// Copyright 2021 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SRC_PROGRAM_BUILDER_H_ #define SRC_PROGRAM_BUILDER_H_ #include <string> #include <unordered_set> #include <utility> #include "src/ast/alias.h" #include "src/ast/array.h" #include "src/ast/array_accessor_expression.h" #include "src/ast/assignment_statement.h" #include "src/ast/atomic.h" #include "src/ast/binary_expression.h" #include "src/ast/binding_decoration.h" #include "src/ast/bitcast_expression.h" #include "src/ast/bool.h" #include "src/ast/bool_literal_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_expression.h" #include "src/ast/call_statement.h" #include "src/ast/case_statement.h" #include "src/ast/depth_multisampled_texture.h" #include "src/ast/depth_texture.h" #include "src/ast/disable_validation_decoration.h" #include "src/ast/external_texture.h" #include "src/ast/f32.h" #include "src/ast/float_literal_expression.h" #include "src/ast/for_loop_statement.h" #include "src/ast/i32.h" #include "src/ast/if_statement.h" #include "src/ast/interpolate_decoration.h" #include "src/ast/invariant_decoration.h" #include "src/ast/loop_statement.h" #include "src/ast/matrix.h" #include "src/ast/member_accessor_expression.h" #include "src/ast/module.h" #include "src/ast/multisampled_texture.h" #include "src/ast/override_decoration.h" #include "src/ast/phony_expression.h" #include "src/ast/pointer.h" #include "src/ast/return_statement.h" #include "src/ast/sampled_texture.h" #include "src/ast/sampler.h" #include "src/ast/sint_literal_expression.h" #include "src/ast/stage_decoration.h" #include "src/ast/storage_texture.h" #include "src/ast/stride_decoration.h" #include "src/ast/struct_block_decoration.h" #include "src/ast/struct_member_align_decoration.h" #include "src/ast/struct_member_offset_decoration.h" #include "src/ast/struct_member_size_decoration.h" #include "src/ast/switch_statement.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/type_name.h" #include "src/ast/u32.h" #include "src/ast/uint_literal_expression.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/ast/vector.h" #include "src/ast/void.h" #include "src/ast/workgroup_decoration.h" #include "src/program.h" #include "src/program_id.h" #include "src/sem/array.h" #include "src/sem/bool_type.h" #include "src/sem/depth_texture_type.h" #include "src/sem/external_texture_type.h" #include "src/sem/f32_type.h" #include "src/sem/i32_type.h" #include "src/sem/matrix_type.h" #include "src/sem/multisampled_texture_type.h" #include "src/sem/pointer_type.h" #include "src/sem/sampled_texture_type.h" #include "src/sem/storage_texture_type.h" #include "src/sem/struct.h" #include "src/sem/u32_type.h" #include "src/sem/vector_type.h" #include "src/sem/void_type.h" #ifdef INCLUDE_TINT_TINT_H_ #error "internal tint header being #included from tint.h" #endif // Forward declarations namespace tint { namespace ast { class VariableDeclStatement; } // namespace ast } // namespace tint namespace tint { class CloneContext; /// ProgramBuilder is a mutable builder for a Program. /// To construct a Program, populate the builder and then `std::move` it to a /// Program. class ProgramBuilder { /// A helper used to disable overloads if the first type in `TYPES` is a /// Source. Used to avoid ambiguities in overloads that take a Source as the /// first parameter and those that perfectly-forward the first argument. template <typename... TYPES> using DisableIfSource = traits::EnableIfIsNotType< traits::Decay<traits::NthTypeOf<0, TYPES..., void>>, Source>; /// VarOptionals is a helper for accepting a number of optional, extra /// arguments for Var() and Global(). struct VarOptionals { template <typename... ARGS> explicit VarOptionals(ARGS&&... args) { Apply(std::forward<ARGS>(args)...); } ~VarOptionals(); ast::StorageClass storage = ast::StorageClass::kNone; ast::Access access = ast::Access::kUndefined; const ast::Expression* constructor = nullptr; ast::DecorationList decorations = {}; private: void Set(ast::StorageClass sc) { storage = sc; } void Set(ast::Access ac) { access = ac; } void Set(const ast::Expression* c) { constructor = c; } void Set(const ast::DecorationList& l) { decorations = l; } template <typename FIRST, typename... ARGS> void Apply(FIRST&& first, ARGS&&... args) { Set(std::forward<FIRST>(first)); Apply(std::forward<ARGS>(args)...); } void Apply() {} }; public: /// ASTNodeAllocator is an alias to BlockAllocator<ast::Node> using ASTNodeAllocator = BlockAllocator<ast::Node>; /// SemNodeAllocator is an alias to BlockAllocator<sem::Node> using SemNodeAllocator = BlockAllocator<sem::Node>; /// `i32` is a type alias to `int`. /// Useful for passing to template methods such as `vec2<i32>()` to imitate /// WGSL syntax. /// Note: this is intentionally not aliased to uint32_t as we want integer /// literals passed to the builder to match WGSL's integer literal types. using i32 = decltype(1); /// `u32` is a type alias to `unsigned int`. /// Useful for passing to template methods such as `vec2<u32>()` to imitate /// WGSL syntax. /// Note: this is intentionally not aliased to uint32_t as we want integer /// literals passed to the builder to match WGSL's integer literal types. using u32 = decltype(1u); /// `f32` is a type alias to `float` /// Useful for passing to template methods such as `vec2<f32>()` to imitate /// WGSL syntax. using f32 = float; /// Constructor ProgramBuilder(); /// Move constructor /// @param rhs the builder to move ProgramBuilder(ProgramBuilder&& rhs); /// Destructor virtual ~ProgramBuilder(); /// Move assignment operator /// @param rhs the builder to move /// @return this builder ProgramBuilder& operator=(ProgramBuilder&& rhs); /// Wrap returns a new ProgramBuilder wrapping the Program `program` without /// making a deep clone of the Program contents. /// ProgramBuilder returned by Wrap() is intended to temporarily extend an /// existing immutable program. /// As the returned ProgramBuilder wraps `program`, `program` must not be /// destructed or assigned while using the returned ProgramBuilder. /// TODO(bclayton) - Evaluate whether there are safer alternatives to this /// function. See crbug.com/tint/460. /// @param program the immutable Program to wrap /// @return the ProgramBuilder that wraps `program` static ProgramBuilder Wrap(const Program* program); /// @returns the unique identifier for this program ProgramID ID() const { return id_; } /// @returns a reference to the program's types sem::Manager& Types() { AssertNotMoved(); return types_; } /// @returns a reference to the program's types const sem::Manager& Types() const { AssertNotMoved(); return types_; } /// @returns a reference to the program's AST nodes storage ASTNodeAllocator& ASTNodes() { AssertNotMoved(); return ast_nodes_; } /// @returns a reference to the program's AST nodes storage const ASTNodeAllocator& ASTNodes() const { AssertNotMoved(); return ast_nodes_; } /// @returns a reference to the program's semantic nodes storage SemNodeAllocator& SemNodes() { AssertNotMoved(); return sem_nodes_; } /// @returns a reference to the program's semantic nodes storage const SemNodeAllocator& SemNodes() const { AssertNotMoved(); return sem_nodes_; } /// @returns a reference to the program's AST root Module ast::Module& AST() { AssertNotMoved(); return *ast_; } /// @returns a reference to the program's AST root Module const ast::Module& AST() const { AssertNotMoved(); return *ast_; } /// @returns a reference to the program's semantic info sem::Info& Sem() { AssertNotMoved(); return sem_; } /// @returns a reference to the program's semantic info const sem::Info& Sem() const { AssertNotMoved(); return sem_; } /// @returns a reference to the program's SymbolTable SymbolTable& Symbols() { AssertNotMoved(); return symbols_; } /// @returns a reference to the program's SymbolTable const SymbolTable& Symbols() const { AssertNotMoved(); return symbols_; } /// @returns a reference to the program's diagnostics diag::List& Diagnostics() { AssertNotMoved(); return diagnostics_; } /// @returns a reference to the program's diagnostics const diag::List& Diagnostics() const { AssertNotMoved(); return diagnostics_; } /// Controls whether the Resolver will be run on the program when it is built. /// @param enable the new flag value (defaults to true) void SetResolveOnBuild(bool enable) { resolve_on_build_ = enable; } /// @return true if the Resolver will be run on the program when it is /// built. bool ResolveOnBuild() const { return resolve_on_build_; } /// @returns true if the program has no error diagnostics and is not missing /// information bool IsValid() const; /// Creates a new ast::Node owned by the ProgramBuilder. When the /// ProgramBuilder is destructed, the ast::Node will also be destructed. /// @param source the Source of the node /// @param args the arguments to pass to the type constructor /// @returns the node pointer template <typename T, typename... ARGS> traits::EnableIfIsType<T, ast::Node>* create(const Source& source, ARGS&&... args) { AssertNotMoved(); return ast_nodes_.Create<T>(id_, source, std::forward<ARGS>(args)...); } /// Creates a new ast::Node owned by the ProgramBuilder, injecting the current /// Source as set by the last call to SetSource() as the only argument to the /// constructor. /// When the ProgramBuilder is destructed, the ast::Node will also be /// destructed. /// @returns the node pointer template <typename T> traits::EnableIfIsType<T, ast::Node>* create() { AssertNotMoved(); return ast_nodes_.Create<T>(id_, source_); } /// Creates a new ast::Node owned by the ProgramBuilder, injecting the current /// Source as set by the last call to SetSource() as the first argument to the /// constructor. /// When the ProgramBuilder is destructed, the ast::Node will also be /// destructed. /// @param arg0 the first arguments to pass to the type constructor /// @param args the remaining arguments to pass to the type constructor /// @returns the node pointer template <typename T, typename ARG0, typename... ARGS> traits::EnableIf</* T is ast::Node and ARG0 is not Source */ traits::IsTypeOrDerived<T, ast::Node>::value && !traits::IsTypeOrDerived<ARG0, Source>::value, T>* create(ARG0&& arg0, ARGS&&... args) { AssertNotMoved(); return ast_nodes_.Create<T>(id_, source_, std::forward<ARG0>(arg0), std::forward<ARGS>(args)...); } /// Creates a new sem::Node owned by the ProgramBuilder. /// When the ProgramBuilder is destructed, the sem::Node will also be /// destructed. /// @param args the arguments to pass to the type constructor /// @returns the node pointer template <typename T, typename... ARGS> traits::EnableIf<traits::IsTypeOrDerived<T, sem::Node>::value && !traits::IsTypeOrDerived<T, sem::Type>::value, T>* create(ARGS&&... args) { AssertNotMoved(); return sem_nodes_.Create<T>(std::forward<ARGS>(args)...); } /// Creates a new sem::Type owned by the ProgramBuilder. /// When the ProgramBuilder is destructed, owned ProgramBuilder and the /// returned`Type` will also be destructed. /// Types are unique (de-aliased), and so calling create() for the same `T` /// and arguments will return the same pointer. /// @warning Use this method to acquire a type only if all of its type /// information is provided in the constructor arguments `args`.