writeonly uimage2D dstImage; void main() { for (uint y = 0; y < 4; ++y) { for (uint x = 0; x < 4; ++x) { uvec4 pixel = uvec4(1u + x + y * 4u, 0, 0, 1u); imageStore(dstImage, ivec2(x, y), pixel); } } })"; }; // Test that using read-only storage texture and write-only storage texture in BindGroupLayout is // valid on all backends. This test is a regression test for chromium:1061156 and passes by not // asserting or crashing. TEST_P(StorageTextureTests, BindGroupLayoutWithStorageTextureBindingType) { // wgpu::BindingType::ReadonlyStorageTexture is a valid binding type to create a bind group // layout. { wgpu::BindGroupLayoutEntry entry = {0, wgpu::ShaderStage::Compute, wgpu::BindingType::ReadonlyStorageTexture}; entry.storageTextureFormat = wgpu::TextureFormat::R32Float; wgpu::BindGroupLayoutDescriptor descriptor; descriptor.entryCount = 1; descriptor.entries = &entry; device.CreateBindGroupLayout(&descriptor); } // wgpu::BindingType::WriteonlyStorageTexture is a valid binding type to create a bind group // layout. { wgpu::BindGroupLayoutEntry entry = {0, wgpu::ShaderStage::Compute, wgpu::BindingType::WriteonlyStorageTexture}; entry.storageTextureFormat = wgpu::TextureFormat::R32Float; wgpu::BindGroupLayoutDescriptor descriptor; descriptor.entryCount = 1; descriptor.entries = &entry; device.CreateBindGroupLayout(&descriptor); } } // Test that read-only storage textures are supported in compute shader. TEST_P(StorageTextureTests, ReadonlyStorageTextureInComputeShader) { // TODO(jiawei.shao@intel.com): support read-only storage texture on OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsD3D12() && IsSpvcParserBeingUsed()); // Prepare the read-only storage texture and fill it with the expected data. // TODO(jiawei.shao@intel.com): test more texture formats. constexpr uint32_t kTexelSizeR32Uint = 4u; const std::vector kInitialTextureData = GetExpectedData(); wgpu::Texture readonlyStorageTexture = CreateTextureWithTestData(kInitialTextureData, kTexelSizeR32Uint); // Create a compute shader that reads the pixels from the read-only storage texture and writes 1 // to DstBuffer if they all have to expected value. const std::string kComputeShader = std::string(R"( #version 450 layout (set = 0, binding = 0, r32ui) uniform readonly uimage2D srcImage; layout (set = 0, binding = 1, std430) buffer DstBuffer { uint result; } dstBuffer;)") + kCommonReadOnlyTestCode_uimage2D + R"( void main() { if (doTest()) { dstBuffer.result = 1; } else { dstBuffer.result = 0; } })"; CheckResultInStorageBuffer(readonlyStorageTexture, kComputeShader); } // Test that read-only storage textures are supported in vertex shader. TEST_P(StorageTextureTests, ReadonlyStorageTextureInVertexShader) { // TODO(jiawei.shao@intel.com): support read-only storage texture on OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsSpvcParserBeingUsed()); // Prepare the read-only storage texture and fill it with the expected data. // TODO(jiawei.shao@intel.com): test more texture formats constexpr uint32_t kTexelSizeR32Uint = 4u; const std::vector kInitialTextureData = GetExpectedData(); wgpu::Texture readonlyStorageTexture = CreateTextureWithTestData(kInitialTextureData, kTexelSizeR32Uint); // Create a rendering pipeline that reads the pixels from the read-only storage texture and uses // green as the output color, otherwise uses red instead. const std::string kVertexShader = std::string(R"( #version 450 layout(set = 0, binding = 0, r32ui) uniform readonly uimage2D srcImage; layout(location = 0) out vec4 o_color;)") + kCommonReadOnlyTestCode_uimage2D + R"( void main() { gl_Position = vec4(0.f, 0.f, 0.f, 1.f); if (doTest()) { o_color = vec4(0.f, 1.f, 0.f, 1.f); } else { o_color = vec4(1.f, 0.f, 0.f, 1.f); } gl_PointSize = 1.0f; })"; const char* kFragmentShader = R"( #version 450 layout(location = 0) in vec4 o_color; layout(location = 0) out vec4 fragColor; void main() { fragColor = o_color; })"; CheckDrawsGreen(kVertexShader.c_str(), kFragmentShader, readonlyStorageTexture); } // Test that