// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "tests/unittests/validation/ValidationTest.h" #include "common/Constants.h" #include "utils/ComboRenderPipelineDescriptor.h" #include "utils/WGPUHelpers.h" #include #include class RenderPipelineValidationTest : public ValidationTest { protected: void SetUp() override { ValidationTest::SetUp(); vsModule = utils::CreateShaderModuleFromWGSL(device, R"( [[builtin(position)]] var Position : vec4; [[stage(vertex)]] fn main() -> void { Position = vec4(0.0, 0.0, 0.0, 1.0); })"); fsModule = utils::CreateShaderModuleFromWGSL(device, R"( [[location(0)]] var fragColor : vec4; [[stage(fragment)]] fn main() -> void { fragColor = vec4(0.0, 1.0, 0.0, 1.0); })"); } wgpu::ShaderModule vsModule; wgpu::ShaderModule fsModule; }; // Test cases where creation should succeed TEST_F(RenderPipelineValidationTest, CreationSuccess) { { // New format utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; device.CreateRenderPipeline2(&descriptor); } { // Deprecated format utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; descriptor.cFragmentStage.module = fsModule; device.CreateRenderPipeline(&descriptor); } { // Vertex input should be optional utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; descriptor.cFragmentStage.module = fsModule; descriptor.vertexState = nullptr; device.CreateRenderPipeline(&descriptor); } { // Rasterization state should be optional utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; descriptor.cFragmentStage.module = fsModule; descriptor.rasterizationState = nullptr; device.CreateRenderPipeline(&descriptor); } } // Tests that depth bias parameters must not be NaN. TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) { // Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.depthStencil = &descriptor.cDepthStencil; device.CreateRenderPipeline2(&descriptor); } // Infinite depth bias clamp is valid { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cDepthStencil.depthBiasClamp = INFINITY; descriptor.depthStencil = &descriptor.cDepthStencil; device.CreateRenderPipeline2(&descriptor); } // NAN depth bias clamp is invalid { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cDepthStencil.depthBiasClamp = NAN; descriptor.depthStencil = &descriptor.cDepthStencil; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } // Infinite depth bias slope is valid { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cDepthStencil.depthBiasSlopeScale = INFINITY; descriptor.depthStencil = &descriptor.cDepthStencil; device.CreateRenderPipeline2(&descriptor); } // NAN depth bias slope is invalid { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cDepthStencil.depthBiasSlopeScale = NAN; descriptor.depthStencil = &descriptor.cDepthStencil; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } } // Tests that at least one color target state is required. TEST_F(RenderPipelineValidationTest, ColorTargetStateRequired) { { // This one succeeds because attachment 0 is the color attachment utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cFragment.targetCount = 1; device.CreateRenderPipeline2(&descriptor); } { // Fail because lack of color target states (and depth/stencil state) utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cFragment.targetCount = 0; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } } // Tests that the color formats must be renderable. TEST_F(RenderPipelineValidationTest, NonRenderableFormat) { { // Succeeds because RGBA8Unorm is renderable utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; device.CreateRenderPipeline2(&descriptor); } { // Fails because RG11B10Ufloat is non-renderable utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cTargets[0].format = wgpu::TextureFormat::RG11B10Ufloat; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } } // Tests that the format of the color state descriptor must match the output of the fragment shader. TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) { constexpr uint32_t kNumTextureFormatBaseType = 3u; std::array kScalarTypes = {{"f32", "i32", "u32"}}; std::array kColorFormats = { {wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Sint, wgpu::TextureFormat::RGBA8Uint}}; for (size_t i = 0; i < kNumTextureFormatBaseType; ++i) { for (size_t j = 0; j < kNumTextureFormatBaseType; ++j) { utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; descriptor.cColorStates[0].format = kColorFormats[j]; std::ostringstream stream; stream << R"( [[location(0)]] var fragColor : vec4<)" << kScalarTypes[i] << R"(>; [[stage(fragment)]] fn main() -> void { })"; descriptor.cFragmentStage.module = utils::CreateShaderModuleFromWGSL(device, stream.str().c_str()); if (i == j) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } /// Tests that the sample count of the render pipeline must be valid. TEST_F(RenderPipelineValidationTest, SampleCount) { { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 4; device.CreateRenderPipeline2(&descriptor); } { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 3; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } } // Tests that the sample count of the render pipeline must be equal to the one of every attachments // in the render