// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include #include #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/discard_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/if_statement.h" #include "src/ast/loop_statement.h" #include "src/ast/return_statement.h" #include "src/ast/switch_statement.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/semantic/array.h" #include "src/semantic/call.h" #include "src/semantic/function.h" #include "src/semantic/member_accessor_expression.h" #include "src/semantic/statement.h" #include "src/semantic/struct.h" #include "src/semantic/variable.h" #include "src/type/access_control_type.h" #include "src/utils/math.h" namespace tint { namespace resolver { namespace { using IntrinsicType = tint::semantic::IntrinsicType; // Helper class that temporarily assigns a value to a reference for the scope of // the object. Once the ScopedAssignment is destructed, the original value is // restored. template class ScopedAssignment { public: ScopedAssignment(T& ref, T val) : ref_(ref) { old_value_ = ref; ref = val; } ~ScopedAssignment() { ref_ = old_value_; } private: T& ref_; T old_value_; }; } // namespace Resolver::Resolver(ProgramBuilder* builder) : builder_(builder), intrinsic_table_(IntrinsicTable::Create()) {} Resolver::~Resolver() = default; Resolver::BlockInfo::BlockInfo(Resolver::BlockInfo::Type ty, Resolver::BlockInfo* p) : type(ty), parent(p) {} Resolver::BlockInfo::~BlockInfo() = default; void Resolver::set_referenced_from_function_if_needed(VariableInfo* var, bool local) { if (current_function_ == nullptr) { return; } if (var->storage_class == ast::StorageClass::kNone || var->storage_class == ast::StorageClass::kFunction) { return; } current_function_->referenced_module_vars.add(var); if (local) { current_function_->local_referenced_module_vars.add(var); } } bool Resolver::Resolve() { bool result = ResolveInternal(); // Even if resolving failed, create all the semantic nodes for information we // did generate. CreateSemanticNodes(); return result; } bool Resolver::IsStorable(type::Type* type) { if (type == nullptr) { return false; } if (type->is_scalar() || type->Is() || type->Is()) { return true; } if (type::Array* array_type = type->As()) { return IsStorable(array_type->type()); } if (type::Struct* struct_type = type->As()) { for (const auto* member : struct_type->impl()->members()) { if (!IsStorable(member->type())) { return false; } } return true; } if (type::Alias* alias_type = type->As()) { return IsStorable(alias_type->type()); } return false; } bool Resolver::ResolveInternal() { for (auto* ty : builder_->Types()) { if (auto* str = ty->As()) { if (!Structure(str)) { return false; } continue; } if (auto* arr = ty->As()) { if (!Array(arr)) { return false; } continue; } } for (auto* var : builder_->AST().GlobalVariables()) { variable_stack_.set_global(var->symbol(), CreateVariableInfo(var)); if (var->has_constructor()) { if (!Expression(var->constructor())) { return false; } } } if (!Functions(builder_->AST().Functions())) { return false; } return true; } bool Resolver::Functions(const ast::FunctionList& funcs) { for (auto* func : funcs) { if (!Function(func)) { return false; } } return true; } bool Resolver::Function(ast::Function* func) { auto* func_info = function_infos_.Create(func); ScopedAssignment sa(current_function_, func_info); variable_stack_.push_scope(); for (auto* param : func->params()) { variable_stack_.set(param->symbol(), CreateVariableInfo(param)); } if (!BlockStatement(func->body())) { return false; } variable_stack_.pop_scope(); // Register the function information _after_ processing the statements. This // allows us to catch a function calling itself when determining the call // information as this function doesn't exist until it's finished. symbol_to_function_[func->symbol()] = func_info; function_to_info_.emplace(func, func_info); return true; } bool Resolver::BlockStatement(const ast::BlockStatement* stmt) { return BlockScope(BlockInfo::Type::kGeneric, [&] { return Statements(stmt->list()); }); } bool