read-only storage textures are supported in fragment shader. TEST_P(StorageTextureTests, ReadonlyStorageTextureInFragmentShader) { // TODO(jiawei.shao@intel.com): support read-only storage texture on OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsSpvcParserBeingUsed()); // Prepare the read-only storage texture and fill it with the expected data. // TODO(jiawei.shao@intel.com): test more texture formats constexpr uint32_t kTexelSizeR32Uint = 4u; const std::vector kInitialTextureData = GetExpectedData(); wgpu::Texture readonlyStorageTexture = CreateTextureWithTestData(kInitialTextureData, kTexelSizeR32Uint); // Create a rendering pipeline that reads the pixels from the read-only storage texture and uses // green as the output color if the pixel value is expected, otherwise uses red instead. const char* kVertexShader = kSimpleVertexShader; const std::string kFragmentShader = std::string(R"( #version 450 layout(set = 0, binding = 0, r32ui) uniform readonly uimage2D srcImage; layout(location = 0) out vec4 o_color;)") + kCommonReadOnlyTestCode_uimage2D + R"( void main() { if (doTest()) { o_color = vec4(0.f, 1.f, 0.f, 1.f); } else { o_color = vec4(1.f, 0.f, 0.f, 1.f); } })"; CheckDrawsGreen(kVertexShader, kFragmentShader.c_str(), readonlyStorageTexture); } // Test that write-only storage textures are supported in compute shader. TEST_P(StorageTextureTests, WriteonlyStorageTextureInComputeShader) { // TODO(jiawei.shao@intel.com): support read-only storage texture on D3D12 and OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsD3D12() && IsSpvcParserBeingUsed()); // Prepare the write-only storage texture. // TODO(jiawei.shao@intel.com): test more texture formats. constexpr uint32_t kTexelSizeR32Uint = 4u; wgpu::Texture writeonlyStorageTexture = CreateTexture( wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc); WriteIntoStorageTextureInComputePass(writeonlyStorageTexture, kCommonWriteOnlyTestCode_uimage2D); CheckOutputStorageTexture(writeonlyStorageTexture, kTexelSizeR32Uint, GetExpectedData()); } // Test that write-only storage textures are supported in fragment shader. TEST_P(StorageTextureTests, WriteonlyStorageTextureInFragmentShader) { // TODO(jiawei.shao@intel.com): support read-only storage texture on D3D12 and OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsD3D12() && IsSpvcParserBeingUsed()); // Prepare the write-only storage texture. // TODO(jiawei.shao@intel.com): test more texture formats. constexpr uint32_t kTexelSizeR32Uint = 4u; wgpu::Texture writeonlyStorageTexture = CreateTexture( wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc); WriteIntoStorageTextureInRenderPass(writeonlyStorageTexture, kSimpleVertexShader, kCommonWriteOnlyTestCode_uimage2D); CheckOutputStorageTexture(writeonlyStorageTexture, kTexelSizeR32Uint, GetExpectedData()); } DAWN_INSTANTIATE_TEST(StorageTextureTests, D3D12Backend(), MetalBackend(), OpenGLBackend(), VulkanBackend()); class StorageTextureZeroInitTests : public StorageTextureTests { public: static std::vector GetExpectedData() { constexpr size_t kDataCount = kWidth * kHeight; std::vector outputData(kDataCount, 0); outputData[0] = 1u; return outputData; } const char* kCommonReadOnlyZeroInitTestCode = R"( bool doTest() { for (uint y = 0; y < 4; ++y) { for (uint x = 0; x < 4; ++x) { uvec4 pixel = imageLoad(srcImage, ivec2(x, y)); if (pixel != uvec4(0, 0, 0, 1u)) { return false; } } } return true; })"; const char* kCommonWriteOnlyZeroInitTestCode = R"( #version 450 layout(set = 0, binding = 0, r32ui) uniform writeonly uimage2D dstImage; void main() { imageStore(dstImage, ivec2(0, 0), uvec4(1u, 0, 0, 1u)); })"; }; // Verify that the texture is correctly cleared to 0 before its first usage as a read-only storage // texture in a render pass. TEST_P(StorageTextureZeroInitTests, ReadonlyStorageTextureClearsToZeroInRenderPass) { // TODO(jiawei.shao@intel.com): support read-only storage texture on OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsSpvcParserBeingUsed()); wgpu::Texture