<br> /// If the type requires additional configuration after construction that /// affect its fundamental type, build the type with `std::make_unique`, make /// any necessary alterations and then call unique_type() instead. /// @param args the arguments to pass to the type constructor /// @returns the de-aliased type pointer template <typename T, typename... ARGS> traits::EnableIfIsType<T, sem::Type>* create(ARGS&&... args) { static_assert(std::is_base_of<sem::Type, T>::value, "T does not derive from sem::Type"); AssertNotMoved(); return types_.Get<T>(std::forward<ARGS>(args)...); } /// Marks this builder as moved, preventing any further use of the builder. void MarkAsMoved(); ////////////////////////////////////////////////////////////////////////////// // TypesBuilder ////////////////////////////////////////////////////////////////////////////// /// TypesBuilder holds basic `tint` types and methods for constructing /// complex types. class TypesBuilder { public: /// Constructor /// @param builder the program builder explicit TypesBuilder(ProgramBuilder* builder); /// @return the tint AST type for the C type `T`. template <typename T> const ast::Type* Of() const { return CToAST<T>::get(this); } /// @returns a boolean type const ast::Bool* bool_() const { return builder->create<ast::Bool>(); } /// @param source the Source of the node /// @returns a boolean type const ast::Bool* bool_(const Source& source) const { return builder->create<ast::Bool>(source); } /// @returns a f32 type const ast::F32* f32() const { return builder->create<ast::F32>(); } /// @param source the Source of the node /// @returns a f32 type const ast::F32* f32(const Source& source) const { return builder->create<ast::F32>(source); } /// @returns a i32 type const ast::I32* i32() const { return builder->create<ast::I32>(); } /// @param source the Source of the node /// @returns a i32 type const ast::I32* i32(const Source& source) const { return builder->create<ast::I32>(source); } /// @returns a u32 type const ast::U32* u32() const { return builder->create<ast::U32>(); } /// @param source the Source of the node /// @returns a u32 type const ast::U32* u32(const Source& source) const { return builder->create<ast::U32>(source); } /// @returns a void type const ast::Void* void_() const { return builder->create<ast::Void>(); } /// @param source the Source of the node /// @returns a void type const ast::Void* void_(const Source& source) const { return builder->create<ast::Void>(source); } /// @param type vector subtype /// @param n vector width in elements /// @return the tint AST type for a `n`-element vector of `type`. const ast::Vector* vec(const ast::Type* type, uint32_t n) const { return builder->create<ast::Vector>(type, n); } /// @param source the Source of the node /// @param type vector subtype /// @param n vector width in elements /// @return the tint AST type for a `n`-element vector of `type`. const ast::Vector* vec(const Source& source, const ast::Type* type, uint32_t n) const { return builder->create<ast::Vector>(source, type, n); } /// @param type vector subtype /// @return the tint AST type for a 2-element vector of `type`. const ast::Vector* vec2(const ast::Type* type) const { return vec(type, 2u); } /// @param type vector subtype /// @return the tint AST type for a 3-element vector of `type`. const ast::Vector* vec3(const ast::Type* type) const { return vec(type, 3u); } /// @param type vector subtype /// @return the tint AST type for a 4-element vector of `type`. const ast::Vector* vec4(const ast::Type* type) const { return vec(type, 4u); } /// @param n vector width in elements /// @return the tint AST type for a `n`-element vector of `type`. template <typename T> const ast::Vector* vec(uint32_t n) const { return vec(Of<T>(), n); } /// @return the tint AST type for a 2-element vector of the C type `T`. template <typename T> const ast::Vector* vec2() const { return vec2(Of<T>()); } /// @return the tint AST type for a 3-element vector of the C type `T`. template <typename T> const ast::Vector* vec3() const { return vec3(Of<T>()); } /// @return the tint AST type for a 4-element vector of the C type `T`. template <typename T> const ast::Vector* vec4() const { return vec4(Of<T>()); } /// @param type matrix subtype /// @param columns number of columns for the matrix /// @param rows number of rows for the matrix /// @return the tint AST type for a matrix of `type` const ast::Matrix* mat(const ast::Type* type, uint32_t columns, uint32_t rows) const { return builder->create<ast::Matrix>(type, rows, columns); } /// @param source the Source of the node /// @param type matrix subtype /// @param columns number of columns for the matrix /// @param rows number of rows for the matrix /// @return the tint AST type for a matrix of `type` const ast::Matrix* mat(const Source& source, const ast::Type* type, uint32_t columns, uint32_t rows) const { return builder->create<ast::Matrix>(source, type, rows, columns); } /// @param type matrix subtype /// @return the tint AST type for a 2x3 matrix of `type`. const ast::Matrix* mat2x2(const ast::Type* type) const { return mat(type, 2u, 2u); } /// @param type matrix subtype /// @return the tint AST type for a 2x3 matrix of `type`. const ast::Matrix* mat2x3(const ast::Type* type) const { return mat(type, 2u, 3u); } /// @param type matrix subtype /// @return the tint AST type for a 2x4 matrix of `type`. const ast::Matrix* mat2x4(const ast::Type* type) const { return mat(type, 2u, 4u); } /// @param type matrix subtype /// @return the tint AST type for a 3x2 matrix of `type`. const ast::Matrix* mat3x2(const ast::Type* type) const { return mat(type, 3u, 2u); } /// @param type matrix subtype /// @return the tint AST type for a 3x3 matrix of `type`. const ast::Matrix* mat3x3(const ast::Type* type) const { return mat(type, 3u, 3u); } /// @param type matrix subtype /// @return the tint AST type for a 3x4 matrix of `type`. const ast::Matrix* mat3x4(const ast::Type* type) const { return mat(type, 3u, 4u); } /// @param type matrix subtype /// @return the tint AST type for a 4x2 matrix of `type`. const ast::Matrix* mat4x2(const ast::Type* type) const { return mat(type, 4u, 2u); } /// @param type matrix subtype /// @return the tint AST type for a 4x3 matrix of `type`. const ast::Matrix* mat4x3(const ast::Type* type) const { return mat(type, 4u, 3u); } /// @param type matrix subtype /// @return the tint AST type for a 4x4 matrix of `type`. const ast::Matrix* mat4x4(const ast::Type* type) const { return mat(type, 4u, 4u); } /// @param columns number of columns for the matrix /// @param rows number of rows for the matrix /// @return the tint AST type for a matrix of `type` template <typename T> const ast::Matrix* mat(uint32_t columns, uint32_t rows) const { return mat(Of<T>(), columns, rows); } /// @return the tint AST type for a 2x3 matrix of the C type `T`. template <typename T> const ast::Matrix* mat2x2() const { return mat2x2(Of<T>()); } /// @return the tint AST type for a 2x3 matrix of the C type `T`. template <typename T> const ast::Matrix* mat2x3() const { return mat2x3(Of<T>()); } /// @return the tint AST type for a 2x4 matrix of the C type `T`. template <typename T> const ast::Matrix* mat2x4() const { return mat2x4(Of<T>()); } /// @return the tint AST type for a 3x2 matrix of the C type `T`. template <typename T> const ast::Matrix* mat3x2() const { return mat3x2(Of<T>()); } /// @return the tint AST type for a 3x3 matrix of the C type `T`. template <typename T> const ast::Matrix* mat3x3() const { return mat3x3(Of<T>()); } /// @return the tint AST type for a 3x4 matrix of the C type `T`. template <typename T> const ast::Matrix* mat3x4() const { return mat3x4(Of<T>()); } /// @return the tint AST type for a 4x2 matrix of the C type `T`. template <typename T> const ast::Matrix* mat4x2() const { return mat4x2(Of<T>()); } /// @return the tint AST type for a 4x3 matrix of the C type `T`. template <typename T> const ast::Matrix* mat4x3() const { return mat4x3(Of<T>()); } /// @return the tint AST type for a 4x4 matrix of the C type `T`. template <typename T> const ast::Matrix* mat4x4() const { return mat4x4(Of<T>()); } /// @param subtype the array element type /// @param n the array size. nullptr represents a runtime-array /// @param decos the optional decorations for the array /// @return the tint AST type for a array of size `n` of type `T` template <typename EXPR = ast::Expression*> const ast::Array* array(const ast::Type* subtype, EXPR&& n = nullptr, ast::DecorationList decos = {}) const { return builder->create<ast::Array>( subtype, builder->Expr(std::forward<EXPR>(n)), decos); } /// @param source the Source of the node /// @param subtype the array element type /// @param n the array size. nullptr represents a runtime-array /// @param decos the optional decorations for the array /// @return the tint AST type for a array of size `n` of type `T` template <typename EXPR = ast::Expression*> const ast::Array* array(const Source& source, const ast::Type* subtype, EXPR&& n = nullptr, ast::DecorationList decos = {}) const { return builder->create<ast::Array>( source, subtype, builder->Expr(std::forward<EXPR>(n)), decos); } /// @param subtype the array element type /// @param n the array size. nullptr represents a runtime-array /// @param stride the array stride. 0 represents implicit stride /// @return the tint AST type for a array of size `n` of type `T` template <typename EXPR> const ast::Array* array(const ast::Type* subtype, EXPR&& n, uint32_t stride) const { ast::DecorationList decos; if (stride) { decos.emplace_back(builder->create<ast::StrideDecoration>(stride)); } return array(subtype, std::forward<EXPR>(n), std::move(decos)); } /// @param source the Source of the node /// @param subtype the array element type /// @param n the array size. nullptr represents a runtime-array /// @param stride the array stride. 