// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dawn_native/Device.h" #include "common/Log.h" #include "dawn_native/Adapter.h" #include "dawn_native/AttachmentState.h" #include "dawn_native/BindGroup.h" #include "dawn_native/BindGroupLayout.h" #include "dawn_native/Buffer.h" #include "dawn_native/CommandBuffer.h" #include "dawn_native/CommandEncoder.h" #include "dawn_native/ComputePipeline.h" #include "dawn_native/CreateReadyPipelineTracker.h" #include "dawn_native/DynamicUploader.h" #include "dawn_native/ErrorData.h" #include "dawn_native/ErrorScope.h" #include "dawn_native/ErrorScopeTracker.h" #include "dawn_native/Fence.h" #include "dawn_native/Instance.h" #include "dawn_native/InternalPipelineStore.h" #include "dawn_native/PersistentCache.h" #include "dawn_native/PipelineLayout.h" #include "dawn_native/QuerySet.h" #include "dawn_native/Queue.h" #include "dawn_native/RenderBundleEncoder.h" #include "dawn_native/RenderPipeline.h" #include "dawn_native/Sampler.h" #include "dawn_native/ShaderModule.h" #include "dawn_native/Surface.h" #include "dawn_native/SwapChain.h" #include "dawn_native/Texture.h" #include "dawn_native/ValidationUtils_autogen.h" #include namespace dawn_native { // DeviceBase sub-structures // The caches are unordered_sets of pointers with special hash and compare functions // to compare the value of the objects, instead of the pointers. template using ContentLessObjectCache = std::unordered_set; struct DeviceBase::Caches { ~Caches() { ASSERT(attachmentStates.empty()); ASSERT(bindGroupLayouts.empty()); ASSERT(computePipelines.empty()); ASSERT(pipelineLayouts.empty()); ASSERT(renderPipelines.empty()); ASSERT(samplers.empty()); ASSERT(shaderModules.empty()); } ContentLessObjectCache attachmentStates; ContentLessObjectCache bindGroupLayouts; ContentLessObjectCache computePipelines; ContentLessObjectCache pipelineLayouts; ContentLessObjectCache renderPipelines; ContentLessObjectCache samplers; ContentLessObjectCache shaderModules; }; struct DeviceBase::DeprecationWarnings { std::unordered_set emitted; size_t count = 0; }; // DeviceBase DeviceBase::DeviceBase(AdapterBase* adapter, const DeviceDescriptor* descriptor) : mAdapter(adapter) { if (descriptor != nullptr) { ApplyToggleOverrides(descriptor); ApplyExtensions(descriptor); } mFormatTable = BuildFormatTable(this); SetDefaultToggles(); } DeviceBase::~DeviceBase() { } MaybeError DeviceBase::Initialize(QueueBase* defaultQueue) { mDefaultQueue = AcquireRef(defaultQueue); mRootErrorScope = AcquireRef(new ErrorScope()); mCurrentErrorScope = mRootErrorScope.Get(); #if defined(DAWN_ENABLE_ASSERTS) mRootErrorScope->SetCallback( [](WGPUErrorType, char const*, void*) { static bool calledOnce = false; if (!calledOnce) { calledOnce = true; dawn::WarningLog() << "No Dawn device uncaptured error callback was set. This is " "probably not intended. If you really want to ignore errors " "and suppress this message, set the callback to null."; } }, nullptr); mDeviceLostCallback = [](char const*, void*) { static bool calledOnce = false; if (!calledOnce) { calledOnce = true; dawn::WarningLog() << "No Dawn device lost callback was set. This is probably not " "intended. If you really want to ignore device lost " "and suppress this message, set the callback to null."; } }; #endif // DAWN_ENABLE_ASSERTS mCaches = std::make_unique(); mErrorScopeTracker = std::make_unique(this); mDynamicUploader = std::make_unique(this); mCreateReadyPipelineTracker = std::make_unique(this); mDeprecationWarnings = std::make_unique(); mInternalPipelineStore = std::make_unique(); mPersistentCache = std::make_unique(this); // Starting from now the backend can start doing reentrant calls so the device is marked as // alive. mState = State::Alive; DAWN_TRY_ASSIGN(mEmptyBindGroupLayout, CreateEmptyBindGroupLayout()); return {}; } void DeviceBase::ShutDownBase() { // Disconnect the device, depending on which state we are currently in. switch (mState) { case State::BeingCreated: // The GPU timeline was never