pass. TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) { constexpr uint32_t kMultisampledCount = 4; constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8; wgpu::TextureDescriptor baseTextureDescriptor; baseTextureDescriptor.size.width = 4; baseTextureDescriptor.size.height = 4; baseTextureDescriptor.size.depth = 1; baseTextureDescriptor.mipLevelCount = 1; baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D; baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment; utils::ComboRenderPipelineDescriptor nonMultisampledPipelineDescriptor(device); nonMultisampledPipelineDescriptor.sampleCount = 1; nonMultisampledPipelineDescriptor.vertexStage.module = vsModule; nonMultisampledPipelineDescriptor.cFragmentStage.module = fsModule; wgpu::RenderPipeline nonMultisampledPipeline = device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor); nonMultisampledPipelineDescriptor.colorStateCount = 0; nonMultisampledPipelineDescriptor.depthStencilState = &nonMultisampledPipelineDescriptor.cDepthStencilState; wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly = device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor); utils::ComboRenderPipelineDescriptor multisampledPipelineDescriptor(device); multisampledPipelineDescriptor.sampleCount = kMultisampledCount; multisampledPipelineDescriptor.vertexStage.module = vsModule; multisampledPipelineDescriptor.cFragmentStage.module = fsModule; wgpu::RenderPipeline multisampledPipeline = device.CreateRenderPipeline(&multisampledPipelineDescriptor); multisampledPipelineDescriptor.colorStateCount = 0; multisampledPipelineDescriptor.depthStencilState = &multisampledPipelineDescriptor.cDepthStencilState; wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly = device.CreateRenderPipeline(&multisampledPipelineDescriptor); // It is not allowed to use multisampled render pass and non-multisampled render pipeline. { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.format = kColorFormat; textureDescriptor.sampleCount = kMultisampledCount; wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {multisampledColorTexture.CreateView()}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(nonMultisampledPipeline); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.sampleCount = kMultisampledCount; textureDescriptor.format = kDepthStencilFormat; wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {}, multisampledDepthStencilTexture.CreateView()); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } // It is allowed to use multisampled render pass and multisampled render pipeline. { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.format = kColorFormat; textureDescriptor.sampleCount = kMultisampledCount; wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {multisampledColorTexture.CreateView()}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(multisampledPipeline); renderPass.EndPass(); encoder.Finish(); } { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.sampleCount = kMultisampledCount; textureDescriptor.format = kDepthStencilFormat; wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {}, multisampledDepthStencilTexture.CreateView()); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly); renderPass.EndPass(); encoder.Finish(); } // It is not allowed to use non-multisampled render pass and multisampled render pipeline. { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.format = kColorFormat; textureDescriptor.sampleCount = 1; wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor( {nonMultisampledColorTexture.CreateView()}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor); renderPass.SetPipeline(multisampledPipeline); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.sampleCount = 1; textureDescriptor.format = kDepthStencilFormat; wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {}, multisampledDepthStencilTexture.CreateView()); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } } // Tests that the sample count of the render pipeline must be valid // when the alphaToCoverage mode is enabled. TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) { { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 4; descriptor.multisample.alphaToCoverageEnabled = true; device.CreateRenderPipeline2(&descriptor); } { utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 1; descriptor.multisample.alphaToCoverageEnabled = true; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } } // Tests that the texture component type in shader must match the bind group layout. TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) { constexpr uint32_t kNumTextureComponentType = 3u; std::array kScalarTypes = {{"f32", "i32", "u32"}}; std::array kTextureComponentTypes = {{ wgpu::TextureSampleType::Float, wgpu::TextureSampleType::Sint, wgpu::TextureSampleType::Uint, }}; for (size_t i = 0; i < kNumTextureComponentType; ++i) { for (size_t j = 0; j < kNumTextureComponentType; ++j) { utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; std::ostringstream stream; stream << R"( [[group(0), binding(0)]] var myTexture : texture_2d<)" << kScalarTypes[i] << R"(>; [[stage(fragment)]] fn main() -> void { })"; descriptor.cFragmentStage.module = utils::CreateShaderModuleFromWGSL(device, stream.str().c_str()); wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout( device, {{0, wgpu::ShaderStage::Fragment, kTextureComponentTypes[j]}}); descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl); if (i == j) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } // Tests that the texture view dimension in shader must match the bind group layout. TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) { constexpr uint32_t kNumTextureViewDimensions = 6u; std::array kTextureKeywords = {{ "texture_1d", "texture_2d", "texture_2d_array", "texture_cube", "texture_cube_array", "texture_3d", }}; std::array kTextureViewDimensions = {{ wgpu::TextureViewDimension::e1D, wgpu::TextureViewDimension::e2D, wgpu::TextureViewDimension::e2DArray, wgpu::TextureViewDimension::Cube, wgpu::TextureViewDimension::CubeArray, wgpu::TextureViewDimension::e3D, }}; for (size_t i = 0; i < kNumTextureViewDimensions; ++i) { for (size_t j = 0; j < kNumTextureViewDimensions; ++j) { utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; std::ostringstream stream; stream << R"( [[group(0), binding(0)]] var myTexture : )" << kTextureKeywords[i] << R"(; [[stage(fragment)]] fn main() -> void { })"; descriptor.cFragmentStage.module = utils::CreateShaderModuleFromWGSL(device, stream.str().c_str()); wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout( device, {{0, wgpu::ShaderStage::Fragment, wgpu::TextureSampleType::Float, kTextureViewDimensions[j]}}); descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl); if (i == j) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } // Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't // cause crash. TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) { wgpu::ShaderModule vsModuleWithStorageBuffer = utils::CreateShaderModuleFromWGSL(device, R"( [[block]] struct Dst { [[offset(0)]] data : [[stride(4)]] array; }; [[group(0), binding(0)]] var dst : [[access(read_write)]] Dst; [[builtin(vertex_index)]] var VertexIndex : u32; [[stage(vertex)]] fn main() -> void { dst.data[VertexIndex] = 0x1234u; })"); utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.layout = nullptr; descriptor.vertexStage.module = vsModuleWithStorageBuffer; descriptor.cFragmentStage.module = fsModule; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Tests that strip primitive topologies require an index format TEST_F(RenderPipelineValidationTest, StripIndexFormatRequired) { constexpr uint32_t kNumStripType = 2u; constexpr uint32_t kNumListType = 3u; constexpr uint32_t kNumIndexFormat = 3u; std::array kStripTopologyTypes = { {wgpu::PrimitiveTopology::LineStrip, wgpu::PrimitiveTopology::TriangleStrip}}; std::array kListTopologyTypes = { {wgpu::PrimitiveTopology::PointList, wgpu::PrimitiveTopology::LineList, wgpu::PrimitiveTopology::TriangleList}}; std::array kIndexFormatTypes = { {wgpu::IndexFormat::Undefined, wgpu::IndexFormat::Uint16, wgpu::IndexFormat::Uint32}}; for (wgpu::PrimitiveTopology primitiveTopology : kStripTopologyTypes) { for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) { utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; descriptor.cFragmentStage.module = fsModule; descriptor.primitiveTopology = primitiveTopology; descriptor.cVertexState.indexFormat = indexFormat; if (indexFormat == wgpu::IndexFormat::Undefined) { // Fail because the index format is undefined and the primitive // topology is a strip type. ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } else { // Succeeds because the index format is given. device.CreateRenderPipeline(&descriptor); } } } for (wgpu::PrimitiveTopology primitiveTopology : kListTopologyTypes) { for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) { utils::ComboRenderPipelineDescriptor descriptor(device); descriptor.vertexStage.module = vsModule; descriptor.cFragmentStage.module = fsModule; descriptor.primitiveTopology = primitiveTopology; descriptor.cVertexState.indexFormat = indexFormat; if (indexFormat == wgpu::IndexFormat::Undefined) { // Succeeds even when the index format is undefined because the // primitive topology isn't a strip type. device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } // Test that the entryPoint names must be present for the correct stage in the shader module. TEST_F(RenderPipelineValidationTest, EntryPointNameValidation) { DAWN_SKIP_TEST_IF(!HasWGSL()); wgpu::ShaderModule module = utils::CreateShaderModuleFromWGSL(device, R"( [[builtin(position)]] var position : vec4; [[stage(vertex)]] fn vertex_main() -> void { position = vec4(0.0, 0.0, 0.0, 1.0); return; } [[location(0)]] var color : vec4; [[stage(fragment)]] fn fragment_main() -> void { color = vec4(1.0, 0.0, 0.0, 1.0); return; } )"); utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = module; descriptor.vertex.entryPoint = "vertex_main"; descriptor.cFragment.module = module; descriptor.cFragment.entryPoint = "fragment_main"; // Success case. device.CreateRenderPipeline2(&descriptor); // Test for the vertex stage entryPoint name. { // The entryPoint name doesn't exist in the module. descriptor.vertex.entryPoint = "main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); // The entryPoint name exists, but not for the correct