Resolver::Statements(const ast::StatementList& stmts) { for (auto* stmt : stmts) { if (auto* decl = stmt->As()) { if (!VariableDeclStatement(decl)) { return false; } } if (!VariableStorageClass(stmt)) { return false; } if (!Statement(stmt)) { return false; } } return true; } bool Resolver::VariableStorageClass(ast::Statement* stmt) { auto* var_decl = stmt->As(); if (var_decl == nullptr) { return true; } auto* var = var_decl->variable(); auto* info = CreateVariableInfo(var); variable_to_info_.emplace(var, info); // Nothing to do for const if (var->is_const()) { return true; } if (info->storage_class == ast::StorageClass::kFunction) { return true; } if (info->storage_class != ast::StorageClass::kNone) { diagnostics_.add_error("function variable has a non-function storage class", stmt->source()); return false; } info->storage_class = ast::StorageClass::kFunction; return true; } bool Resolver::Statement(ast::Statement* stmt) { auto* sem_statement = builder_->create(stmt); ScopedAssignment sa(current_statement_, sem_statement); if (auto* a = stmt->As()) { return Expression(a->lhs()) && Expression(a->rhs()); } if (auto* b = stmt->As()) { return BlockStatement(b); } if (stmt->Is()) { if (!current_block_->FindFirstParent(BlockInfo::Type::kLoop) && !current_block_->FindFirstParent(BlockInfo::Type::kSwitchCase)) { diagnostics_.add_error("break statement must be in a loop or switch case", stmt->source()); return false; } return true; } if (auto* c = stmt->As()) { return Expression(c->expr()); } if (auto* c = stmt->As()) { return CaseStatement(c); } if (stmt->Is()) { // Set if we've hit the first continue statement in our parent loop if (auto* loop_block = current_block_->FindFirstParent(BlockInfo::Type::kLoop)) { if (loop_block->first_continue == size_t(~0)) { loop_block->first_continue = loop_block->decls.size(); } } else { diagnostics_.add_error("continue statement must be in a loop", stmt->source()); return false; } return true; } if (stmt->Is()) { return true; } if (auto* e = stmt->As()) { return Expression(e->condition()) && BlockStatement(e->body()); } if (stmt->Is()) { return true; } if (auto* i = stmt->As()) { return IfStatement(i); } if (auto* l = stmt->As()) { // We don't call DetermineBlockStatement on the body and continuing block as // these would make their BlockInfo siblings as in the AST, but we want the // body BlockInfo to parent the continuing BlockInfo for semantics and // validation. Also, we need to set their types differently. return BlockScope(BlockInfo::Type::kLoop, [&] { if (!Statements(l->body()->list())) { return false; } if (l->has_continuing()) { if (!BlockScope(BlockInfo::Type::kLoopContinuing, [&] { return Statements(l->continuing()->list()); })) { return false; } } return true; }); } if (auto* r = stmt->As()) { return Expression(r->value()); } if (auto* s = stmt->As()) { if (!Expression(s->condition())) { return false; } for (auto* case_stmt : s->body()) { if (!CaseStatement(case_stmt)) { return false; } } return true; } if (auto* v = stmt->As()) { variable_stack_.set(v->variable()->symbol(), variable_to_info_.at(v->variable())); current_block_->decls.push_back(v->variable()); return Expression(v->variable()->constructor()); } diagnostics_.add_error( "unknown statement type for type determination: " + builder_->str(stmt), stmt->source()); return false; } bool Resolver::CaseStatement(ast::CaseStatement* stmt) { return BlockScope(BlockInfo::Type::kSwitchCase, [&] { return Statements(stmt->body()->list()); }); } bool Resolver::IfStatement(ast::IfStatement* stmt) { if (!Expression(stmt->condition())) { return false; } auto* cond_type = TypeOf(stmt->condition())->UnwrapAll(); if (cond_type != builder_->ty.bool_()) { diagnostics_.add_error("if statement condition must be bool, got " + cond_type->FriendlyName(builder_->Symbols()), stmt->condition()->source()); return false; } if (!BlockStatement(stmt->body())) { return false; } for (auto* else_stmt : stmt->else_statements()) { if (!Statement(else_stmt)) { return false; } } return true; } bool Resolver::Expressions(const