uint atomicAdd_1(RWByteAddressBuffer buffer, uint offset, uint value) { uint original_value = 0; buffer.InterlockedAdd(offset, value, original_value); return original_value; } ByteAddressBuffer tables : register(t0, space0); RWByteAddressBuffer volume : register(u1, space0); RWByteAddressBuffer positionsOut : register(u2, space0); RWByteAddressBuffer normalsOut : register(u3, space0); RWByteAddressBuffer indicesOut : register(u4, space0); RWByteAddressBuffer drawOut : register(u5, space0); float valueAt(uint3 index) { if (any((index >= volume.Load3(48u)))) { return 0.0f; } const uint valueIndex = ((index.x + (index.y * volume.Load(48u))) + ((index.z * volume.Load(48u)) * volume.Load(52u))); return asfloat(volume.Load((64u + (4u * valueIndex)))); } float3 positionAt(uint3 index) { return (asfloat(volume.Load3(0u)) + (asfloat(volume.Load3(32u)) * float3(index.xyz))); } float3 normalAt(uint3 index) { return float3((valueAt((index - uint3(1u, 0u, 0u))) - valueAt((index + uint3(1u, 0u, 0u)))), (valueAt((index - uint3(0u, 1u, 0u))) - valueAt((index + uint3(0u, 1u, 0u)))), (valueAt((index - uint3(0u, 0u, 1u))) - valueAt((index + uint3(0u, 0u, 1u))))); } static float3 positions[12] = (float3[12])0; static float3 normals[12] = (float3[12])0; static uint indices[12] = (uint[12])0; static uint cubeVerts = 0u; void interpX(uint index, uint3 i, float va, float vb) { const float mu = ((asfloat(volume.Load(60u)) - va) / (vb - va)); positions[cubeVerts] = (positionAt(i) + float3((asfloat(volume.Load(32u)) * mu), 0.0f, 0.0f)); const float3 na = normalAt(i); const float3 nb = normalAt((i + uint3(1u, 0u, 0u))); normals[cubeVerts] = lerp(na, nb, float3(mu, mu, mu)); indices[index] = cubeVerts; cubeVerts = (cubeVerts + 1u); } void interpY(uint index, uint3 i, float va, float vb) { const float mu = ((asfloat(volume.Load(60u)) - va) / (vb - va)); positions[cubeVerts] = (positionAt(i) + float3(0.0f, (asfloat(volume.Load(36u)) * mu), 0.0f)); const float3 na = normalAt(i); const float3 nb = normalAt((i + uint3(0u, 1u, 0u))); normals[cubeVerts] = lerp(na, nb, float3(mu, mu, mu)); indices[index] = cubeVerts; cubeVerts = (cubeVerts + 1u); } void interpZ(uint index, uint3 i, float va, float vb) { const float mu = ((asfloat(volume.Load(60u)) - va) / (vb - va)); positions[cubeVerts] = (positionAt(i) + float3(0.0f, 0.0f, (asfloat(volume.Load(40u)) * mu))); const float3 na = normalAt(i); const float3 nb = normalAt((i + uint3(0u, 0u, 1u))); normals[cubeVerts] = lerp(na, nb, float3(mu, mu, mu)); indices[index] = cubeVerts; cubeVerts = (cubeVerts + 1u); } struct tint_symbol_1 { uint3 global_id : SV_DispatchThreadID; }; void computeMain_inner(uint3 global_id) { const uint3 i0 = global_id; const uint3 i1 = (global_id + uint3(1u, 0u, 0u)); const uint3 i2 = (global_id + uint3(1u, 1u, 0u)); const uint3 i3 = (global_id + uint3(0u, 1u, 0u)); const uint3 i4 = (global_id + uint3(0u, 0u, 1u)); const uint3 i5 = (global_id + uint3(1u, 0u, 1u)); const uint3 i6 = (global_id + uint3(1u, 1u, 1u)); const uint3 i7 = (global_id + uint3(0u, 1u, 1u)); const float v0 = valueAt(i0); const float v1 = valueAt(i1); const float v2 = valueAt(i2); const float v3 = valueAt(i3); const float v4 = valueAt(i4); const float v5 = valueAt(i5); const float v6 = valueAt(i6); const float v7 = valueAt(i7); uint cubeIndex = 0u; if ((v0 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 1u); } if ((v1 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 2u); } if ((v2 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 4u); } if ((v3 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 8u); } if ((v4 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 16u); } if ((v5 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 32u); } if ((v6 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 64u); } if ((v7 < asfloat(volume.Load(60u)))) { cubeIndex = (cubeIndex | 128u); } const uint edges = tables.Load((4u * cubeIndex)); if (((edges & 1u) != 0u)) { interpX(0u, i0, v0, v1); } if (((edges & 2u) != 0u)) { interpY(1u, i1, v1, v2); } if (((edges & 4u) != 0u)) { interpX(2u, i3, v3, v2); } if (((edges & 8u) != 0u)) { interpY(3u, i0, v0, v3); } if (((edges & 16u) != 0u)) { interpX(4u, i4, v4, v5); } if (((edges & 32u) != 0u)) { interpY(5u, i5, v5, v6); } if (((edges & 64u) != 0u)) { interpX(6u, i7, v7, v6); } if (((edges & 128u) != 0u)) { interpY(7u, i4, v4, v7); } if (((edges & 256u) != 0u)) { interpZ(8u, i0, v0, v4); } if (((edges & 512u) != 0u)) { interpZ(9u, i1, v1, v5); } if (((edges & 1024u) != 0u)) { interpZ(10u, i2, v2, v6); } if (((edges & 2048u) != 0u)) { interpZ(11u, i3, v3, v7); } const uint triTableOffset = ((cubeIndex << 4u) + 1u); const uint indexCount = uint(asint(tables.Load((1024u + (4u * (triTableOffset - 1u)))))); uint firstVertex = atomicAdd_1(drawOut, 4u, cubeVerts); const uint bufferOffset = ((global_id.x + (global_id.y * volume.Load(48u))) + ((global_id.z * volume.Load(48u)) * volume.Load(52u))); const uint firstIndex = (bufferOffset * 15u); { [loop] for(uint i = 0u; (i < cubeVerts); i = (i + 1u)) { positionsOut.Store((4u * ((firstVertex * 3u) + (i * 3u))), asuint(positions[i].x)); positionsOut.Store((4u * (((firstVertex * 3u) + (i * 3u)) + 1u)), asuint(positions[i].y)); positionsOut.Store((4u * (((firstVertex * 3u) + (i * 3u)) + 2u)), asuint(positions[i].z)); normalsOut.Store((4u * ((firstVertex * 3u) + (i * 3u))), asuint(normals[i].x)); normalsOut.Store((4u * (((firstVertex * 3u) + (i * 3u)) + 1u)), asuint(normals[i].y)); normalsOut.Store((4u * (((firstVertex * 3u) + (i * 3u)) + 2u)), asuint(normals[i].z)); } } { [loop] for(uint i = 0u; (i < indexCount); i = (i + 1u)) { const int index = asint(tables.Load((1024u + (4u * (triTableOffset + i))))); indicesOut.Store((4u * (firstIndex + i)), asuint((firstVertex + indices[index]))); } } { [loop] for(uint i = indexCount; (i < 15u); i = (i + 1u)) { indicesOut.Store((4u * (firstIndex + i)), asuint(firstVertex)); } } } [numthreads(4, 4, 4)] void computeMain(tint_symbol_1 tint_symbol) { computeMain_inner(tint_symbol.global_id); return; }