stage. descriptor.vertex.entryPoint = "fragment_main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } descriptor.vertex.entryPoint = "vertex_main"; // Test for the fragment stage entryPoint name. { // The entryPoint name doesn't exist in the module. descriptor.cFragment.entryPoint = "main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); // The entryPoint name exists, but not for the correct stage. descriptor.cFragment.entryPoint = "vertex_main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } } // Test that vertex attrib validation is for the correct entryPoint TEST_F(RenderPipelineValidationTest, VertexAttribCorrectEntryPoint) { DAWN_SKIP_TEST_IF(!HasWGSL()); wgpu::ShaderModule module = utils::CreateShaderModuleFromWGSL(device, R"( [[builtin(position)]] var position : vec4; [[location(0)]] var attrib0 : vec4; [[location(1)]] var attrib1 : vec4; [[stage(vertex)]] fn vertex0() -> void { position = attrib0; return; } [[stage(vertex)]] fn vertex1() -> void { position = attrib1; return; } )"); utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = module; descriptor.cFragment.module = fsModule; descriptor.vertex.bufferCount = 1; descriptor.cBuffers[0].attributeCount = 1; descriptor.cBuffers[0].arrayStride = 16; descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4; descriptor.cAttributes[0].offset = 0; // Success cases, the attribute used by the entryPoint is declared in the pipeline. descriptor.vertex.entryPoint = "vertex0"; descriptor.cAttributes[0].shaderLocation = 0; device.CreateRenderPipeline2(&descriptor); descriptor.vertex.entryPoint = "vertex1"; descriptor.cAttributes[0].shaderLocation = 1; device.CreateRenderPipeline2(&descriptor); // Error cases, the attribute used by the entryPoint isn't declared in the pipeline. descriptor.vertex.entryPoint = "vertex1"; descriptor.cAttributes[0].shaderLocation = 0; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); descriptor.vertex.entryPoint = "vertex0"; descriptor.cAttributes[0].shaderLocation = 1; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } // Test that fragment output validation is for the correct entryPoint TEST_F(RenderPipelineValidationTest, FragmentOutputCorrectEntryPoint) { DAWN_SKIP_TEST_IF(!HasWGSL()); wgpu::ShaderModule module = utils::CreateShaderModuleFromWGSL(device, R"( [[location(0)]] var colorFloat : vec4; [[location(0)]] var colorUint : vec4; [[stage(fragment)]] fn fragmentFloat() -> void { colorFloat = vec4(0.0, 0.0, 0.0, 0.0); return; } [[stage(fragment)]] fn fragmentUint() -> void { colorUint = vec4(0u, 0u, 0u, 0u); return; } )"); utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = module; // Success case, the component type matches between the pipeline and the entryPoint descriptor.cFragment.entryPoint = "fragmentFloat"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; device.CreateRenderPipeline2(&descriptor); descriptor.cFragment.entryPoint = "fragmentUint"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint; device.CreateRenderPipeline2(&descriptor); // Error case, the component type doesn't match between the pipeline and the entryPoint descriptor.cFragment.entryPoint = "fragmentUint"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); descriptor.cFragment.entryPoint = "fragmentFloat"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); } // Test that fragment output validation is for the correct entryPoint // TODO(dawn:216): Re-enable when we correctly reflect which bindings are used for an entryPoint. TEST_F(RenderPipelineValidationTest, DISABLED_BindingsFromCorrectEntryPoint) { DAWN_SKIP_TEST_IF(!HasWGSL()); wgpu::ShaderModule module = utils::CreateShaderModuleFromWGSL(device, R"( [[block]] struct Uniforms { [[offset 0]] data : vec4; }; [[binding 0, set 0]] var var0 : Uniforms; [[binding 1, set 0]] var var1 : Uniforms; [[builtin(position)]] var position : vec4; fn vertex0() -> void { position = var0.data; return; } fn vertex1() -> void { position = var1.data; return; } entry_point vertex = vertex0; entry_point vertex = vertex1; )"); wgpu::BindGroupLayout bgl0 = utils::MakeBindGroupLayout( device, {{0, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}}); wgpu::PipelineLayout layout0 = utils::MakeBasicPipelineLayout(device, &bgl0); wgpu::BindGroupLayout bgl1 = utils::MakeBindGroupLayout( device, {{1, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}}); wgpu::PipelineLayout layout1 = utils::MakeBasicPipelineLayout(device, &bgl1); utils::ComboRenderPipelineDescriptor2 descriptor; descriptor.vertex.module = module; descriptor.cFragment.module = fsModule; // Success case, the BGL matches the bindings used by the entryPoint descriptor.vertex.entryPoint = "vertex0"; descriptor.layout = layout0; device.CreateRenderPipeline2(&descriptor); descriptor.vertex.entryPoint = "vertex1"; descriptor.layout = layout1; device.CreateRenderPipeline2(&descriptor); // Error case, the BGL doesn't match the bindings used by the entryPoint descriptor.vertex.entryPoint = "vertex1"; descriptor.layout = layout0; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); descriptor.vertex.entryPoint = "vertex0"; descriptor.layout = layout1; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline2(&descriptor)); }