ast::ExpressionList& list) { for (auto* expr : list) { if (!Expression(expr)) { return false; } } return true; } bool Resolver::Expression(ast::Expression* expr) { // This is blindly called above, so in some cases the expression won't exist. if (!expr) { return true; } if (TypeOf(expr)) { return true; // Already resolved } if (auto* a = expr->As()) { return ArrayAccessor(a); } if (auto* b = expr->As()) { return Binary(b); } if (auto* b = expr->As()) { return Bitcast(b); } if (auto* c = expr->As()) { return Call(c); } if (auto* c = expr->As()) { return Constructor(c); } if (auto* i = expr->As()) { return Identifier(i); } if (auto* m = expr->As()) { return MemberAccessor(m); } if (auto* u = expr->As()) { return UnaryOp(u); } diagnostics_.add_error("unknown expression for type determination", expr->source()); return false; } bool Resolver::ArrayAccessor(ast::ArrayAccessorExpression* expr) { if (!Expression(expr->array())) { return false; } if (!Expression(expr->idx_expr())) { return false; } auto* res = TypeOf(expr->array()); auto* parent_type = res->UnwrapAll(); type::Type* ret = nullptr; if (auto* arr = parent_type->As()) { ret = arr->type(); } else if (auto* vec = parent_type->As()) { ret = vec->type(); } else if (auto* mat = parent_type->As()) { ret = builder_->create(mat->type(), mat->rows()); } else { diagnostics_.add_error("invalid parent type (" + parent_type->type_name() + ") in array accessor", expr->source()); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } else if (auto* arr = parent_type->As()) { if (!arr->type()->is_scalar()) { // If we extract a non-scalar from an array then we also get a pointer. We // will generate a Function storage class variable to store this into. ret = builder_->create(ret, ast::StorageClass::kFunction); } } SetType(expr, ret); return true; } bool Resolver::Bitcast(ast::BitcastExpression* expr) { if (!Expression(expr->expr())) { return false; } SetType(expr, expr->type()); return true; } bool Resolver::Call(ast::CallExpression* call) { if (!Expressions(call->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. auto* ident = call->func()->As(); if (!ident) { diagnostics_.add_error("call target is not an identifier", call->source()); return false; } auto name = builder_->Symbols().NameFor(ident->symbol()); auto intrinsic_type = semantic::ParseIntrinsicType(name); if (intrinsic_type != IntrinsicType::kNone) { if (!IntrinsicCall(call, intrinsic_type)) { return false; } } else { if (current_function_) { auto callee_func_it = symbol_to_function_.find(ident->symbol()); if (callee_func_it == symbol_to_function_.end()) { if (current_function_->declaration->symbol() == ident->symbol()) { diagnostics_.add_error("recursion is not permitted. '" + name + "' attempted to call itself.", call->source()); } else { diagnostics_.add_error( "v-0006: unable to find called function: " + name, call->source()); } return false; } auto* callee_func = callee_func_it->second; // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before use. current_function_->transitive_calls.add(callee_func); for (auto* transitive_call : callee_func->transitive_calls) { current_function_->transitive_calls.add(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_vars) { set_referenced_from_function_if_needed(var, false); } } auto iter = symbol_to_function_.find(ident->symbol()); if (iter == symbol_to_function_.end()) { diagnostics_.add_error( "v-0005: function must be declared before use: '" + name + "'", call->source()); return false; } auto* function = iter->second; function_calls_.emplace(call, FunctionCallInfo{function, current_statement_}); SetType(call, function->declaration->return_type()); } return true; } bool Resolver::IntrinsicCall(ast::CallExpression* call, semantic::IntrinsicType intrinsic_type) { std::vector arg_tys; arg_tys.reserve(call->params().size()); for (auto* expr : call->params()) { arg_tys.emplace_back(TypeOf(expr)); } auto result = intrinsic_table_->Lookup(*builder_, intrinsic_type, arg_tys, call->source()); if (!result.intrinsic) { // Intrinsic lookup