0 represents implicit stride /// @return the tint AST type for a array of size `n` of type `T` template <typename EXPR> const ast::Array* array(const Source& source, const ast::Type* subtype, EXPR&& n, uint32_t stride) const { ast::DecorationList decos; if (stride) { decos.emplace_back(builder->create<ast::StrideDecoration>(stride)); } return array(source, subtype, std::forward<EXPR>(n), std::move(decos)); } /// @return the tint AST type for a runtime-sized array of type `T` template <typename T> const ast::Array* array() const { return array(Of<T>(), nullptr); } /// @return the tint AST type for an array of size `N` of type `T` template <typename T, int N> const ast::Array* array() const { return array(Of<T>(), builder->Expr(N)); } /// @param stride the array stride /// @return the tint AST type for a runtime-sized array of type `T` template <typename T> const ast::Array* array(uint32_t stride) const { return array(Of<T>(), nullptr, stride); } /// @param stride the array stride /// @return the tint AST type for an array of size `N` of type `T` template <typename T, int N> const ast::Array* array(uint32_t stride) const { return array(Of<T>(), builder->Expr(N), stride); } /// Creates a type name /// @param name the name /// @returns the type name template <typename NAME> const ast::TypeName* type_name(NAME&& name) const { return builder->create<ast::TypeName>( builder->Sym(std::forward<NAME>(name))); } /// Creates a type name /// @param source the Source of the node /// @param name the name /// @returns the type name template <typename NAME> const ast::TypeName* type_name(const Source& source, NAME&& name) const { return builder->create<ast::TypeName>( source, builder->Sym(std::forward<NAME>(name))); } /// Creates an alias type /// @param name the alias name /// @param type the alias type /// @returns the alias pointer template <typename NAME> const ast::Alias* alias(NAME&& name, const ast::Type* type) const { auto sym = builder->Sym(std::forward<NAME>(name)); return builder->create<ast::Alias>(sym, type); } /// Creates an alias type /// @param source the Source of the node /// @param name the alias name /// @param type the alias type /// @returns the alias pointer template <typename NAME> const ast::Alias* alias(const Source& source, NAME&& name, const ast::Type* type) const { auto sym = builder->Sym(std::forward<NAME>(name)); return builder->create<ast::Alias>(source, sym, type); } /// @param type the type of the pointer /// @param storage_class the storage class of the pointer /// @param access the optional access control of the pointer /// @return the pointer to `type` with the given ast::StorageClass const ast::Pointer* pointer( const ast::Type* type, ast::StorageClass storage_class, ast::Access access = ast::Access::kUndefined) const { return builder->create<ast::Pointer>(type, storage_class, access); } /// @param source the Source of the node /// @param type the type of the pointer /// @param storage_class the storage class of the pointer /// @param access the optional access control of the pointer /// @return the pointer to `type` with the given ast::StorageClass const ast::Pointer* pointer( const Source& source, const ast::Type* type, ast::StorageClass storage_class, ast::Access access = ast::Access::kUndefined) const { return builder->create<ast::Pointer>(source, type, storage_class, access); } /// @param storage_class the storage class of the pointer /// @param access the optional access control of the pointer /// @return the pointer to type `T` with the given ast::StorageClass. template <typename T> const ast::Pointer* pointer( ast::StorageClass storage_class, ast::Access access = ast::Access::kUndefined) const { return pointer(Of<T>(), storage_class, access); } /// @param source the Source of the node /// @param type the type of the atomic /// @return the atomic to `type` const ast::Atomic* atomic(const Source& source, const ast::Type* type) const { return builder->create<ast::Atomic>(source, type); } /// @param type the type of the atomic /// @return the atomic to `type` const ast::Atomic* atomic(const ast::Type* type) const { return builder->create<ast::Atomic>(type); } /// @return the atomic to type `T` template <typename T> const ast::Atomic* atomic() const { return atomic(Of<T>()); } /// @param kind the kind of sampler /// @returns the sampler const ast::Sampler* sampler(ast::SamplerKind kind) const { return builder->create<ast::Sampler>(kind); } /// @param source the Source of the node /// @param kind the kind of sampler /// @returns the sampler const ast::Sampler* sampler(const Source& source, ast::SamplerKind kind) const { return builder->create<ast::Sampler>(source, kind); } /// @param dims the dimensionality of the texture /// @returns the depth texture const ast::DepthTexture* depth_texture(ast::TextureDimension dims) const { return builder->create<ast::DepthTexture>(dims); } /// @param source the Source of the node /// @param dims the dimensionality of the texture /// @returns the depth texture const ast::DepthTexture* depth_texture(const Source& source, ast::TextureDimension dims) const { return builder->create<ast::DepthTexture>(source, dims); } /// @param dims the dimensionality of the texture /// @returns the multisampled depth texture const ast::DepthMultisampledTexture* depth_multisampled_texture( ast::TextureDimension dims) const { return builder->create<ast::DepthMultisampledTexture>(dims); } /// @param source the Source of the node /// @param dims the dimensionality of the texture /// @returns the multisampled depth texture const ast::DepthMultisampledTexture* depth_multisampled_texture( const Source& source, ast::TextureDimension dims) const { return builder->create<ast::DepthMultisampledTexture>(source, dims); } /// @param dims the dimensionality of the texture /// @param subtype the texture subtype. /// @returns the sampled texture const ast::SampledTexture* sampled_texture(ast::TextureDimension dims, const ast::Type* subtype) const { return builder->create<ast::SampledTexture>(dims, subtype); } /// @param source the Source of the node /// @param dims the dimensionality of the texture /// @param subtype the texture subtype. /// @returns the sampled texture const ast::SampledTexture* sampled_texture(const Source& source, ast::TextureDimension dims, const ast::Type* subtype) const { return builder->create<ast::SampledTexture>(source, dims, subtype); } /// @param dims the dimensionality of the texture /// @param subtype the texture subtype. /// @returns the multisampled texture const ast::MultisampledTexture* multisampled_texture( ast::TextureDimension dims, const ast::Type* subtype) const { return builder->create<ast::MultisampledTexture>(dims, subtype); } /// @param source the Source of the node /// @param dims the dimensionality of the texture /// @param subtype the texture subtype. /// @returns the multisampled texture const ast::MultisampledTexture* multisampled_texture( const Source& source, ast::TextureDimension dims, const ast::Type* subtype) const { return builder->create<ast::MultisampledTexture>(source, dims, subtype); } /// @param dims the dimensionality of the texture /// @param format the image format of the texture /// @param access the access control of the texture /// @returns the storage texture const ast::StorageTexture* storage_texture(ast::TextureDimension dims, ast::ImageFormat format, ast::Access access) const { auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder); return builder->create<ast::StorageTexture>(dims, format, subtype, access); } /// @param source the Source of the node /// @param dims the dimensionality of the texture /// @param format the image format of the texture /// @param access the access control of the texture /// @returns the storage texture const ast::StorageTexture* storage_texture(const Source& source, ast::TextureDimension dims, ast::ImageFormat format, ast::Access access) const { auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder); return builder->create<ast::StorageTexture>(source, dims, format, subtype, access); } /// @returns the external texture const ast::ExternalTexture* external_texture() const { return builder->create<ast::ExternalTexture>(); } /// @param source the Source of the node /// @returns the external texture const ast::ExternalTexture* external_texture(const Source& source) const { return builder->create<ast::ExternalTexture>(source); } /// Constructs a TypeName for the type declaration. /// @param type the type /// @return either type or a pointer to a new ast::TypeName const ast::TypeName* Of(const ast::TypeDecl* type) const; /// The ProgramBuilder ProgramBuilder* const builder; private: /// CToAST<T> is specialized for various `T` types and each specialization /// contains a single static `get()` method for obtaining the corresponding /// AST type for the C type `T`. /// `get()` has the signature: /// `static const ast::Type* get(Types* t)` template <typename T> struct CToAST {}; }; ////////////////////////////////////////////////////////////////////////////// // AST helper methods ////////////////////////////////////////////////////////////////////////////// /// @return a new unnamed symbol Symbol Sym() { return Symbols().New(); } /// @param name the symbol string /// @return a Symbol with the given name Symbol Sym(const std::string& name) { return Symbols().Register(name); } /// @param sym the symbol /// @return `sym` Symbol Sym(Symbol sym) { return sym; } /// @param expr the expression /// @return expr template <typename T> traits::EnableIfIsType<T, ast::Expression>* Expr(T* expr) { return expr; } /// Passthrough for nullptr /// @return nullptr const ast::IdentifierExpression* Expr(std::nullptr_t) { return nullptr; } /// @param source the source information /// @param symbol the identifier symbol /// @return an ast::IdentifierExpression with the given symbol const ast::IdentifierExpression* Expr(const Source& source, Symbol symbol) { return create<ast::IdentifierExpression>(source, symbol); } /// @param symbol the identifier symbol /// @return an ast::IdentifierExpression with the given symbol const ast::IdentifierExpression* Expr(Symbol symbol) { return create<ast::IdentifierExpression>(symbol); } /// @param source the source information /// @param variable the AST variable /// @return an ast::IdentifierExpression with the variable's symbol const ast::IdentifierExpression* Expr(const Source& source, const ast::Variable* variable) { return create<ast::IdentifierExpression>(source, variable->symbol); } /// @param variable the AST variable /// @return an ast::IdentifierExpression with the variable's symbol const ast::IdentifierExpression* Expr(const ast::Variable* variable) { return create<ast::IdentifierExpression>(variable->symbol); } /// @param source the source information /// @param name the identifier name /// @return an ast::IdentifierExpression with the given name const ast::IdentifierExpression* Expr(const Source& source, const char* name) { return create<ast::IdentifierExpression>(source, Symbols().Register(name)); } /// @param name the identifier name /// @return an ast::IdentifierExpression with the given name const ast::IdentifierExpression* Expr(const char* name) { return create<ast::IdentifierExpression>(Symbols().Register(name)); } /// @param source the source information /// @param name the identifier name /// @return an ast::IdentifierExpression with the given name const ast::IdentifierExpression* Expr(const Source& source, const std::string& name) { return create<ast::IdentifierExpression>(source, Symbols().Register(name)); } /// @param name the identifier name /// @return an ast::IdentifierExpression with the given name const ast::IdentifierExpression* Expr(const std::string& name) { return create<ast::IdentifierExpression>(Symbols().Register(name)); } /// @param source the source information /// @param value the boolean value /// @return a Scalar constructor for the given value const ast::Literal* Expr(const Source& source, bool value) { return create<ast::BoolLiteral>(source, value); } /// @param value the boolean value /// @return a Scalar constructor for the given value const ast::BoolLiteral* Expr(bool value) { return create<ast::BoolLiteral>(value); } /// @param source the source information /// @param value the float value /// @return a Scalar