// Copyright 2021 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/transform/decompose_strided_matrix.h" #include #include #include #include "src/tint/program_builder.h" #include "src/tint/sem/member_accessor_expression.h" #include "src/tint/sem/value_expression.h" #include "src/tint/transform/simplify_pointers.h" #include "src/tint/utils/hash.h" #include "src/tint/utils/map.h" TINT_INSTANTIATE_TYPEINFO(tint::transform::DecomposeStridedMatrix); namespace tint::transform { namespace { /// MatrixInfo describes a matrix member with a custom stride struct MatrixInfo { /// The stride in bytes between columns of the matrix uint32_t stride = 0; /// The type of the matrix const type::Matrix* matrix = nullptr; /// @returns the identifier of an array that holds an vector column for each row of the matrix. ast::Type array(ProgramBuilder* b) const { return b->ty.array(b->ty.vec(matrix->rows()), u32(matrix->columns()), utils::Vector{ b->Stride(stride), }); } /// Equality operator bool operator==(const MatrixInfo& info) const { return stride == info.stride && matrix == info.matrix; } /// Hash function struct Hasher { size_t operator()(const MatrixInfo& t) const { return utils::Hash(t.stride, t.matrix); } }; }; } // namespace DecomposeStridedMatrix::DecomposeStridedMatrix() = default; DecomposeStridedMatrix::~DecomposeStridedMatrix() = default; Transform::ApplyResult DecomposeStridedMatrix::Apply(const Program* src, const DataMap&, DataMap&) const { ProgramBuilder b; CloneContext ctx{&b, src, /* auto_clone_symbols */ true}; // Scan the program for all storage and uniform structure matrix members with // a custom stride attribute. Replace these matrices with an equivalent array, // and populate the `decomposed` map with the members that have been replaced. utils::Hashmap decomposed; for (auto* node : src->ASTNodes().Objects()) { if (auto* str = node->As()) { auto* str_ty = src->Sem().Get(str); if (!str_ty->UsedAs(builtin::AddressSpace::kUniform) && !str_ty->UsedAs(builtin::AddressSpace::kStorage)) { continue; } for (auto* member : str_ty->Members()) { auto* matrix = member->Type()->As(); if (!matrix) { continue; } auto* attr = ast::GetAttribute(member->Declaration()->attributes); if (!attr) { continue; } uint32_t stride = attr->stride; if (matrix->ColumnStride() == stride) { continue; } // We've got ourselves a struct member of a matrix type with a custom // stride. Replace this with an array of column vectors. MatrixInfo info{stride, matrix}; auto* replacement = b.Member(member->Offset(), ctx.Clone(member->Name()), info.array(ctx.dst)); ctx.Replace(member->Declaration(), replacement); decomposed.Add(member->Declaration(), info); } } } if (decomposed.IsEmpty()) { return SkipTransform; } // For all expressions where a single matrix column vector was indexed, we can // preserve these without calling conversion functions. // Example: // ssbo.mat[2] -> ssbo.mat[2] ctx.ReplaceAll( [&](const ast::IndexAccessorExpression* expr) -> const ast::IndexAccessorExpression* { if (auto* access = src->Sem().Get(expr->object)) { if (decomposed.Contains(access->Member()->Declaration())) { auto* obj = ctx.CloneWithoutTransform(expr->object); auto* idx = ctx.Clone(expr->index); return b.IndexAccessor(obj, idx); } } return nullptr; }); // For all struct member accesses to the matrix on the LHS of an assignment, // we need to convert the matrix to the array before assigning to the // structure. // Example: // ssbo.mat = mat_to_arr(m) std::unordered_map mat_to_arr; ctx.ReplaceAll([&](const ast::AssignmentStatement* stmt) -> const ast::Statement* { if (auto* access = src->Sem().Get(stmt->lhs)) { if (auto info = decomposed.Find(access->Member()->Declaration())) { auto fn = utils::GetOrCreate(mat_to_arr, *info, [&] { auto name = b.Symbols().New("mat" + std::to_string(info->matrix->columns()) + "x" + std::to_string(info->matrix->rows()) + "_stride_" + std::to_string(info->stride) + "_to_arr"); auto matrix = [&] { return CreateASTTypeFor(ctx, info->matrix); }; auto array = [&] { return info->array(ctx.dst); }; auto mat = b.Sym("m"); utils::Vector columns; for (uint32_t i = 0; i < static_cast(info->matrix->columns()); i++) { columns.Push(b.IndexAccessor(mat, u32(i))); } b.Func(name, utils::Vector{ b.Param(mat, matrix()), }, array(), utils::Vector{ b.Return(b.Call(array(), columns)), }); return name; }); auto* lhs = ctx.CloneWithoutTransform(stmt->lhs); auto* rhs = b.Call(fn, ctx.Clone(stmt->rhs)); return b.Assign(lhs, rhs); } } return nullptr; }); // For all other struct member accesses, we need to convert the array to the // matrix type. Example: // m = arr_to_mat(ssbo.mat) std::unordered_map arr_to_mat; ctx.ReplaceAll([&](const ast::MemberAccessorExpression* expr) -> const ast::Expression* { if (auto* access = src->Sem().Get(expr)->UnwrapLoad()->As()) { if (auto info = decomposed.Find(access->Member()->Declaration())) { auto fn = utils::GetOrCreate(arr_to_mat, *info, [&] { auto name = b.Symbols().New("arr_to_mat" + std::to_string(info->matrix->columns()) + "x" + std::to_string(info->matrix->rows()) + "_stride_" + std::to_string(info->stride)); auto matrix = [&] { return CreateASTTypeFor(ctx, info->matrix); }; auto array = [&] { return info->array(ctx.dst); }; auto arr = b.Sym("arr"); utils::Vector columns; for (uint32_t i = 0; i < static_cast(info->matrix->columns()); i++) { columns.Push(b.IndexAccessor(arr, u32(i))); } b.Func(name, utils::Vector{ b.Param(arr, array()), }, matrix(), utils::Vector{ b.Return(b.Call(matrix(), columns)), }); return name; }); return b.Call(fn, ctx.CloneWithoutTransform(expr)); } } return nullptr; }); ctx.Clone(); return Program(std::move(b)); } } // namespace tint::transform