failed. diagnostics_.add(result.diagnostics); // TODO(bclayton): https://crbug.com/tint/487 // The Validator expects intrinsic signature mismatches to still produce // type information. The rules for what the Validator expects are rather // bespoke. Try to match what the Validator expects. As the Validator's // checks on intrinsics is now almost entirely covered by the // IntrinsicTable, we should remove the Validator checks on intrinsic // signatures and remove these hacks. semantic::ParameterList parameters; parameters.reserve(arg_tys.size()); for (auto* arg : arg_tys) { parameters.emplace_back(semantic::Parameter{arg}); } type::Type* ret_ty = nullptr; switch (intrinsic_type) { case IntrinsicType::kCross: ret_ty = builder_->ty.vec3(); break; case IntrinsicType::kDeterminant: ret_ty = builder_->create(); break; case IntrinsicType::kArrayLength: ret_ty = builder_->create(); break; default: ret_ty = arg_tys.empty() ? builder_->ty.void_() : arg_tys[0]; break; } auto* intrinsic = builder_->create(intrinsic_type, ret_ty, parameters); builder_->Sem().Add(call, builder_->create( call, intrinsic, current_statement_)); SetType(call, ret_ty); return false; } builder_->Sem().Add(call, builder_->create( call, result.intrinsic, current_statement_)); SetType(call, result.intrinsic->ReturnType()); return true; } bool Resolver::Constructor(ast::ConstructorExpression* expr) { if (auto* type_ctor = expr->As()) { for (auto* value : type_ctor->values()) { if (!Expression(value)) { return false; } } SetType(expr, type_ctor->type()); // Now that the argument types have been determined, make sure that they // obey the constructor type rules laid out in // https://gpuweb.github.io/gpuweb/wgsl.html#type-constructor-expr. if (auto* vec_type = type_ctor->type()->As()) { return VectorConstructor(*vec_type, type_ctor->values()); } // TODO(crbug.com/tint/633): Validate matrix constructor // TODO(crbug.com/tint/634): Validate array constructor } else if (auto* scalar_ctor = expr->As()) { SetType(expr, scalar_ctor->literal()->type()); } else { TINT_ICE(diagnostics_) << "unexpected constructor expression type"; } return true; } bool Resolver::VectorConstructor(const type::Vector& vec_type, const ast::ExpressionList& values) { type::Type* elem_type = vec_type.type()->UnwrapAll(); size_t value_cardinality_sum = 0; for (auto* value : values) { type::Type* value_type = TypeOf(value)->UnwrapAll(); if (value_type->is_scalar()) { if (elem_type != value_type) { diagnostics_.add_error( "type in vector constructor does not match vector type: " "expected '" + elem_type->FriendlyName(builder_->Symbols()) + "', found '" + value_type->FriendlyName(builder_->Symbols()) + "'", value->source()); return false; } value_cardinality_sum++; } else if (auto* value_vec = value_type->As()) { type::Type* value_elem_type = value_vec->type()->UnwrapAll(); // A mismatch of vector type parameter T is only an error if multiple // arguments are present. A single argument constructor constitutes a // type conversion expression. // NOTE: A conversion expression from a vec to any other vecN // is disallowed (see // https://gpuweb.github.io/gpuweb/wgsl.html#conversion-expr). if (elem_type != value_elem_type && (values.size() > 1u || value_vec->is_bool_vector())) { diagnostics_.add_error( "type in vector constructor does not match vector type: " "expected '" + elem_type->FriendlyName(builder_->Symbols()) + "', found '" + value_elem_type->FriendlyName(builder_->Symbols()) + "'", value->source()); return false; } value_cardinality_sum += value_vec->size(); } else { // A vector constructor can only accept vectors and scalars. diagnostics_.add_error( "expected vector or scalar type in vector constructor; found: " + value_type->FriendlyName(builder_->Symbols()), value->source()); return false; } } // A correct vector constructor must either be a zero-value expression // or the number of components of all constructor arguments must add up // to the vector cardinality. if (value_cardinality_sum > 0 && value_cardinality_sum != vec_type.size()) { if (values.empty()) { TINT_ICE(diagnostics_) << "constructor