constructor for the given value const ast::FloatLiteral* Expr(const Source& source, f32 value) { return create<ast::FloatLiteral>(source, value); } /// @param value the float value /// @return a Scalar constructor for the given value const ast::FloatLiteral* Expr(f32 value) { return create<ast::FloatLiteral>(value); } /// @param source the source information /// @param value the integer value /// @return a Scalar constructor for the given value const ast::Literal* Expr(const Source& source, i32 value) { return create<ast::SintLiteral>(source, value); } /// @param value the integer value /// @return a Scalar constructor for the given value const ast::SintLiteral* Expr(i32 value) { return create<ast::SintLiteral>(value); } /// @param source the source information /// @param value the unsigned int value /// @return a Scalar constructor for the given value const ast::UintLiteral* Expr(const Source& source, u32 value) { return create<ast::UintLiteral>(source, value); } /// @param value the unsigned int value /// @return a Scalar constructor for the given value const ast::UintLiteral* Expr(u32 value) { return create<ast::UintLiteral>(value); } /// Converts `arg` to an `ast::Expression` using `Expr()`, then appends it to /// `list`. /// @param list the list to append too /// @param arg the arg to create template <typename ARG> void Append(ast::ExpressionList& list, ARG&& arg) { list.emplace_back(Expr(std::forward<ARG>(arg))); } /// Converts `arg0` and `args` to `ast::Expression`s using `Expr()`, /// then appends them to `list`. /// @param list the list to append too /// @param arg0 the first argument /// @param args the rest of the arguments template <typename ARG0, typename... ARGS> void Append(ast::ExpressionList& list, ARG0&& arg0, ARGS&&... args) { Append(list, std::forward<ARG0>(arg0)); Append(list, std::forward<ARGS>(args)...); } /// @return an empty list of expressions ast::ExpressionList ExprList() { return {}; } /// @param args the list of expressions /// @return the list of expressions converted to `ast::Expression`s using /// `Expr()`, template <typename... ARGS> ast::ExpressionList ExprList(ARGS&&... args) { ast::ExpressionList list; list.reserve(sizeof...(args)); Append(list, std::forward<ARGS>(args)...); return list; } /// @param list the list of expressions /// @return `list` ast::ExpressionList ExprList(ast::ExpressionList list) { return list; } /// @param source the source location for the literal /// @param val the boolan value /// @return a boolean literal with the given value const ast::BoolLiteral* Literal(const Source& source, bool val) { return create<ast::BoolLiteral>(source, val); } /// @param val the boolan value /// @return a boolean literal with the given value const ast::BoolLiteral* Literal(bool val) { return create<ast::BoolLiteral>(val); } /// @param source the source location for the literal /// @param val the float value /// @return a float literal with the given value const ast::FloatLiteral* Literal(const Source& source, f32 val) { return create<ast::FloatLiteral>(source, val); } /// @param val the float value /// @return a float literal with the given value const ast::FloatLiteral* Literal(f32 val) { return create<ast::FloatLiteral>(val); } /// @param source the source location for the literal /// @param val the unsigned int value /// @return a ast::UintLiteral with the given value const ast::UintLiteral* Literal(const Source& source, u32 val) { return create<ast::UintLiteral>(source, val); } /// @param val the unsigned int value /// @return a ast::UintLiteral with the given value const ast::UintLiteral* Literal(u32 val) { return create<ast::UintLiteral>(val); } /// @param source the source location for the literal /// @param val the integer value /// @return the ast::SintLiteral with the given value const ast::SintLiteral* Literal(const Source& source, i32 val) { return create<ast::SintLiteral>(source, val); } /// @param val the integer value /// @return the ast::SintLiteral with the given value const ast::SintLiteral* Literal(i32 val) { return create<ast::SintLiteral>(val); } /// @param args the arguments for the type constructor /// @return an `ast::TypeConstructorExpression` of type `ty`, with the values /// of `args` converted to `ast::Expression`s using `Expr()` template <typename T, typename... ARGS> const ast::TypeConstructorExpression* Construct(ARGS&&... args) { return Construct(ty.Of<T>(), std::forward<ARGS>(args)...); } /// @param type the type to construct /// @param args the arguments for the constructor /// @return an `ast::TypeConstructorExpression` of `type` constructed with the /// values `args`. template <typename... ARGS> const ast::TypeConstructorExpression* Construct(const ast::Type* type, ARGS&&... args) { return create<ast::TypeConstructorExpression>( type, ExprList(std::forward<ARGS>(args)...)); } /// @param source the source information /// @param type the type to construct /// @param args the arguments for the constructor /// @return an `ast::TypeConstructorExpression` of `type` constructed with the /// values `args`. template <typename... ARGS> const ast::TypeConstructorExpression* Construct(const Source& source, const ast::Type* type, ARGS&&... args) { return create<ast::TypeConstructorExpression>( source, type, ExprList(std::forward<ARGS>(args)...)); } /// @param expr the expression for the bitcast /// @return an `ast::BitcastExpression` of type `ty`, with the values of /// `expr` converted to `ast::Expression`s using `Expr()` template <typename T, typename EXPR> const ast::BitcastExpression* Bitcast(EXPR&& expr) { return Bitcast(ty.Of<T>(), std::forward<EXPR>(expr)); } /// @param type the type to cast to /// @param expr the expression for the bitcast /// @return an `ast::BitcastExpression` of `type` constructed with the values /// `expr`. template <typename EXPR> const ast::BitcastExpression* Bitcast(const ast::Type* type, EXPR&& expr) { return create<ast::BitcastExpression>(type, Expr(std::forward<EXPR>(expr))); } /// @param source the source information /// @param type the type to cast to /// @param expr the expression for the bitcast /// @return an `ast::BitcastExpression` of `type` constructed with the values /// `expr`. template <typename EXPR> const ast::BitcastExpression* Bitcast(const Source& source, const ast::Type* type, EXPR&& expr) { return create<ast::BitcastExpression>(source, type, Expr(std::forward<EXPR>(expr))); } /// @param args the arguments for the vector constructor /// @param type the vector type /// @param size the vector size /// @return an `ast::TypeConstructorExpression` of a `size`-element vector of /// type `type`, constructed with the values `args`. template <typename... ARGS> const ast::TypeConstructorExpression* vec(const ast::Type* type, uint32_t size, ARGS&&... args) { return Construct(ty.vec(type, size), std::forward<ARGS>(args)...); } /// @param args the arguments for the vector constructor /// @return an `ast::TypeConstructorExpression` of a 2-element vector of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* vec2(ARGS&&... args) { return Construct(ty.vec2<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the vector constructor /// @return an `ast::TypeConstructorExpression` of a 3-element vector of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* vec3(ARGS&&... args) { return Construct(ty.vec3<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the vector constructor /// @return an `ast::TypeConstructorExpression` of a 4-element vector of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* vec4(ARGS&&... args) { return Construct(ty.vec4<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 2x2 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat2x2(ARGS&&... args) { return Construct(ty.mat2x2<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 2x3 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat2x3(ARGS&&... args) { return Construct(ty.mat2x3<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 2x4 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat2x4(ARGS&&... args) { return Construct(ty.mat2x4<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 3x2 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat3x2(ARGS&&... args) { return Construct(ty.mat3x2<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 3x3 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat3x3(ARGS&&... args) { return Construct(ty.mat3x3<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 3x4 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat3x4(ARGS&&... args) { return Construct(ty.mat3x4<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 4x2 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat4x2(ARGS&&... args) { return Construct(ty.mat4x2<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 4x3 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat4x3(ARGS&&... args) { return Construct(ty.mat4x3<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the matrix constructor /// @return an `ast::TypeConstructorExpression` of a 4x4 matrix of type /// `T`, constructed with the values `args`. template <typename T, typename... ARGS> const ast::TypeConstructorExpression* mat4x4(ARGS&&... args) { return Construct(ty.mat4x4<T>(), std::forward<ARGS>(args)...); } /// @param args the arguments for the array constructor /// @return an `ast::TypeConstructorExpression` of an array with element type /// `T` and size `N`, constructed with the values `args`. template <typename T, int N, typename... ARGS> const ast::TypeConstructorExpression* array(ARGS&&... args) { return Construct(ty.array<T, N>(), std::forward<ARGS>(args)...); } /// @param subtype the array element type /// @param n the array size. nullptr represents a runtime-array. /// @param args the arguments for the array constructor /// @return an `ast::TypeConstructorExpression` of an array with element type /// `subtype`, constructed with the values `args`. template <typename EXPR, typename... ARGS> const ast::TypeConstructorExpression* array(const ast::Type* subtype, EXPR&& n, ARGS&&... args) { return Construct(ty.array(subtype, std::forward<EXPR>(n)), std::forward<ARGS>(args)...); } /// @param name the variable name /// @param type the variable type /// @param optional the optional variable settings. /// Can be any of the following, in any order: /// * ast::StorageClass - specifies the variable storage class /// * ast::Access - specifies the variable's access control /// * ast::Expression* - specifies the variable's initializer expression /// * ast::DecorationList - specifies the variable's decorations /// Note that repeated arguments of the same type will use the last argument's /// value. /// @returns a `ast::Variable` with the given name, type and additional /// options template <typename NAME, typename... OPTIONAL> const ast::Variable* Var(NAME&& name, const ast::Type* type, OPTIONAL&&... optional) { VarOptionals opts(std::forward<OPTIONAL>(optional)...); return create<ast::Variable>(Sym(std::forward<NAME>(name)), opts.storage, opts.access, type, false, opts.constructor, std::move(opts.decorations)); } /// @param source the variable source /// @param name the variable