// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "gtest/gtest.h" #include "src/ast/array_accessor_expression.h" #include "src/ast/bitcast_expression.h" #include "src/ast/bool_literal.h" #include "src/ast/identifier_expression.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/sint_literal.h" #include "src/ast/type/f32_type.h" #include "src/ast/type/i32_type.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/unary_op_expression.h" #include "src/reader/wgsl/parser_impl.h" #include "src/reader/wgsl/parser_impl_test_helper.h" namespace tint { namespace reader { namespace wgsl { namespace { TEST_F(ParserImplTest, PrimaryExpression_Ident) { auto p = parser("a"); auto e = p->primary_expression(); EXPECT_TRUE(e.matched); EXPECT_FALSE(e.errored); EXPECT_FALSE(p->has_error()) << p->error(); ASSERT_NE(e.value, nullptr); ASSERT_TRUE(e->IsIdentifier()); auto* ident = e->AsIdentifier(); EXPECT_EQ(ident->name(), "a"); } TEST_F(ParserImplTest, PrimaryExpression_TypeDecl) { auto p = parser("vec4(1, 2, 3, 4))"); auto e = p->primary_expression(); EXPECT_TRUE(e.matched); EXPECT_FALSE(e.errored); EXPECT_FALSE(p->has_error()) << p->error(); ASSERT_NE(e.value, nullptr); ASSERT_TRUE(e->IsConstructor()); ASSERT_TRUE(e->AsConstructor()->IsTypeConstructor()); auto* ty = e->AsConstructor()->AsTypeConstructor(); ASSERT_EQ(ty->values().size(), 4u); const auto& val = ty->values(); ASSERT_TRUE(val[0]->IsConstructor()); ASSERT_TRUE(val[0]->AsConstructor()->IsScalarConstructor()); auto* ident = val[0]->AsConstructor()->AsScalarConstructor(); ASSERT_TRUE(ident->literal()->IsSint()); EXPECT_EQ(ident->literal()->AsSint()->value(), 1); ASSERT_TRUE(val[1]->IsConstructor()); ASSERT_TRUE(val[1]->AsConstructor()->IsScalarConstructor()); ident = val[1]->AsConstructor()->AsScalarConstructor(); ASSERT_TRUE(ident->literal()->IsSint()); EXPECT_EQ(ident->literal()->AsSint()->value(), 2); ASSERT_TRUE(val[2]->IsConstructor()); ASSERT_TRUE(val[2]->AsConstructor()->IsScalarConstructor()); ident = val[2]->AsConstructor()->AsScalarConstructor(); ASSERT_TRUE(ident->literal()->IsSint()); EXPECT_EQ(ident->literal()->AsSint()->value(), 3); ASSERT_TRUE(val[3]->IsConstructor()); ASSERT_TRUE(val[3]->AsConstructor()->IsScalarConstructor()); ident = val[3]->AsConstructor()->AsScalarConstructor(); ASSERT_TRUE(ident->literal()->IsSint()); EXPECT_EQ(ident->literal()->AsSint()->value(), 4); } TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_ZeroConstructor) { auto p = parser("vec4()"); auto e = p->primary_expression(); EXPECT_TRUE(e.matched); EXPECT_FALSE(e.errored); EXPECT_FALSE(p->has_error()) << p->error(); ASSERT_NE(e.value, nullptr); ASSERT_TRUE(e->IsConstructor()); ASSERT_TRUE(e->AsConstructor()->IsTypeConstructor()); auto* ty = e->AsConstructor()->AsTypeConstructor(); ASSERT_EQ(ty->values().size(), 0u); } TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidTypeDecl) { auto p = parser("vec4(2., 3., 4., 5.)"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:6: invalid type for vector"); } TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingLeftParen) { auto p = parser("vec4 2., 3., 4., 5.)"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:11: expected '(' for type constructor"); } TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingRightParen) { auto p = parser("vec4(2., 3., 4., 5."); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:25: expected ')' for type constructor"); } TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidValue) { auto p = parser("i32(if(a) {})"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:5: unable to parse argument expression"); } TEST_F(ParserImplTest, PrimaryExpression_ConstLiteral_True) { auto p = parser("true"); auto e = p->primary_expression(); EXPECT_TRUE(e.matched); EXPECT_FALSE(e.errored); EXPECT_FALSE(p->has_error()) << p->error(); ASSERT_NE(e.value, nullptr); ASSERT_TRUE(e->IsConstructor()); ASSERT_TRUE(e->AsConstructor()->IsScalarConstructor()); auto* init = e->AsConstructor()->AsScalarConstructor(); ASSERT_TRUE(init->literal()->IsBool()); EXPECT_TRUE(init->literal()->AsBool()->IsTrue()); } TEST_F(ParserImplTest, PrimaryExpression_ParenExpr) { auto p = parser("(a == b)"); auto e = p->primary_expression(); EXPECT_TRUE(e.matched); EXPECT_FALSE(e.errored); EXPECT_FALSE(p->has_error()) << p->error(); ASSERT_NE(e.value, nullptr); ASSERT_TRUE(e->IsBinary()); } TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingRightParen) { auto p = parser("(a == b"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:8: expected ')'"); } TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingExpr) { auto p = parser("()"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:2: unable to parse expression"); } TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_InvalidExpr) { auto p = parser("(if (a) {})"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:2: unable to parse expression"); } TEST_F(ParserImplTest, PrimaryExpression_Cast) { auto* f32_type = tm()->Get(std::make_unique()); auto p = parser("f32(1)"); auto e = p->primary_expression(); EXPECT_TRUE(e.matched); EXPECT_FALSE(e.errored); EXPECT_FALSE(p->has_error()) << p->error(); ASSERT_NE(e.value, nullptr); ASSERT_TRUE(e->IsConstructor()); ASSERT_TRUE(e->AsConstructor()->IsTypeConstructor()); auto* c = e->AsConstructor()->AsTypeConstructor(); ASSERT_EQ(c->type(), f32_type); ASSERT_EQ(c->values().size(), 1u); ASSERT_TRUE(c->values()[0]->IsConstructor()); ASSERT_TRUE(c->values()[0]->AsConstructor()->IsScalarConstructor()); } TEST_F(ParserImplTest, PrimaryExpression_Bitcast) { auto* f32_type = tm()->Get(std::make_unique()); auto p = parser("bitcast(1)"); auto e = p->primary_expression(); EXPECT_TRUE(e.matched); EXPECT_FALSE(e.errored); EXPECT_FALSE(p->has_error()) << p->error(); ASSERT_NE(e.value, nullptr); ASSERT_TRUE(e->IsBitcast()); auto* c = e->AsBitcast(); ASSERT_EQ(c->type(), f32_type); ASSERT_TRUE(c->expr()->IsConstructor()); ASSERT_TRUE(c->expr()->AsConstructor()->IsScalarConstructor()); } TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingGreaterThan) { auto p = parser("bitcastprimary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:12: expected '>' for bitcast expression"); } TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingType) { auto p = parser("bitcast<>(1)"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:9: invalid type for bitcast expression"); } TEST_F(ParserImplTest, PrimaryExpression_Bitcast_InvalidType) { auto p = parser("bitcast(1)"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:9: unknown constructed type 'invalid'"); } TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingLeftParen) { auto p = parser("bitcast1)"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:13: expected '('"); } TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingRightParen) { auto p = parser("bitcast(1"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:15: expected ')'"); } TEST_F(ParserImplTest, PrimaryExpression_Bitcast_MissingExpression) { auto p = parser("bitcast()"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:14: unable to parse expression"); } TEST_F(ParserImplTest, PrimaryExpression_bitcast_InvalidExpression) { auto p = parser("bitcast(if (a) {})"); auto e = p->primary_expression(); EXPECT_FALSE(e.matched); EXPECT_TRUE(e.errored); EXPECT_EQ(e.value, nullptr); ASSERT_TRUE(p->has_error()); EXPECT_EQ(p->error(), "1:14: unable to parse expression"); } } // namespace } // namespace wgsl } // namespace reader } // namespace tint