arguments expected to be non-empty!"; } const Source& values_start = values[0]->source(); const Source& values_end = values[values.size() - 1]->source(); const Source src( Source::Range(values_start.range.begin, values_end.range.end), values_start.file_path, values_start.file_content); diagnostics_.add_error( "attempted to construct '" + vec_type.FriendlyName(builder_->Symbols()) + "' with " + std::to_string(value_cardinality_sum) + " component(s)", src); return false; } return true; } bool Resolver::Identifier(ast::IdentifierExpression* expr) { auto symbol = expr->symbol(); VariableInfo* var; if (variable_stack_.get(symbol, &var)) { // A constant is the type, but a variable is always a pointer so synthesize // the pointer around the variable type. if (var->declaration->is_const()) { SetType(expr, var->declaration->type()); } else if (var->declaration->type()->Is()) { SetType(expr, var->declaration->type()); } else { SetType(expr, builder_->create(var->declaration->type(), var->storage_class)); } var->users.push_back(expr); set_referenced_from_function_if_needed(var, true); // If identifier is part of a loop continuing block, make sure it doesn't // refer to a variable that is bypassed by a continue statement in the // loop's body block. if (auto* continuing_block = current_block_->FindFirstParent(BlockInfo::Type::kLoopContinuing)) { auto* loop_block = continuing_block->FindFirstParent(BlockInfo::Type::kLoop); if (loop_block->first_continue != size_t(~0)) { auto& decls = loop_block->decls; // If our identifier is in loop_block->decls, make sure its index is // less than first_continue auto iter = std::find_if(decls.begin(), decls.end(), [&symbol](auto* v) { return v->symbol() == symbol; }); if (iter != decls.end()) { auto var_decl_index = static_cast(std::distance(decls.begin(), iter)); if (var_decl_index >= loop_block->first_continue) { diagnostics_.add_error( "continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "' in continuing block", expr->source()); return false; } } } } return true; } auto iter = symbol_to_function_.find(symbol); if (iter != symbol_to_function_.end()) { diagnostics_.add_error("missing '(' for function call", expr->source().End()); return false; } std::string name = builder_->Symbols().NameFor(symbol); if (semantic::ParseIntrinsicType(name) != IntrinsicType::kNone) { diagnostics_.add_error("missing '(' for intrinsic call", expr->source().End()); return false; } diagnostics_.add_error( "v-0006: identifier must be declared before use: " + name, expr->source()); return false; } bool Resolver::MemberAccessor(ast::MemberAccessorExpression* expr) { if (!Expression(expr->structure())) { return false; } auto* res = TypeOf(expr->structure()); auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); type::Type* ret = nullptr; std::vector swizzle; if (auto* ty = data_type->As()) { auto* strct = ty->impl(); auto symbol = expr->member()->symbol(); for (auto* member : strct->members()) { if (member->symbol() == symbol) { ret = member->type(); break; } } if (ret == nullptr) { diagnostics_.add_error( "struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source()); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } } else if (auto* vec = data_type->As()) { std::string str = builder_->Symbols().NameFor(expr->member()->symbol()); auto size = str.size(); swizzle.reserve(str.size()); for (auto c : str) { switch (c) { case 'x': case 'r': swizzle.emplace_back(0); break; case 'y': case 'g': swizzle.emplace_back(1); break; case 'z': case 'b': swizzle.emplace_back(2); break; case 'w': case 'a': swizzle.emplace_back(3); break; default: diagnostics_.add_error( "invalid vector swizzle character", expr->member()->source().Begin() + swizzle.size()); return false; } } if (size < 1 || size > 4) { diagnostics_.add_error("invalid vector swizzle size", expr->member()->source()); return false; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(str.begin(), str.end(), is_rgba) && !std::all_of(str.begin(), str.end(), is_xyzw)) { diagnostics_.add_error( "invalid mixing