started so we don't have to wait. break; case State::Alive: // Alive is the only state which can have GPU work happening. Wait for all of it to // complete before proceeding with destruction. // Ignore errors so that we can continue with destruction IgnoreErrors(WaitForIdleForDestruction()); AssumeCommandsComplete(); break; case State::BeingDisconnected: // Getting disconnected is a transient state happening in a single API call so there // is always an external reference keeping the Device alive, which means the // destructor cannot run while BeingDisconnected. UNREACHABLE(); break; case State::Disconnected: break; } ASSERT(mCompletedSerial == mLastSubmittedSerial); ASSERT(mFutureSerial <= mCompletedSerial); // Skip handling device facilities if they haven't even been created (or failed doing so) if (mState != State::BeingCreated) { // The GPU timeline is finished so all services can be freed immediately. They need to // be freed before ShutDownImpl() because they might relinquish resources that will be // freed by backends in the ShutDownImpl() call. Still tick the ones that might have // pending callbacks. mErrorScopeTracker->Tick(GetCompletedCommandSerial()); GetDefaultQueue()->Tick(GetCompletedCommandSerial()); mCreateReadyPipelineTracker->ClearForShutDown(); // call TickImpl once last time to clean up resources // Ignore errors so that we can continue with destruction IgnoreErrors(TickImpl()); } // At this point GPU operations are always finished, so we are in the disconnected state. mState = State::Disconnected; // mCurrentErrorScope can be null if we failed device initialization. if (mCurrentErrorScope != nullptr) { mCurrentErrorScope->UnlinkForShutdown(); } mErrorScopeTracker = nullptr; mDynamicUploader = nullptr; mCreateReadyPipelineTracker = nullptr; mPersistentCache = nullptr; mEmptyBindGroupLayout = nullptr; mInternalPipelineStore = nullptr; AssumeCommandsComplete(); // Tell the backend that it can free all the objects now that the GPU timeline is empty. ShutDownImpl(); mCaches = nullptr; } void DeviceBase::HandleError(InternalErrorType type, const char* message) { // If we receive an internal error, assume the backend can't recover and proceed with // device destruction. We first wait for all previous commands to be completed so that // backend objects can be freed immediately, before handling the loss. if (type == InternalErrorType::Internal) { // Move away from the Alive state so that the application cannot use this device // anymore. // TODO(cwallez@chromium.org): Do we need atomics for this to become visible to other // threads in a multithreaded scenario? mState = State::BeingDisconnected; // Ignore errors so that we can continue with destruction // Assume all commands are complete after WaitForIdleForDestruction (because they were) IgnoreErrors(WaitForIdleForDestruction()); IgnoreErrors(TickImpl()); AssumeCommandsComplete(); ASSERT(mFutureSerial <= mCompletedSerial); mState = State::Disconnected; // Now everything is as if the device was lost. type = InternalErrorType::DeviceLost; } // The device was lost, call the application callback. if (type == InternalErrorType::DeviceLost && mDeviceLostCallback != nullptr) { mDeviceLostCallback(message, mDeviceLostUserdata); mDeviceLostCallback = nullptr; } // Still forward device loss and internal errors to the error scopes so they all reject. mCurrentErrorScope->HandleError(ToWGPUErrorType(type), message); } void DeviceBase::InjectError(wgpu::ErrorType type, const char* message) { if (ConsumedError(ValidateErrorType(type))) { return; } // This method should only be used to make error scope reject. For DeviceLost there is the // LoseForTesting function that can be used instead. if (type != wgpu::ErrorType::Validation && type != wgpu::ErrorType::OutOfMemory) { HandleError(InternalErrorType::Validation, "Invalid injected error, must be Validation or OutOfMemory"); return; } HandleError(FromWGPUErrorType(type), message); } void DeviceBase::ConsumeError(std::unique_ptr