#include using namespace metal; template inline auto operator*(matrix lhs, packed_vec rhs) { return lhs * vec(rhs); } template inline auto operator*(packed_vec lhs, matrix rhs) { return vec(lhs) * rhs; } struct LightData { /* 0x0000 */ float4 position; /* 0x0010 */ packed_float3 color; /* 0x001c */ float radius; }; struct LightsBuffer { /* 0x0000 */ LightData lights[1]; }; struct tint_array_wrapper { /* 0x0000 */ uint arr[64]; }; struct TileLightIdData { /* 0x0000 */ atomic_uint count; /* 0x0004 */ tint_array_wrapper lightId; }; struct tint_array_wrapper_1 { /* 0x0000 */ TileLightIdData arr[4]; }; struct Tiles { /* 0x0000 */ tint_array_wrapper_1 data; }; struct Config { /* 0x0000 */ uint numLights; /* 0x0004 */ uint numTiles; /* 0x0008 */ uint tileCountX; /* 0x000c */ uint tileCountY; /* 0x0010 */ uint numTileLightSlot; /* 0x0014 */ uint tileSize; }; struct Uniforms { /* 0x0000 */ float4 min; /* 0x0010 */ float4 max; /* 0x0020 */ float4x4 viewMatrix; /* 0x0060 */ float4x4 projectionMatrix; /* 0x00a0 */ float4 fullScreenSize; }; struct tint_array_wrapper_2 { float4 arr[6]; }; void tint_symbol_inner(uint3 GlobalInvocationID, const constant Config* const tint_symbol_1, device LightsBuffer* const tint_symbol_2, const constant Uniforms* const tint_symbol_3, device Tiles* const tint_symbol_4) { uint index = GlobalInvocationID[0]; if ((index >= (*(tint_symbol_1)).numLights)) { return; } (*(tint_symbol_2)).lights[index].position[1] = (((*(tint_symbol_2)).lights[index].position[1] - 0.100000001f) + (0.001f * (float(index) - (64.0f * floor((float(index) / 64.0f)))))); if (((*(tint_symbol_2)).lights[index].position[1] < (*(tint_symbol_3)).min[1])) { (*(tint_symbol_2)).lights[index].position[1] = (*(tint_symbol_3)).max[1]; } float4x4 M = (*(tint_symbol_3)).projectionMatrix; float viewNear = (-(M[3][2]) / (-1.0f + M[2][2])); float viewFar = (-(M[3][2]) / (1.0f + M[2][2])); float4 lightPos = (*(tint_symbol_2)).lights[index].position; lightPos = ((*(tint_symbol_3)).viewMatrix * lightPos); lightPos = (lightPos / lightPos[3]); float lightRadius = (*(tint_symbol_2)).lights[index].radius; float4 boxMin = (lightPos - float4(float3(lightRadius), 0.0f)); float4 boxMax = (lightPos + float4(float3(lightRadius), 0.0f)); tint_array_wrapper_2 frustumPlanes = {}; frustumPlanes.arr[4] = float4(0.0f, 0.0f, -1.0f, viewNear); frustumPlanes.arr[5] = float4(0.0f, 0.0f, 1.0f, -(viewFar)); int const TILE_SIZE = 16; int const TILE_COUNT_X = 2; int const TILE_COUNT_Y = 2; for(int y_1 = 0; (y_1 < TILE_COUNT_Y); y_1 = as_type((as_type(y_1) + as_type(1)))) { for(int x_1 = 0; (x_1 < TILE_COUNT_X); x_1 = as_type((as_type(x_1) + as_type(1)))) { int2 tilePixel0Idx = int2(as_type((as_type(x_1) * as_type(TILE_SIZE))), as_type((as_type(y_1) * as_type(TILE_SIZE)))); float2 floorCoord = (((2.0f * float2(tilePixel0Idx)) / float4((*(tint_symbol_3)).fullScreenSize).xy) - float2(1.0f)); float2 ceilCoord = (((2.0f * float2(as_type((as_type(tilePixel0Idx) + as_type(int2(TILE_SIZE)))))) / float4((*(tint_symbol_3)).fullScreenSize).xy) - float2(1.0f)); float2 viewFloorCoord = float2((((-(viewNear) * floorCoord[0]) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * floorCoord[1]) - (M[2][1] * viewNear)) / M[1][1])); float2 viewCeilCoord = float2((((-(viewNear) * ceilCoord[0]) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * ceilCoord[1]) - (M[2][1] * viewNear)) / M[1][1])); frustumPlanes.arr[0] = float4(1.0f, 0.0f, (-(viewFloorCoord[0]) / viewNear), 0.0f); frustumPlanes.arr[1] = float4(-1.0f, 0.0f, (viewCeilCoord[0] / viewNear), 0.0f); frustumPlanes.arr[2] = float4(0.0f, 1.0f, (-(viewFloorCoord[1]) / viewNear), 0.0f); frustumPlanes.arr[3] = float4(0.0f, -1.0f, (viewCeilCoord[1] / viewNear), 0.0f); float dp = 0.0f; for(uint i = 0u; (i < 6u); i = (i + 1u)) { float4 p = 0.0f; if ((frustumPlanes.arr[i][0] > 0.0f)) { p[0] = boxMax[0]; } else { p[0] = boxMin[0]; } if ((frustumPlanes.arr[i][1] > 0.0f)) { p[1] = boxMax[1]; } else { p[1] = boxMin[1]; } if ((frustumPlanes.arr[i][2] > 0.0f)) { p[2] = boxMax[2]; } else { p[2] = boxMin[2]; } p[3] = 1.0f; dp = (dp + fmin(0.0f, dot(p, frustumPlanes.arr[i]))); } if ((dp >= 0.0f)) { uint tileId = uint(as_type((as_type(x_1) + as_type(as_type((as_type(y_1) * as_type(TILE_COUNT_X))))))); if (((tileId < 0u) || (tileId >= (*(tint_symbol_1)).numTiles))) { continue; } uint offset = atomic_fetch_add_explicit(&((*(tint_symbol_4)).data.arr[tileId].count), 1u, memory_order_relaxed); if ((offset >= (*(tint_symbol_1)).numTileLightSlot)) { continue; } (*(tint_symbol_4)).data.arr[tileId].lightId.arr[offset] = GlobalInvocationID[0]; } } } } kernel void tint_symbol(const constant Config* tint_symbol_5 [[buffer(0)]], device LightsBuffer* tint_symbol_6 [[buffer(2)]], const constant Uniforms* tint_symbol_7 [[buffer(1)]], device Tiles* tint_symbol_8 [[buffer(3)]], uint3 GlobalInvocationID [[thread_position_in_grid]]) { tint_symbol_inner(GlobalInvocationID, tint_symbol_5, tint_symbol_6, tint_symbol_7, tint_symbol_8); return; }