readonlyStorageTexture = CreateTexture(wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage); // Create a rendering pipeline that reads the pixels from the read-only storage texture and uses // green as the output color, otherwise uses red instead. const char* kVertexShader = kSimpleVertexShader; const std::string kFragmentShader = std::string(R"( #version 450 layout(set = 0, binding = 0, r32ui) uniform readonly uimage2D srcImage; layout(location = 0) out vec4 o_color;)") + kCommonReadOnlyZeroInitTestCode + R"( void main() { if (doTest()) { o_color = vec4(0.f, 1.f, 0.f, 1.f); } else { o_color = vec4(1.f, 0.f, 0.f, 1.f); } })"; CheckDrawsGreen(kVertexShader, kFragmentShader.c_str(), readonlyStorageTexture); } // Verify that the texture is correctly cleared to 0 before its first usage as a read-only storage // texture in a compute pass. TEST_P(StorageTextureZeroInitTests, ReadonlyStorageTextureClearsToZeroInComputePass) { // TODO(jiawei.shao@intel.com): support read-only storage texture on OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsSpvcParserBeingUsed()); wgpu::Texture readonlyStorageTexture = CreateTexture(wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage); // Create a compute shader that reads the pixels from the read-only storage texture and writes 1 // to DstBuffer if they all have to expected value. const std::string kComputeShader = std::string(R"( #version 450 layout (set = 0, binding = 0, r32ui) uniform readonly uimage2D srcImage; layout (set = 0, binding = 1, std430) buffer DstBuffer { uint result; } dstBuffer;)") + kCommonReadOnlyZeroInitTestCode + R"( void main() { if (doTest()) { dstBuffer.result = 1; } else { dstBuffer.result = 0; } })"; CheckResultInStorageBuffer(readonlyStorageTexture, kComputeShader); } // Verify that the texture is correctly cleared to 0 before its first usage as a write-only storage // storage texture in a render pass. TEST_P(StorageTextureZeroInitTests, WriteonlyStorageTextureClearsToZeroInRenderPass) { // TODO(jiawei.shao@intel.com): support read-only storage texture on D3D12 and OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsD3D12() && IsSpvcParserBeingUsed()); // Prepare the write-only storage texture. constexpr uint32_t kTexelSizeR32Uint = 4u; wgpu::Texture writeonlyStorageTexture = CreateTexture( wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc); WriteIntoStorageTextureInRenderPass(writeonlyStorageTexture, kSimpleVertexShader, kCommonWriteOnlyZeroInitTestCode); CheckOutputStorageTexture(writeonlyStorageTexture, kTexelSizeR32Uint, GetExpectedData()); } // Verify that the texture is correctly cleared to 0 before its first usage as a write-only storage // texture in a compute pass. TEST_P(StorageTextureZeroInitTests, WriteonlyStorageTextureClearsToZeroInComputePass) { // TODO(jiawei.shao@intel.com): support read-only storage texture on D3D12 and OpenGL. DAWN_SKIP_TEST_IF(IsOpenGL()); // When we run dawn_end2end_tests with "--use-spvc-parser", extracting the binding type of a // read-only image will always return shaderc_spvc_binding_type_writeonly_storage_texture. // TODO(jiawei.shao@intel.com): enable this test when we specify "--use-spvc-parser" after the // bug in spvc parser is fixed. DAWN_SKIP_TEST_IF(IsD3D12() && IsSpvcParserBeingUsed()); // Prepare the write-only storage texture. constexpr uint32_t kTexelSizeR32Uint = 4u; wgpu::Texture writeonlyStorageTexture = CreateTexture( wgpu::TextureFormat::R32Uint, wgpu::TextureUsage::Storage | wgpu::TextureUsage::CopySrc); WriteIntoStorageTextureInComputePass(writeonlyStorageTexture, kCommonWriteOnlyZeroInitTestCode); CheckOutputStorageTexture(writeonlyStorageTexture, kTexelSizeR32Uint, GetExpectedData()); } DAWN_INSTANTIATE_TEST(StorageTextureZeroInitTests, D3D12Backend({"nonzero_clear_resources_on_creation_for_testing"}), OpenGLBackend({"nonzero_clear_resources_on_creation_for_testing"}), MetalBackend({"nonzero_clear_resources_on_creation_for_testing"}), VulkanBackend({"nonzero_clear_resources_on_creation_for_testing"}));