name /// @param type the variable type /// @param optional the optional variable settings. /// Can be any of the following, in any order: /// * ast::StorageClass - specifies the variable storage class /// * ast::Access - specifies the variable's access control /// * ast::Expression* - specifies the variable's initializer expression /// * ast::DecorationList - specifies the variable's decorations /// Note that repeated arguments of the same type will use the last argument's /// value. /// @returns a `ast::Variable` with the given name, storage and type template <typename NAME, typename... OPTIONAL> const ast::Variable* Var(const Source& source, NAME&& name, const ast::Type* type, OPTIONAL&&... optional) { VarOptionals opts(std::forward<OPTIONAL>(optional)...); return create<ast::Variable>(source, Sym(std::forward<NAME>(name)), opts.storage, opts.access, type, false, opts.constructor, std::move(opts.decorations)); } /// @param name the variable name /// @param type the variable type /// @param constructor constructor expression /// @param decorations optional variable decorations /// @returns a constant `ast::Variable` with the given name and type template <typename NAME> const ast::Variable* Const(NAME&& name, const ast::Type* type, const ast::Expression* constructor, ast::DecorationList decorations = {}) { return create<ast::Variable>( Sym(std::forward<NAME>(name)), ast::StorageClass::kNone, ast::Access::kUndefined, type, true, constructor, decorations); } /// @param source the variable source /// @param name the variable name /// @param type the variable type /// @param constructor constructor expression /// @param decorations optional variable decorations /// @returns a constant `ast::Variable` with the given name and type template <typename NAME> const ast::Variable* Const(const Source& source, NAME&& name, const ast::Type* type, const ast::Expression* constructor, ast::DecorationList decorations = {}) { return create<ast::Variable>( source, Sym(std::forward<NAME>(name)), ast::StorageClass::kNone, ast::Access::kUndefined, type, true, constructor, decorations); } /// @param name the parameter name /// @param type the parameter type /// @param decorations optional parameter decorations /// @returns a constant `ast::Variable` with the given name and type template <typename NAME> const ast::Variable* Param(NAME&& name, const ast::Type* type, ast::DecorationList decorations = {}) { return create<ast::Variable>( Sym(std::forward<NAME>(name)), ast::StorageClass::kNone, ast::Access::kUndefined, type, true, nullptr, decorations); } /// @param source the parameter source /// @param name the parameter name /// @param type the parameter type /// @param decorations optional parameter decorations /// @returns a constant `ast::Variable` with the given name and type template <typename NAME> const ast::Variable* Param(const Source& source, NAME&& name, const ast::Type* type, ast::DecorationList decorations = {}) { return create<ast::Variable>( source, Sym(std::forward<NAME>(name)), ast::StorageClass::kNone, ast::Access::kUndefined, type, true, nullptr, decorations); } /// @param name the variable name /// @param type the variable type /// @param optional the optional variable settings. /// Can be any of the following, in any order: /// * ast::StorageClass - specifies the variable storage class /// * ast::Access - specifies the variable's access control /// * ast::Expression* - specifies the variable's initializer expression /// * ast::DecorationList - specifies the variable's decorations /// Note that repeated arguments of the same type will use the last argument's /// value. /// @returns a new `ast::Variable`, which is automatically registered as a /// global variable with the ast::Module. template <typename NAME, typename... OPTIONAL, typename = DisableIfSource<NAME>> const ast::Variable* Global(NAME&& name, const ast::Type* type, OPTIONAL&&... optional) { auto* var = Var(std::forward<NAME>(name), type, std::forward<OPTIONAL>(optional)...); AST().AddGlobalVariable(var); return var; } /// @param source the variable source /// @param name the variable name /// @param type the variable type /// @param optional the optional variable settings. /// Can be any of the following, in any order: /// * ast::StorageClass - specifies the variable storage class /// * ast::Access - specifies the variable's access control /// * ast::Expression* - specifies the variable's initializer expression /// * ast::DecorationList - specifies the variable's decorations /// Note that repeated arguments of the same type will use the last argument's /// value. /// @returns a new `ast::Variable`, which is automatically registered as a /// global variable with the ast::Module. template <typename NAME, typename... OPTIONAL> const ast::Variable* Global(const Source& source, NAME&& name, const ast::Type* type, OPTIONAL&&... optional) { auto* var = Var(source, std::forward<NAME>(name), type, std::forward<OPTIONAL>(optional)...); AST().AddGlobalVariable(var); return var; } /// @param name the variable name /// @param type the variable type /// @param constructor constructor expression /// @param decorations optional variable decorations /// @returns a const `ast::Variable` constructed by calling Var() with the /// arguments of `args`, which is automatically registered as a global /// variable with the ast::Module. template <typename NAME> const ast::Variable* GlobalConst(NAME&& name, const ast::Type* type, const ast::Expression* constructor, ast::DecorationList decorations = {}) { auto* var = Const(std::forward<NAME>(name), type, constructor, std::move(decorations)); AST().AddGlobalVariable(var); return var; } /// @param source the variable source /// @param name the variable name /// @param type the variable type /// @param constructor constructor expression /// @param decorations optional variable decorations /// @returns a const `ast::Variable` constructed by calling Var() with the /// arguments of `args`, which is automatically registered as a global /// variable with the ast::Module. template <typename NAME> const ast::Variable* GlobalConst(const Source& source, NAME&& name, const ast::Type* type, const ast::Expression* constructor, ast::DecorationList decorations = {}) { auto* var = Const(source, std::forward<NAME>(name), type, constructor, std::move(decorations)); AST().AddGlobalVariable(var); return var; } /// @param source the source information /// @param expr the expression to take the address of /// @return an ast::UnaryOpExpression that takes the address of `expr` template <typename EXPR> const ast::UnaryOpExpression* AddressOf(const Source& source, EXPR&& expr) { return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kAddressOf, Expr(std::forward<EXPR>(expr))); } /// @param expr the expression to take the address of /// @return an ast::UnaryOpExpression that takes the address of `expr` template <typename EXPR> const ast::UnaryOpExpression* AddressOf(EXPR&& expr) { return create<ast::UnaryOpExpression>(ast::UnaryOp::kAddressOf, Expr(std::forward<EXPR>(expr))); } /// @param source the source information /// @param expr the expression to perform an indirection on /// @return an ast::UnaryOpExpression that dereferences the pointer `expr` template <typename EXPR> const ast::UnaryOpExpression* Deref(const Source& source, EXPR&& expr) { return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kIndirection, Expr(std::forward<EXPR>(expr))); } /// @param expr the expression to perform an indirection on /// @return an ast::UnaryOpExpression that dereferences the pointer `expr` template <typename EXPR> const ast::UnaryOpExpression* Deref(EXPR&& expr) { return create<ast::UnaryOpExpression>(ast::UnaryOp::kIndirection, Expr(std::forward<EXPR>(expr))); } /// @param source the source information /// @param func the function name /// @param args the function call arguments /// @returns a `ast::CallExpression` to the function `func`, with the /// arguments of `args` converted to `ast::Expression`s using `Expr()`. template <typename NAME, typename... ARGS> const ast::CallExpression* Call(const Source& source, NAME&& func, ARGS&&... args) { return create<ast::CallExpression>(source, Expr(func), ExprList(std::forward<ARGS>(args)...)); } /// @param func the function name /// @param args the function call arguments /// @returns a `ast::CallExpression` to the function `func`, with the /// arguments of `args` converted to `ast::Expression`s using `Expr()`. template <typename NAME, typename... ARGS, typename = DisableIfSource<NAME>> const ast::CallExpression* Call(NAME&& func, ARGS&&... args) { return create<ast::CallExpression>(Expr(func), ExprList(std::forward<ARGS>(args)...)); } /// @param source the source information /// @param call the call expression to wrap in a call statement /// @returns a `ast::CallStatement` for the given call expression const ast::CallStatement* CallStmt(const Source& source, const ast::CallExpression* call) { return create<ast::CallStatement>(source, call); } /// @param call the call expression to wrap in a call statement /// @returns a `ast::CallStatement` for the given call expression const ast::CallStatement* CallStmt(const ast::CallExpression* call) { return create<ast::CallStatement>(call); } /// @param source the source information /// @returns a `ast::PhonyExpression` const ast::PhonyExpression* Phony(const Source& source) { return create<ast::PhonyExpression>(source); } /// @returns a `ast::PhonyExpression` const ast::PhonyExpression* Phony() { return create<ast::PhonyExpression>(); } /// @param expr the expression to ignore /// @returns a `ast::AssignmentStatement` that assigns 'expr' to the phony /// (underscore) variable. template <typename EXPR> const ast::AssignmentStatement* Ignore(EXPR&& expr) { return create<ast::AssignmentStatement>(Phony(), Expr(expr)); } /// @param lhs the left hand argument to the addition operation /// @param rhs the right hand argument to the addition operation /// @returns a `ast::BinaryExpression` summing the arguments `lhs` and `rhs` template <typename LHS, typename RHS> const ast::BinaryExpression* Add(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kAdd, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param lhs the left hand argument to the and operation /// @param rhs the right hand argument to the and operation /// @returns a `ast::BinaryExpression` bitwise anding `lhs` and `rhs` template <typename LHS, typename RHS> const ast::BinaryExpression* And(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kAnd, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param lhs the left hand argument to the or operation /// @param rhs the right hand argument to the or operation /// @returns a `ast::BinaryExpression` bitwise or-ing `lhs` and `rhs` template <typename LHS, typename RHS> const ast::BinaryExpression* Or(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kOr, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param lhs the left hand argument to the subtraction operation /// @param rhs the right hand argument to the subtraction operation /// @returns a `ast::BinaryExpression` subtracting `rhs` from `lhs` template <typename LHS, typename RHS> const ast::BinaryExpression* Sub(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kSubtract, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param lhs the left hand argument to the multiplication operation /// @param rhs the right hand argument to the multiplication operation /// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs` template <typename LHS, typename RHS> const ast::BinaryExpression* Mul(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kMultiply, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param source the source information /// @param lhs the left hand argument to the multiplication operation /// @param rhs the right hand argument to the multiplication operation /// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs` template <typename LHS, typename RHS> const ast::BinaryExpression* Mul(const Source& source, LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(source, ast::BinaryOp::kMultiply, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param lhs the left hand argument to the division operation /// @param rhs the right hand argument to the division operation /// @returns a `ast::BinaryExpression` dividing `lhs` by `rhs` template <typename LHS, typename RHS> const ast::Expression* Div(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kDivide, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param lhs the left hand argument to the bit shift right operation /// @param rhs the right hand argument to the bit shift right operation /// @returns a `ast::BinaryExpression` bit shifting right `lhs` by `rhs` template <typename LHS, typename RHS> const ast::BinaryExpression* Shr(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kShiftRight, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param lhs the left hand argument to the bit shift left operation /// @param rhs the right hand argument to the bit shift left operation /// @returns a `ast::BinaryExpression` bit shifting left `lhs` by `rhs` template <typename LHS, typename RHS> const ast::BinaryExpression* Shl(LHS&& lhs, RHS&& rhs) { return create<ast::BinaryExpression>(ast::BinaryOp::kShiftLeft, Expr(std::forward<LHS>(lhs)), Expr(std::forward<RHS>(rhs))); } /// @param source the source information /// @param arr the array argument for the array accessor expression /// @param idx the index argument for the array accessor expression /// @returns a `ast::ArrayAccessorExpression` that indexes `arr` with `idx` template <typename ARR, typename IDX> const ast::ArrayAccessorExpression* IndexAccessor(const Source& source, ARR&& arr, IDX&& idx) { return create<ast::ArrayAccessorExpression>( source, Expr(std::forward<ARR>(arr)), Expr(std::forward<IDX>(idx))); } /// @param arr the array argument for the array accessor expression /// @param idx the index argument for the array accessor expression /// @returns a `ast::ArrayAccessorExpression` that indexes `arr` with `idx` template <typename ARR, typename IDX> const ast::ArrayAccessorExpression* IndexAccessor(ARR&& arr, IDX&& idx) { return create<ast::ArrayAccessorExpression>(Expr(std::forward<ARR>(arr)), Expr(std::forward<IDX>(idx))); } /// @param source the source information /// @param obj the object for the member accessor expression /// @param idx the index argument for the array accessor expression /// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx` template <typename OBJ, typename IDX> const ast::MemberAccessorExpression* MemberAccessor(const Source& source, OBJ&& obj, IDX&& idx) { return create<ast::MemberAccessorExpression>( source, Expr(std::forward<OBJ>(obj)), Expr(std::forward<IDX>(idx))); } /// @param obj the object for the member accessor expression /// @param idx the index argument for the array accessor expression /// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx` template <typename OBJ, typename IDX> const ast::MemberAccessorExpression* MemberAccessor(OBJ&& obj, IDX&& idx) { return create<ast::MemberAccessorExpression>(Expr(std::forward<OBJ>(obj)), Expr(std::forward<IDX>(idx))); } /// Creates a ast::StructMemberOffsetDecoration /// @param val the offset value /// @returns the offset decoration pointer const ast::StructMemberOffsetDecoration* MemberOffset(uint32_t val) { return create<ast::StructMemberOffsetDecoration>(source_, val); } /// Creates a ast::StructMemberSizeDecoration /// @param source the source information /// @param val the size value /// @returns the size decoration pointer const ast::StructMemberSizeDecoration* MemberSize(const Source& source, uint32_t val) { return create<ast::StructMemberSizeDecoration>(source, val); } /// Creates a ast::StructMemberSizeDecoration /// @param val the size value /// @returns the size decoration pointer const ast::StructMemberSizeDecoration* MemberSize(uint32_t val) { return create<ast::StructMemberSizeDecoration>(source_, val); } /// Creates a ast::StructMemberAlignDecoration /// @param source the source information /// @param val the align value /// @returns the align decoration pointer const ast::StructMemberAlignDecoration* MemberAlign(const Source& source, uint32_t val) { return create<ast::StructMemberAlignDecoration>(source, val); } /// Creates a ast::StructMemberAlignDecoration /// @param val the align value /// @returns the align decoration pointer const ast::StructMemberAlignDecoration* MemberAlign(uint32_t val) { return create<ast::StructMemberAlignDecoration>(source_, val); } /// Creates a ast::StructBlockDecoration /// @returns the struct block decoration pointer const ast::StructBlockDecoration* StructBlock() { return create<ast::StructBlockDecoration>(); } /// Creates the ast::GroupDecoration /// @param value group decoration index /// @returns the group decoration pointer const ast::GroupDecoration* Group(uint32_t value) { return create<ast::GroupDecoration>(value); } /// Creates the ast::BindingDecoration /// @param value the binding index /// @returns the binding deocration pointer const ast::BindingDecoration* Binding(uint32_t value) { return create<ast::BindingDecoration>(value); } /// Convenience function to create both a ast::GroupDecoration and /// ast::BindingDecoration /// @param group the group index /// @param binding the binding index /// @returns a decoration list with both the group and binding decorations ast::DecorationList GroupAndBinding(uint32_t group, uint32_t binding) { return {Group(group), Binding(binding)}; } /// Creates an ast::Function and registers it with the ast::Module. /// @param source the source information /// @param name the function name /// @param params the function parameters /// @param type the function return type /// @param body the function body /// @param decorations the optional function decorations /// @param return_type_decorations the optional function return type /// decorations /// @returns the function pointer template <typename NAME> const ast::Function* Func(const Source& source, NAME&& name, ast::VariableList params, const ast::Type* type, ast::StatementList body, ast::DecorationList decorations = {}, ast::DecorationList return_type_decorations = {}) { auto* func = create<ast::Function>(source, Sym(std::forward<NAME>(name)), params, type, create<ast::BlockStatement>(body), decorations, return_type_decorations); AST().AddFunction(func); return func; } /// Creates an ast::Function and registers it with the ast::Module. /// @param name the function name /// @param params the function parameters /// @param type the function return type /// @param body the function body /// @param decorations the optional function decorations /// @param return_type_decorations the optional function return type /// decorations /// @returns the function pointer template <typename NAME> const ast::Function* Func(NAME&& name, ast::VariableList params, const ast::Type* type, ast::StatementList body, ast::DecorationList decorations = {}, ast::DecorationList return_type_decorations = {}) { auto* func = create<ast::Function>(Sym(std::forward<NAME>(name)), params, type, create<ast::BlockStatement>(body), decorations, return_type_decorations); AST().AddFunction(func); return func; } /// Creates an ast::BreakStatement /// @param source the source information /// @returns the break statement pointer const ast::BreakStatement* Break(const Source& source) { return create<ast::BreakStatement>(source); } /// Creates an ast::BreakStatement /// @returns the break statement pointer const ast::BreakStatement* Break() { return create<ast::BreakStatement>(); } /// Creates an ast::ReturnStatement with no return value /// @param source the source information /// @returns the return statement pointer const ast::ReturnStatement* Return(const Source& source) { return create<ast::ReturnStatement>(source); } /// Creates an ast::ReturnStatement with no return value /// @returns the return statement pointer const ast::ReturnStatement* Return() { return create<ast::ReturnStatement>(); } /// Creates an ast::ReturnStatement with the given return value /// @param source the source information /// @param val the return value /// @returns the return statement pointer template <typename EXPR> const ast::ReturnStatement* Return(const Source& source, EXPR&& val) { return create<ast::ReturnStatement>(source, Expr(std::forward<EXPR>(val))); } /// Creates an ast::ReturnStatement with the given return value /// @param val the return value /// @returns the return statement pointer template <typename EXPR, typename = DisableIfSource<EXPR>> const ast::ReturnStatement* Return(EXPR&& val) { return create<ast::ReturnStatement>(Expr(std::forward<EXPR>(val))); } /// Creates a ast::Alias registering it with the AST().TypeDecls(). /// @param source the source information /// @param name the alias name /// @param type the alias target type /// @returns the alias type template <typename NAME> const ast::Alias* Alias(const Source& source, NAME&& name, const ast::Type* type) { auto* out = ty.alias(source, std::forward<NAME>(name), type); AST().AddTypeDecl(out); return out; } /// Creates a ast::Alias registering it with the AST().TypeDecls(). /// @param name the alias name /// @param type the alias target type /// @returns the alias type template <typename NAME> const ast::Alias* Alias(NAME&& name, const ast::Type* type) { auto* out = ty.alias(std::forward<NAME>(name), type); AST().AddTypeDecl(out); return out; } /// Creates a ast::Struct registering it with the AST().TypeDecls(). /// @param source the source information /// @param name the struct name /// @param members the struct members /// @param decorations the optional struct decorations /// @returns the struct type template <typename NAME> const ast::Struct* Structure(const Source& source, NAME&& name, ast::StructMemberList members, ast::DecorationList decorations = {}) { auto sym = Sym(std::forward<NAME>(name)); auto* type = create<ast::Struct>(source, sym, std::move(members), std::move(decorations)); AST().AddTypeDecl(type); return type; } /// Creates a ast::Struct registering it with the AST().TypeDecls(). /// @param name the struct name /// @param members the struct members /// @param decorations the optional struct decorations /// @returns