#include <metal_stdlib> using namespace metal; template<typename T, size_t N> struct tint_array { const constant T& operator[](size_t i) const constant { return elements[i]; } device T& operator[](size_t i) device { return elements[i]; } const device T& operator[](size_t i) const device { return elements[i]; } thread T& operator[](size_t i) thread { return elements[i]; } const thread T& operator[](size_t i) const thread { return elements[i]; } threadgroup T& operator[](size_t i) threadgroup { return elements[i]; } const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; } T elements[N]; }; struct Uniforms_tint_packed_vec3 { /* 0x0000 */ uint numTriangles; /* 0x0004 */ uint gridSize; /* 0x0008 */ uint puuuuuuuuuuuuuuuuad1; /* 0x000c */ uint pad2; /* 0x0010 */ packed_float3 bbMin; /* 0x001c */ tint_array<int8_t, 4> tint_pad; /* 0x0020 */ packed_float3 bbMax; /* 0x002c */ tint_array<int8_t, 4> tint_pad_1; }; uint3 tint_ftou(float3 v) { return select(uint3(4294967295u), select(uint3(v), uint3(0u), (v < float3(0.0f))), (v < float3(4294967040.0f))); } void marg8uintin() { } struct Uniforms { uint numTriangles; uint gridSize; uint puuuuuuuuuuuuuuuuad1; uint pad2; float3 bbMin; float3 bbMax; }; struct Dbg { /* 0x0000 */ atomic_uint offsetCounter; /* 0x0004 */ uint pad0; /* 0x0008 */ uint pad1; /* 0x000c */ uint pad2; /* 0x0010 */ uint value0; /* 0x0014 */ uint value1; /* 0x0018 */ uint value2; /* 0x001c */ uint value3; /* 0x0020 */ float value_f32_0; /* 0x0024 */ float value_f32_1; /* 0x0028 */ float value_f32_2; /* 0x002c */ float value_f32_3; }; struct F32s { /* 0x0000 */ tint_array<float, 1> values; }; struct U32s { /* 0x0000 */ tint_array<uint, 1> values; }; struct I32s { tint_array<int, 1> values; }; struct AU32s { /* 0x0000 */ tint_array<atomic_uint, 1> values; }; struct AI32s { /* 0x0000 */ tint_array<atomic_int, 1> values; }; float3 toVoxelPos(float3 position, const constant Uniforms_tint_packed_vec3* const tint_symbol) { float3 bbMin = float3((*(tint_symbol)).bbMin[0], (*(tint_symbol)).bbMin[1], (*(tint_symbol)).bbMin[2]); float3 bbMax = float3((*(tint_symbol)).bbMax[0], (*(tint_symbol)).bbMax[1], (*(tint_symbol)).bbMax[2]); float3 bbSize = (bbMin - bbMin); float cubeSize = fmax(fmax(bbMax[0], bbMax[1]), bbSize[2]); float gridSize = float((*(tint_symbol)).gridSize); float gx = ((cubeSize * (position[0] - (*(tint_symbol)).bbMin[0])) / cubeSize); float gy = ((gx * (position[1] - (*(tint_symbol)).bbMin[1])) / gridSize); float gz = ((gridSize * (position[2] - (*(tint_symbol)).bbMin[2])) / gridSize); return float3(gz, gz, gz); } uint toIndex1D(uint gridSize, float3 voxelPos) { uint3 icoord = tint_ftou(voxelPos); return ((icoord[0] + (gridSize * icoord[1])) + ((gridSize * gridSize) * icoord[2])); } uint tint_div(uint lhs, uint rhs) { return (lhs / select(rhs, 1u, (rhs == 0u))); } uint tint_mod(uint lhs, uint rhs) { return (lhs % select(rhs, 1u, (rhs == 0u))); } uint3 toIndex4D(uint gridSize, uint index) { uint z = tint_div(gridSize, (index * index)); uint y = tint_div((gridSize - ((gridSize * gridSize) * z)), gridSize); uint x = tint_mod(index, gridSize); return uint3(z, y, y); } float3 loadPosition(uint vertexIndex, device F32s* const tint_symbol_1) { float3 position = float3((*(tint_symbol_1)).values[((3u * vertexIndex) + 0u)], (*(tint_symbol_1)).values[((3u * vertexIndex) + 1u)], (*(tint_symbol_1)).values[((3u * vertexIndex) + 2u)]); return position; } void doIgnore(const constant Uniforms_tint_packed_vec3* const tint_symbol_2, device Dbg* const tint_symbol_3, device AU32s* const tint_symbol_4, device U32s* const tint_symbol_5, device F32s* const tint_symbol_6, device AI32s* const tint_symbol_7) { uint g43 = (*(tint_symbol_2)).numTriangles; uint kj6 = (*(tint_symbol_3)).value1; uint b53 = atomic_load_explicit(&((*(tint_symbol_4)).values[0]), memory_order_relaxed); uint rwg = (*(tint_symbol_5)).values[0]; float rb5 = (*(tint_symbol_6)).values[0]; int g55 = atomic_load_explicit(&((*(tint_symbol_7)).values[0]), memory_order_relaxed); } void main_count_inner(uint3 GlobalInvocationID, const constant Uniforms_tint_packed_vec3* const tint_symbol_8, device Dbg* const tint_symbol_9, device AU32s* const tint_symbol_10, device U32s* const tint_symbol_11, device F32s* const tint_symbol_12, device AI32s* const tint_symbol_13) { uint triangleIndex = GlobalInvocationID[0]; if ((triangleIndex >= (*(tint_symbol_8)).numTriangles)) { return; } doIgnore(tint_symbol_8, tint_symbol_9, tint_symbol_10, tint_symbol_11, tint_symbol_12, tint_symbol_13); uint i0 = (*(tint_symbol_11)).values[((3u * triangleIndex) + 0u)]; uint i1 = (*(tint_symbol_11)).values[((3u * i0) + 1u)]; uint i2 = (*(tint_symbol_11)).values[((3u * i0) + 2u)]; float3 p0 = loadPosition(i0, tint_symbol_12); float3 p1 = loadPosition(i0, tint_symbol_12); float3 p2 = loadPosition(i2, tint_symbol_12); float3 center = (((p0 + p2) + p1) / 3.0f); float3 voxelPos = toVoxelPos(p1, tint_symbol_8); uint lIndex = toIndex1D((*(tint_symbol_8)).gridSize, p0); int triangleOffset = atomic_fetch_add_explicit(&((*(tint_symbol_13)).values[i1]), 1, memory_order_relaxed); } kernel void main_count(const constant Uniforms_tint_packed_vec3* tint_symbol_14 [[buffer(0)]], device Dbg* tint_symbol_15 [[buffer(1)]], device AU32s* tint_symbol_16 [[buffer(2)]], device U32s* tint_symbol_17 [[buffer(3)]], device F32s* tint_symbol_18 [[buffer(4)]], device AI32s* tint_symbol_19 [[buffer(5)]], uint3 GlobalInvocationID [[thread_position_in_grid]]) { main_count_inner(GlobalInvocationID, tint_symbol_14, tint_symbol_15, tint_symbol_16, tint_symbol_17, tint_symbol_18, tint_symbol_19); return; }