of vector swizzle characters rgba with xyzw", expr->member()->source()); return false; } if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } } else { // The vector will have a number of components equal to the length of // the swizzle. This assumes the validator will check that the swizzle // is correct. ret = builder_->create(vec->type(), static_cast(size)); } } else { diagnostics_.add_error( "invalid use of member accessor on a non-vector/non-struct " + data_type->type_name(), expr->source()); return false; } builder_->Sem().Add(expr, builder_->create( expr, ret, current_statement_, std::move(swizzle))); SetType(expr, ret); return true; } bool Resolver::Binary(ast::BinaryExpression* expr) { if (!Expression(expr->lhs()) || !Expression(expr->rhs())) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { SetType(expr, TypeOf(expr->lhs())->UnwrapPtrIfNeeded()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = builder_->create(); auto* param_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded(); type::Type* result_type = bool_type; if (auto* vec = param_type->As()) { result_type = builder_->create(bool_type, vec->size()); } SetType(expr, result_type); return true; } if (expr->IsMultiply()) { auto* lhs_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded(); auto* rhs_type = TypeOf(expr->rhs())->UnwrapPtrIfNeeded(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. auto* lhs_mat = lhs_type->As(); auto* rhs_mat = rhs_type->As(); auto* lhs_vec = lhs_type->As(); auto* rhs_vec = rhs_type->As(); type::Type* result_type; if (lhs_mat && rhs_mat) { result_type = builder_->create( lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns()); } else if (lhs_mat && rhs_vec) { result_type = builder_->create(lhs_mat->type(), lhs_mat->rows()); } else if (lhs_vec && rhs_mat) { result_type = builder_->create(rhs_mat->type(), rhs_mat->columns()); } else if (lhs_mat) { // matrix * scalar result_type = lhs_type; } else if (rhs_mat) { // scalar * matrix result_type = rhs_type; } else if (lhs_vec && rhs_vec) { result_type = lhs_type; } else if (lhs_vec) { // Vector * scalar result_type = lhs_type; } else if (rhs_vec) { // Scalar * vector result_type = rhs_type; } else { // Scalar * Scalar result_type = lhs_type; } SetType(expr, result_type); return true; } diagnostics_.add_error("Unknown binary expression", expr->source()); return false; } bool Resolver::UnaryOp(ast::UnaryOpExpression* expr) { // Result type matches the parameter type. if (!Expression(expr->expr())) { return false; } auto* result_type = TypeOf(expr->expr())->UnwrapPtrIfNeeded(); SetType(expr, result_type); return true; } bool Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { auto* ctor = stmt->variable()->constructor(); if (!ctor) { return true; } if (auto* sce = ctor->As()) { auto* lhs_type = stmt->variable()->type()->UnwrapAliasIfNeeded(); auto* rhs_type = sce->literal()->type()->UnwrapAliasIfNeeded(); if (lhs_type != rhs_type) { diagnostics_.add_error( "constructor expression type does not match variable type", stmt->source()); return false; } } return true; } Resolver::VariableInfo* Resolver::CreateVariableInfo(ast::Variable* var) { auto* info = variable_infos_.Create(var); variable_to_info_.emplace(var, info); return info; } type::Type* Resolver::TypeOf(ast::Expression* expr) { auto it = expr_info_.find(expr); if (it != expr_info_.end()) { return it->second.type; } return nullptr; } void Resolver::SetType(ast::Expression* expr, type::Type* type) { assert(expr_info_.count(expr) == 0); expr_info_.emplace(expr, ExpressionInfo{type, current_statement_}); } void Resolver::CreateSemanticNodes() const { auto& sem = builder_->Sem(); // Collate all the 'ancestor_entry_points' - this is a map of function symbol // to all the entry points that transitively call the function. std::unordered_map> ancestor_entry_points; for (auto* func : builder_->AST().Functions()) { auto it = function_to_info_.find(func); if (it == function_to_info_.end()) { continue; // Resolver has likely errored. Process what we can. } auto* info = it->second; if (!func->IsEntryPoint()) { continue; } for (auto* call : info->transitive_calls) { auto& vec = ancestor_entry_points[call->declaration->symbol()]; vec.emplace_back(func->symbol()); } } // Create semantic nodes for all ast::Variables for (auto it : variable_to_info_) { auto* var = it.first; auto* info = it.second; std::vector users; for (auto* user : info->users) { // Create semantic node for the identifier expression if necessary auto* sem_expr = sem.Get(user); if (sem_expr == nullptr) { auto* type = expr_info_.at(user).type; auto* stmt = expr_info_.at(user).statement; sem_expr = builder_->create(user, type, stmt); sem.Add(user, sem_expr); } users.push_back(sem_expr); } sem.Add(var, builder_->create(var, info->storage_class, std::move(users))); } auto remap_vars = [&sem](const std::vector& in) { std::vector out; out.reserve(in.size()); for (auto* info : in) { out.emplace_back(sem.Get(info->declaration)); } return out; }; // Create semantic nodes for all ast::Functions std::unordered_map func_info_to_sem_func; for (auto it : function_to_info_) { auto* func = it.first; auto* info = it.second; auto* sem_func = builder_->create( info->declaration, remap_vars(info->referenced_module_vars), remap_vars(info->local_referenced_module_vars), ancestor_entry_points[func->symbol()]); func_info_to_sem_func.emplace(info, sem_func); sem.Add(func, sem_func); } // Create semantic nodes for all ast::CallExpressions for (auto it : function_calls_) { auto* call = it.first; auto info = it.second; auto* sem_func = func_info_to_sem_func.at(info.function); sem.Add(call, builder_->create(call, sem_func, info.statement)); } // Create semantic nodes for all remaining expression types for (auto it : expr_info_) { auto* expr = it.first; auto& info = it.second; if (sem.Get(expr)) { // Expression has already been assigned a semantic node continue; } sem.Add(expr, builder_->create(expr, info.type, info.statement)); } } bool Resolver::DefaultAlignAndSize(type::Type* ty, uint32_t& align, uint32_t& size) { static constexpr uint32_t vector_size[] = { /* padding */ 0, /* padding */ 0, /*vec2*/ 8, /*vec3*/ 12, /*vec4*/ 16, }; static constexpr uint32_t vector_align[] = { /* padding */ 0, /* padding */ 0, /*vec2*/ 8, /*vec3*/ 16, /*vec4*/ 16, }; ty = ty->UnwrapAliasIfNeeded(); if (ty->is_scalar()) { // Note: Also captures booleans, but these are not host-sharable. align = 4; size = 4; return true; } else if (auto* vec = ty->As()) { if (vec->size() < 2 || vec->size() > 4) { TINT_UNREACHABLE(diagnostics_) << "Invalid vector size: vec" << vec->size(); return false; } align = vector_align[vec->size()]; size = vector_size[vec->size()]; return true; } else if (auto* mat = ty->As()) { if (mat->columns() < 2 || mat->columns() > 4 || mat->rows() < 2 || mat->rows() > 4) { TINT_UNREACHABLE(diagnostics_) << "Invalid matrix size: mat" << mat->columns() << "x" << mat->rows(); return false; } align = vector_align[mat->rows()]; size = vector_align[mat->rows()] * mat->columns(); return true; } else if (auto* s = ty->As()) { if (auto* sem = Structure(s)) { align = sem->Align(); size = sem->Size(); return true; } return false; } else if (auto* arr = ty->As()) { if (auto* sem = Array(arr)) { align = sem->Align(); size = sem->Size(); return true; } return false; } TINT_UNREACHABLE(diagnostics_) << "Invalid type " << ty->TypeInfo().name; return false; } const semantic::Array* Resolver::Array(type::Array* arr) { if (auto* sem = builder_->Sem().Get(arr)) { // Semantic info already constructed for this array type return sem; } // First check the element type is legal auto* el_ty = arr->type(); if (!IsStorable(el_ty)) { builder_->Diagnostics().add_error( std::string(el_ty->FriendlyName(builder_->Symbols())) + " cannot be used as an element type of an array"); return nullptr; } auto create_semantic = [&](uint32_t stride) -> semantic::Array* { uint32_t el_align = 0; uint32_t el_size = 0; if (!DefaultAlignAndSize(arr->type(), el_align, el_size)) { return nullptr; } auto align = el_align; // WebGPU requires runtime arrays have at least one element, but the AST // records an element count of 0 for it. auto size = std::max(arr->size(), 1) * stride; auto* sem = builder_->create(arr, align, size, stride); builder_->Sem().Add(arr, sem); return sem; }; // Look for explicit stride via [[stride(n)]] decoration for (auto* deco : arr->decorations()) { if (auto* stride = deco->As()) { return create_semantic(stride->stride()); } } // Calculate implicit stride uint32_t el_align = 0; uint32_t el_size = 0; if (!DefaultAlignAndSize(el_ty, el_align, el_size)) { return nullptr; } return create_semantic(utils::RoundUp(el_align, el_size)); } const semantic::Struct* Resolver::Structure(type::Struct* str) { if (auto* sem = builder_->Sem().Get(str)) { // Semantic info already constructed for this structure type return sem; } semantic::StructMemberList sem_members; sem_members.reserve(str->impl()->members().size()); // Calculate the effective size and alignment of each field, and the overall // size of the structure. // For size, use the size attribute if provided, otherwise use the default // size for the type. // For alignment, use the alignment attribute if provided, otherwise use the // default alignment for the member type. // Diagnostic errors are raised if a basic rule is violated. // Validation of storage-class rules requires analysing the actual variable // usage of the structure, and so is performed as part of the variable // validation. // TODO(crbug.com/tint/628): Actually implement storage-class validation. uint32_t struct_size = 0; uint32_t struct_align = 1; for (auto* member : str->impl()->members()) { // First check the member type is legal if (!IsStorable(member->type())) { builder_->Diagnostics().add_error( std::string(member->type()->FriendlyName(builder_->Symbols())) + " cannot be used as the type of a structure member"); return nullptr; } uint32_t offset = struct_size; uint32_t align = 0; uint32_t size = 0; if (!DefaultAlignAndSize(member->type(), align, size)) { return nullptr; } bool has_offset_deco = false; bool has_align_deco = false; bool has_size_deco = false; for (auto* deco : member->decorations()) { if (auto* o = deco->As()) { // Offset decorations are not part of the WGSL spec, but are emitted by // the SPIR-V reader. if (o->offset() < struct_size) { diagnostics_.add_error("offsets must be in ascending order", o->source()); return nullptr; } offset = o->offset(); align = 1; has_offset_deco = true; } else if (auto* a = deco->As()) { if (a->align() <= 0 || !utils::IsPowerOfTwo(a->align())) { diagnostics_.add_error( "align value must be a positive, power-of-two integer", a->source()); return nullptr; } align = a->align(); has_align_deco = true; } else if (auto* s = deco->As()) { if (s->size() < size) { diagnostics_.add_error( "size must be at least as big as the type's size (" + std::to_string(size) + ")", s->source()); return nullptr; } size = s->size(); has_size_deco = true; } } if (has_offset_deco && (has_align_deco || has_size_deco)) { diagnostics_.add_error( "offset decorations cannot be used with align or size decorations", member->source()); return nullptr; } offset = utils::RoundUp(align, offset); auto* sem_member = builder_->create(member, offset, align, size); builder_->Sem().Add(member, sem_member); sem_members.emplace_back(sem_member); struct_size = offset + size; struct_align = std::max(struct_align, align); } struct_size = utils::RoundUp(struct_align, struct_size); auto* sem = builder_->create(str, std::move(sem_members), struct_align, struct_size); builder_->Sem().Add(str, sem); return sem; } template bool Resolver::BlockScope(BlockInfo::Type type, F&& callback) { BlockInfo block_info(type, current_block_); ScopedAssignment sa(current_block_, &block_info); return callback(); } Resolver::VariableInfo::VariableInfo(ast::Variable* decl) : declaration(decl), storage_class(decl->declared_storage_class()) {} Resolver::VariableInfo::~VariableInfo() = default; Resolver::FunctionInfo::FunctionInfo(ast::Function* decl) : declaration(decl) {} Resolver::FunctionInfo::~FunctionInfo() = default; } // namespace resolver } // namespace tint