the struct type template <typename NAME> const ast::Struct* Structure(NAME&& name, ast::StructMemberList members, ast::DecorationList decorations = {}) { auto sym = Sym(std::forward<NAME>(name)); auto* type = create<ast::Struct>(sym, std::move(members), std::move(decorations)); AST().AddTypeDecl(type); return type; } /// Creates a ast::StructMember /// @param source the source information /// @param name the struct member name /// @param type the struct member type /// @param decorations the optional struct member decorations /// @returns the struct member pointer template <typename NAME> const ast::StructMember* Member(const Source& source, NAME&& name, const ast::Type* type, ast::DecorationList decorations = {}) { return create<ast::StructMember>(source, Sym(std::forward<NAME>(name)), type, std::move(decorations)); } /// Creates a ast::StructMember /// @param name the struct member name /// @param type the struct member type /// @param decorations the optional struct member decorations /// @returns the struct member pointer template <typename NAME> const ast::StructMember* Member(NAME&& name, const ast::Type* type, ast::DecorationList decorations = {}) { return create<ast::StructMember>(source_, Sym(std::forward<NAME>(name)), type, std::move(decorations)); } /// Creates a ast::StructMember with the given byte offset /// @param offset the offset to use in the StructMemberOffsetDecoration /// @param name the struct member name /// @param type the struct member type /// @returns the struct member pointer template <typename NAME> const ast::StructMember* Member(uint32_t offset, NAME&& name, const ast::Type* type) { return create<ast::StructMember>( source_, Sym(std::forward<NAME>(name)), type, ast::DecorationList{ create<ast::StructMemberOffsetDecoration>(offset), }); } /// Creates a ast::BlockStatement with input statements /// @param source the source information for the block /// @param statements statements of block /// @returns the block statement pointer template <typename... Statements> const ast::BlockStatement* Block(const Source& source, Statements&&... statements) { return create<ast::BlockStatement>( source, ast::StatementList{std::forward<Statements>(statements)...}); } /// Creates a ast::BlockStatement with input statements /// @param statements statements of block /// @returns the block statement pointer template <typename... STATEMENTS, typename = DisableIfSource<STATEMENTS...>> const ast::BlockStatement* Block(STATEMENTS&&... statements) { return create<ast::BlockStatement>( ast::StatementList{std::forward<STATEMENTS>(statements)...}); } /// Creates a ast::ElseStatement with input condition and body /// @param condition the else condition expression /// @param body the else body /// @returns the else statement pointer template <typename CONDITION> const ast::ElseStatement* Else(CONDITION&& condition, const ast::BlockStatement* body) { return create<ast::ElseStatement>(Expr(std::forward<CONDITION>(condition)), body); } /// Creates a ast::IfStatement with input condition, body, and optional /// variadic else statements /// @param condition the if statement condition expression /// @param body the if statement body /// @param elseStatements optional variadic else statements /// @returns the if statement pointer template <typename CONDITION, typename... ELSE_STATEMENTS> const ast::IfStatement* If(CONDITION&& condition, const ast::BlockStatement* body, ELSE_STATEMENTS&&... elseStatements) { return create<ast::IfStatement>( Expr(std::forward<CONDITION>(condition)), body, ast::ElseStatementList{ std::forward<ELSE_STATEMENTS>(elseStatements)...}); } /// Creates a ast::AssignmentStatement with input lhs and rhs expressions /// @param source the source information /// @param lhs the left hand side expression initializer /// @param rhs the right hand side expression initializer /// @returns the assignment statement pointer template <typename LhsExpressionInit, typename RhsExpressionInit> const ast::AssignmentStatement* Assign(const Source& source, LhsExpressionInit&& lhs, RhsExpressionInit&& rhs) { return create<ast::AssignmentStatement>( source, Expr(std::forward<LhsExpressionInit>(lhs)), Expr(std::forward<RhsExpressionInit>(rhs))); } /// Creates a ast::AssignmentStatement with input lhs and rhs expressions /// @param lhs the left hand side expression initializer /// @param rhs the right hand side expression initializer /// @returns the assignment statement pointer template <typename LhsExpressionInit, typename RhsExpressionInit> const ast::AssignmentStatement* Assign(LhsExpressionInit&& lhs, RhsExpressionInit&& rhs) { return create<ast::AssignmentStatement>( Expr(std::forward<LhsExpressionInit>(lhs)), Expr(std::forward<RhsExpressionInit>(rhs))); } /// Creates a ast::LoopStatement with input body and optional continuing /// @param body the loop body /// @param continuing the optional continuing block /// @returns the loop statement pointer const ast::LoopStatement* Loop( const ast::BlockStatement* body, const ast::BlockStatement* continuing = nullptr) { return create<ast::LoopStatement>(body, continuing); } /// Creates a ast::ForLoopStatement with input body and optional initializer, /// condition and continuing. /// @param source the source information /// @param init the optional loop initializer /// @param cond the optional loop condition /// @param cont the optional loop continuing /// @param body the loop body /// @returns the for loop statement pointer template <typename COND> const ast::ForLoopStatement* For(const Source& source, const ast::Statement* init, COND&& cond, const ast::Statement* cont, const ast::BlockStatement* body) { return create<ast::ForLoopStatement>( source, init, Expr(std::forward<COND>(cond)), cont, body); } /// Creates a ast::ForLoopStatement with input body and optional initializer, /// condition and continuing. /// @param init the optional loop initializer /// @param cond the optional loop condition /// @param cont the optional loop continuing /// @param body the loop body /// @returns the for loop statement pointer template <typename COND> const ast::ForLoopStatement* For(const ast::Statement* init, COND&& cond, const ast::Statement* cont, const ast::BlockStatement* body) { return create<ast::ForLoopStatement>(init, Expr(std::forward<COND>(cond)), cont, body); } /// Creates a ast::VariableDeclStatement for the input variable /// @param source the source information /// @param var the variable to wrap in a decl statement /// @returns the variable decl statement pointer const ast::VariableDeclStatement* Decl(const Source& source, const ast::Variable* var) { return create<ast::VariableDeclStatement>(source, var); } /// Creates a ast::VariableDeclStatement for the input variable /// @param var the variable to wrap in a decl statement /// @returns the variable decl statement pointer const ast::VariableDeclStatement* Decl(const ast::Variable* var) { return create<ast::VariableDeclStatement>(var); } /// Creates a ast::SwitchStatement with input expression and cases /// @param source the source information /// @param condition the condition expression initializer /// @param cases case statements /// @returns the switch statement pointer template <typename ExpressionInit, typename... Cases> const ast::SwitchStatement* Switch(const Source& source, ExpressionInit&& condition, Cases&&... cases) { return create<ast::SwitchStatement>( source, Expr(std::forward<ExpressionInit>(condition)), ast::CaseStatementList{std::forward<Cases>(cases)...}); } /// Creates a ast::SwitchStatement with input expression and cases /// @param condition the condition expression initializer /// @param cases case statements /// @returns the switch statement pointer template <typename ExpressionInit, typename... Cases, typename = DisableIfSource<ExpressionInit>> const ast::SwitchStatement* Switch(ExpressionInit&& condition, Cases&&... cases) { return create<ast::SwitchStatement>( Expr(std::forward<ExpressionInit>(condition)), ast::CaseStatementList{std::forward<Cases>(cases)...}); } /// Creates a ast::CaseStatement with input list of selectors, and body /// @param source the source information /// @param selectors list of selectors /// @param body the case body /// @returns the case statement pointer const ast::CaseStatement* Case(const Source& source, ast::CaseSelectorList selectors, const ast::BlockStatement* body = nullptr) { return create<ast::CaseStatement>(source, std::move(selectors), body ? body : Block()); } /// Creates a ast::CaseStatement with input list of selectors, and body /// @param selectors list of selectors /// @param body the case body /// @returns the case statement pointer const ast::CaseStatement* Case(ast::CaseSelectorList selectors, const ast::BlockStatement* body = nullptr) { return create<ast::CaseStatement>(std::move(selectors), body ? body : Block()); } /// Convenient overload that takes a single selector /// @param selector a single case selector /// @param body the case body /// @returns the case statement pointer const ast::CaseStatement* Case(const ast::IntLiteral* selector, const ast::BlockStatement* body = nullptr) { return Case(ast::CaseSelectorList{selector}, body); } /// Convenience function that creates a 'default' ast::CaseStatement /// @param source the source information /// @param body the case body /// @returns the case statement pointer const ast::CaseStatement* DefaultCase( const Source& source, const ast::BlockStatement* body = nullptr) { return Case(source, ast::CaseSelectorList{}, body); } /// Convenience function that creates a 'default' ast::CaseStatement /// @param body the case body /// @returns the case statement pointer const ast::CaseStatement* DefaultCase( const ast::BlockStatement* body = nullptr) { return Case(ast::CaseSelectorList{}, body); } /// Creates an ast::BuiltinDecoration /// @param source the source information /// @param builtin the builtin value /// @returns the builtin decoration pointer const ast::BuiltinDecoration* Builtin(const Source& source, ast::Builtin builtin) { return create<ast::BuiltinDecoration>(source, builtin); } /// Creates an ast::BuiltinDecoration /// @param builtin the builtin value /// @returns the builtin decoration pointer const ast::BuiltinDecoration* Builtin(ast::Builtin builtin) { return create<ast::BuiltinDecoration>(source_, builtin); } /// Creates an ast::InterpolateDecoration /// @param source the source information /// @param type the interpolation type /// @param sampling the interpolation sampling /// @returns the interpolate decoration pointer const ast::InterpolateDecoration* Interpolate( const Source& source, ast::InterpolationType type, ast::InterpolationSampling sampling) { return create<ast::InterpolateDecoration>(source, type, sampling); } /// Creates an ast::InterpolateDecoration /// @param type the interpolation type /// @param sampling the interpolation sampling /// @returns the interpolate decoration pointer const ast::InterpolateDecoration* Interpolate( ast::InterpolationType type, ast::InterpolationSampling sampling) { return create<ast::InterpolateDecoration>(source_, type, sampling); } /// Creates an ast::InvariantDecoration /// @param source the source information /// @returns the invariant decoration pointer const ast::InvariantDecoration* Invariant(const Source& source) { return create<ast::InvariantDecoration>(source); } /// Creates an ast::InvariantDecoration /// @returns the invariant decoration pointer const ast::InvariantDecoration* Invariant() { return create<ast::InvariantDecoration>(source_); } /// Creates an ast::LocationDecoration /// @param source the source information /// @param location the location value /// @returns the location decoration pointer const ast::LocationDecoration* Location(const Source& source, uint32_t location) { return create<ast::LocationDecoration>(source, location); } /// Creates an ast::LocationDecoration /// @param location the location value /// @returns the location decoration pointer const ast::LocationDecoration* Location(uint32_t location) { return create<ast::LocationDecoration>(source_, location); } /// Creates an ast::OverrideDecoration with a specific constant ID /// @param source the source information /// @param id the id value /// @returns the override decoration pointer const ast::OverrideDecoration* Override(const Source& source, uint32_t id) { return create<ast::OverrideDecoration>(source, id); } /// Creates an ast::OverrideDecoration with a specific constant ID /// @param id the optional id value /// @returns the override decoration pointer const ast::OverrideDecoration* Override(uint32_t id) { return Override(source_, id); } /// Creates an ast::OverrideDecoration without a constant ID /// @param source the source information /// @returns the override decoration pointer const ast::OverrideDecoration* Override(const Source& source) { return create<ast::OverrideDecoration>(source); } /// Creates an ast::OverrideDecoration without a constant ID /// @returns the override decoration pointer const ast::OverrideDecoration* Override() { return Override(source_); } /// Creates an ast::StageDecoration /// @param source the source information /// @param stage the pipeline stage /// @returns the stage decoration pointer const ast::StageDecoration* Stage(const Source& source, ast::PipelineStage stage) { return create<ast::StageDecoration>(source, stage); } /// Creates an ast::StageDecoration /// @param stage the pipeline stage /// @returns the stage decoration pointer const ast::StageDecoration* Stage(ast::PipelineStage stage) { return create<ast::StageDecoration>(source_, stage); } /// Creates an ast::WorkgroupDecoration /// @param x the x dimension expression /// @returns the workgroup decoration pointer template <typename EXPR_X> const ast::WorkgroupDecoration* WorkgroupSize(EXPR_X&& x) { return WorkgroupSize(std::forward<EXPR_X>(x), nullptr, nullptr); } /// Creates an ast::WorkgroupDecoration /// @param x the x dimension expression /// @param y the y dimension expression /// @returns the workgroup decoration pointer template <typename EXPR_X, typename EXPR_Y> const ast::WorkgroupDecoration* WorkgroupSize(EXPR_X&& x, EXPR_Y&& y) { return WorkgroupSize(std::forward<EXPR_X>(x), std::forward<EXPR_Y>(y), nullptr); } /// Creates an ast::WorkgroupDecoration /// @param source the source information /// @param x the x dimension expression /// @param y the y dimension expression /// @param z the z dimension expression /// @returns the workgroup decoration pointer template <typename EXPR_X, typename EXPR_Y, typename EXPR_Z> const ast::WorkgroupDecoration* WorkgroupSize(const Source& source, EXPR_X&& x, EXPR_Y&& y, EXPR_Z&& z) { return create<ast::WorkgroupDecoration>( source, Expr(std::forward<EXPR_X>(x)), Expr(std::forward<EXPR_Y>(y)), Expr(std::forward<EXPR_Z>(z))); } /// Creates an ast::WorkgroupDecoration /// @param x the x dimension expression /// @param y the y dimension expression /// @param z the z dimension expression /// @returns the workgroup decoration pointer template <typename EXPR_X, typename EXPR_Y, typename EXPR_Z> const ast::WorkgroupDecoration* WorkgroupSize(EXPR_X&& x, EXPR_Y&& y, EXPR_Z&& z) { return create<ast::WorkgroupDecoration>( source_, Expr(std::forward<EXPR_X>(x)), Expr(std::forward<EXPR_Y>(y)), Expr(std::forward<EXPR_Z>(z))); } /// Creates an ast::DisableValidationDecoration /// @param validation the validation to disable /// @returns the disable validation decoration pointer const ast::DisableValidationDecoration* Disable( ast::DisabledValidation validation) { return ASTNodes().Create<ast::DisableValidationDecoration>(ID(), validation); } /// Sets the current builder source to `src` /// @param src the Source used for future create() calls void SetSource(const Source& src) { AssertNotMoved(); source_ = src; } /// Sets the current builder source to `loc` /// @param loc the Source used for future create() calls void SetSource(const Source::Location& loc) { AssertNotMoved(); source_ = Source(loc); } /// Marks that the given transform has been applied to this program. /// @param transform the transform that has been applied void SetTransformApplied(const CastableBase* transform) { transforms_applied_.emplace(&transform->TypeInfo()); } /// Marks that the given transform `T` has been applied to this program. template <typename T> void SetTransformApplied() { transforms_applied_.emplace(&TypeInfo::Of<T>()); } /// Marks that the transforms with the given TypeInfos have been applied to /// this program. /// @param transforms the set of transform TypeInfos that has been applied void SetTransformApplied( const std::unordered_set<const TypeInfo*>& transforms) { for (auto* transform : transforms) { transforms_applied_.emplace(transform); } } /// @returns true if the transform of type `T` was applied. template <typename T> bool HasTransformApplied() { return transforms_applied_.count(&TypeInfo::Of<T>()); } /// @return the TypeInfo pointers of all transforms that have been applied to /// this program. std::unordered_set<const TypeInfo*> TransformsApplied() const { return transforms_applied_; } /// Helper for returning the resolved semantic type of the expression `expr`. /// @note As the Resolver is run when the Program is built, this will only be /// useful for the Resolver itself and tests that use their own Resolver. /// @param expr the AST expression /// @return the resolved semantic type for the expression, or nullptr if the /// expression has no resolved type. const sem::Type* TypeOf(const ast::Expression* expr) const; /// Helper for returning the resolved semantic type of the variable `var`. /// @note As the Resolver is run when the Program is built, this will only be /// useful for the Resolver itself and tests that use their own Resolver. /// @param var the AST variable /// @return the resolved semantic type for the variable, or nullptr if the /// variable has no resolved type. const sem::Type* TypeOf(const ast::Variable* var) const; /// Helper for returning the resolved semantic type of the AST type `type`. /// @note As the Resolver is run when the Program is built, this will only be /// useful for the Resolver itself and tests that use their own Resolver. /// @param type the AST type /// @return the resolved semantic type for the type, or nullptr if the type /// has no resolved type. const sem::Type* TypeOf(const ast::Type* type) const; /// Helper for returning the resolved semantic type of the AST type /// declaration `type_decl`. /// @note As the Resolver is run when the Program is built, this will only be /// useful for the Resolver itself and tests that use their own Resolver. /// @param type_decl the AST type declaration /// @return the resolved semantic type for the type declaration, or nullptr if /// the type declaration has no resolved type. const sem::Type* TypeOf(const ast::TypeDecl* type_decl) const; /// Wraps the ast::Expression in a statement. This is used by tests that /// construct a partial AST and require the Resolver to reach these /// nodes. /// @param expr the ast::Expression to be wrapped by an ast::Statement /// @return the ast::Statement that wraps the ast::Expression const ast::Statement* WrapInStatement(const ast::Expression* expr); /// Wraps the ast::Variable in a ast::VariableDeclStatement. This is used by /// tests that construct a partial AST and require the Resolver to reach /// these nodes. /// @param v the ast::Variable to be wrapped by an ast::VariableDeclStatement /// @return the ast::VariableDeclStatement that wraps the ast::Variable const ast::VariableDeclStatement* WrapInStatement(const ast::Variable* v); /// Returns the statement argument. Used as a passthrough-overload by /// WrapInFunction(). /// @param stmt the ast::Statement /// @return `stmt` const ast::Statement* WrapInStatement(const ast::Statement* stmt); /// Wraps the list of arguments in a simple function so that each is reachable /// by the Resolver. /// @param args a mix of ast::Expression, ast::Statement, ast::Variables. /// @returns the function template <typename... ARGS> const ast::Function* WrapInFunction(ARGS&&... args) { ast::StatementList stmts{WrapInStatement(std::forward<ARGS>(args))...}; return WrapInFunction(std::move(stmts)); } /// @param stmts a list of ast::Statement that will be wrapped by a function, /// so that each statement is reachable by the Resolver. /// @returns the function const ast::Function* WrapInFunction(ast::StatementList stmts); /// The builder types TypesBuilder const ty{this}; protected: /// Asserts that the builder has not been moved. void AssertNotMoved() const; private: ProgramID id_; sem::Manager types_; ASTNodeAllocator ast_nodes_; SemNodeAllocator sem_nodes_; ast::Module* ast_; sem::Info sem_; SymbolTable symbols_{id_}; diag::List diagnostics_; std::unordered_set<const TypeInfo*> transforms_applied_; /// The source to use when creating AST nodes without providing a Source as /// the first argument. Source source_; /// Set by SetResolveOnBuild(). If set, the Resolver will be run on the /// program when built. bool resolve_on_build_ = true; /// Set by MarkAsMoved(). Once set, no methods may be called on this builder. bool moved_ = false; }; //! @cond Doxygen_Suppress // Various template specializations for ProgramBuilder::TypesBuilder::CToAST. template <> struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::i32> { static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) { return t->i32(); } }; template <> struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::u32> { static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) { return t->u32(); } }; template <> struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::f32> { static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) { return t->f32(); } }; template <> struct ProgramBuilder::TypesBuilder::CToAST<bool> { static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) { return t->bool_(); } }; template <> struct ProgramBuilder::TypesBuilder::CToAST<void> { static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) { return t->void_(); } }; //! @endcond /// @param builder the ProgramBuilder /// @returns the ProgramID of the ProgramBuilder inline ProgramID ProgramIDOf(const ProgramBuilder* builder) { return builder->ID(); } } // namespace tint #endif // SRC_PROGRAM_BUILDER_H_