error) { ASSERT(error != nullptr); std::ostringstream ss; ss << error->GetMessage(); for (const auto& callsite : error->GetBacktrace()) { ss << "\n at " << callsite.function << " (" << callsite.file << ":" << callsite.line << ")"; } HandleError(error->GetType(), ss.str().c_str()); } void DeviceBase::SetUncapturedErrorCallback(wgpu::ErrorCallback callback, void* userdata) { mRootErrorScope->SetCallback(callback, userdata); } void DeviceBase::SetDeviceLostCallback(wgpu::DeviceLostCallback callback, void* userdata) { mDeviceLostCallback = callback; mDeviceLostUserdata = userdata; } void DeviceBase::PushErrorScope(wgpu::ErrorFilter filter) { if (ConsumedError(ValidateErrorFilter(filter))) { return; } mCurrentErrorScope = AcquireRef(new ErrorScope(filter, mCurrentErrorScope.Get())); } bool DeviceBase::PopErrorScope(wgpu::ErrorCallback callback, void* userdata) { if (DAWN_UNLIKELY(mCurrentErrorScope.Get() == mRootErrorScope.Get())) { return false; } mCurrentErrorScope->SetCallback(callback, userdata); mCurrentErrorScope = Ref(mCurrentErrorScope->GetParent()); return true; } ErrorScope* DeviceBase::GetCurrentErrorScope() { ASSERT(mCurrentErrorScope != nullptr); return mCurrentErrorScope.Get(); } PersistentCache* DeviceBase::GetPersistentCache() { ASSERT(mPersistentCache.get() != nullptr); return mPersistentCache.get(); } MaybeError DeviceBase::ValidateObject(const ObjectBase* object) const { ASSERT(object != nullptr); if (DAWN_UNLIKELY(object->GetDevice() != this)) { return DAWN_VALIDATION_ERROR("Object from a different device."); } if (DAWN_UNLIKELY(object->IsError())) { return DAWN_VALIDATION_ERROR("Object is an error."); } return {}; } MaybeError DeviceBase::ValidateIsAlive() const { if (DAWN_LIKELY(mState == State::Alive)) { return {}; } return DAWN_DEVICE_LOST_ERROR("Device is lost"); } void DeviceBase::LoseForTesting() { if (mState != State::Alive) { return; } HandleError(InternalErrorType::Internal, "Device lost for testing"); } DeviceBase::State DeviceBase::GetState() const { return mState; } bool DeviceBase::IsLost() const { ASSERT(mState != State::BeingCreated); return mState != State::Alive; } AdapterBase* DeviceBase::GetAdapter() const { return mAdapter; } dawn_platform::Platform* DeviceBase::GetPlatform() const { return GetAdapter()->GetInstance()->GetPlatform(); } ErrorScopeTracker* DeviceBase::GetErrorScopeTracker() const { return mErrorScopeTracker.get(); } ExecutionSerial DeviceBase::GetCompletedCommandSerial() const { return mCompletedSerial; } ExecutionSerial DeviceBase::GetLastSubmittedCommandSerial() const { return mLastSubmittedSerial; } ExecutionSerial DeviceBase::GetFutureSerial() const { return mFutureSerial; } InternalPipelineStore* DeviceBase::GetInternalPipelineStore() { return mInternalPipelineStore.get(); } void DeviceBase::IncrementLastSubmittedCommandSerial() { mLastSubmittedSerial++; } void DeviceBase::AssumeCommandsComplete() { ExecutionSerial maxSerial = ExecutionSerial(std::max(mLastSubmittedSerial + ExecutionSerial(1), mFutureSerial)); mLastSubmittedSerial = maxSerial; mCompletedSerial = maxSerial; } bool DeviceBase::IsDeviceIdle() { ExecutionSerial maxSerial = std::max(mLastSubmittedSerial, mFutureSerial); if (mCompletedSerial == maxSerial) { return true; } return false; } ExecutionSerial DeviceBase::GetPendingCommandSerial() const { return mLastSubmittedSerial + ExecutionSerial(1); } void DeviceBase::AddFutureSerial(ExecutionSerial serial) { if (serial > mFutureSerial) { mFutureSerial = serial; } } void DeviceBase::CheckPassedSerials() { ExecutionSerial completedSerial = CheckAndUpdateCompletedSerials(); ASSERT(completedSerial <= mLastSubmittedSerial); // completedSerial should not be less than mCompletedSerial unless it is 0. // It can be 0 when there's no fences to check. ASSERT(completedSerial >= mCompletedSerial || completedSerial == ExecutionSerial(0)); if (completedSerial > mCompletedSerial) { mCompletedSerial = completedSerial; } } ResultOrError DeviceBase::GetInternalFormat(wgpu::TextureFormat format) const { size_t index = ComputeFormatIndex(format); if (index >= mFormatTable.size()) { return DAWN_VALIDATION_ERROR("Unknown texture format"); } const Format* internalFormat = &mFormatTable[index]; if (!internalFormat->isSupported) { return DAWN_VALIDATION_ERROR("Unsupported texture format"); } return internalFormat; } const Format& DeviceBase::GetValidInternalFormat(wgpu::TextureFormat format) const { size_t index = ComputeFormatIndex(format); ASSERT(index < mFormatTable.size()); ASSERT(mFormatTable[index].isSupported); return mFormatTable[index]; } ResultOrError> DeviceBase::GetOrCreateBindGroupLayout( const BindGroupLayoutDescriptor* descriptor) { BindGroupLayoutBase blueprint(this, descriptor); Ref result = nullptr; auto iter = mCaches->bindGroupLayouts.find(&blueprint); if (iter != mCaches->bindGroupLayouts.end()) { result = *iter; } else { BindGroupLayoutBase* backendObj; DAWN_TRY_ASSIGN(backendObj, CreateBindGroupLayoutImpl(descriptor)); backendObj->SetIsCachedReference(); mCaches->bindGroupLayouts.insert(backendObj); result = AcquireRef(backendObj); } return std::move(result); } void DeviceBase::UncacheBindGroupLayout(BindGroupLayoutBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->bindGroupLayouts.erase(obj); ASSERT(removedCount == 1); } // Private function used at initialization ResultOrError> DeviceBase::CreateEmptyBindGroupLayout() { BindGroupLayoutDescriptor desc = {}; desc.entryCount = 0; desc.entries = nullptr; return GetOrCreateBindGroupLayout(&desc); } BindGroupLayoutBase* DeviceBase::GetEmptyBindGroupLayout() { ASSERT(mEmptyBindGroupLayout != nullptr); return mEmptyBindGroupLayout.Get(); } ResultOrError DeviceBase::GetOrCreateComputePipeline( const ComputePipelineDescriptor* descriptor) { ComputePipelineBase blueprint(this, descriptor); auto iter = mCaches->computePipelines.find(&blueprint); if (iter != mCaches->computePipelines.end()) { (*iter)->Reference(); return *iter; } ComputePipelineBase* backendObj; DAWN_TRY_ASSIGN(backendObj, CreateComputePipelineImpl(descriptor)); backendObj->SetIsCachedReference(); mCaches->computePipelines.insert(backendObj); return backendObj; } void DeviceBase::UncacheComputePipeline(ComputePipelineBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->computePipelines.erase(obj); ASSERT(removedCount == 1); } ResultOrError DeviceBase::GetOrCreatePipelineLayout( const PipelineLayoutDescriptor* descriptor) { PipelineLayoutBase blueprint(this, descriptor); auto iter = mCaches->pipelineLayouts.find(&blueprint); if (iter != mCaches->pipelineLayouts.end()) { (*iter)->Reference(); return *iter; } PipelineLayoutBase* backendObj; DAWN_TRY_ASSIGN(backendObj, CreatePipelineLayoutImpl(descriptor)); backendObj->SetIsCachedReference(); mCaches->pipelineLayouts.insert(backendObj); return backendObj; } void DeviceBase::UncachePipelineLayout(PipelineLayoutBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->pipelineLayouts.erase(obj); ASSERT(removedCount == 1); } ResultOrError DeviceBase::GetOrCreateRenderPipeline( const RenderPipelineDescriptor* descriptor) { RenderPipelineBase blueprint(this, descriptor); auto iter = mCaches->renderPipelines.find(&blueprint); if (iter != mCaches->renderPipelines.end()) { (*iter)->Reference(); return *iter; } RenderPipelineBase* backendObj; DAWN_TRY_ASSIGN(backendObj, CreateRenderPipelineImpl(descriptor)); backendObj->SetIsCachedReference(); mCaches->renderPipelines.insert(backendObj); return backendObj; } void DeviceBase::UncacheRenderPipeline(RenderPipelineBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->renderPipelines.erase(obj); ASSERT(removedCount == 1); } ResultOrError DeviceBase::GetOrCreateSampler( const SamplerDescriptor* descriptor) { SamplerBase blueprint(this, descriptor); auto iter = mCaches->samplers.find(&blueprint); if (iter != mCaches->samplers.end()) { (*iter)->Reference(); return *iter; } SamplerBase* backendObj; DAWN_TRY_ASSIGN(backendObj, CreateSamplerImpl(descriptor)); backendObj->SetIsCachedReference(); mCaches->samplers.insert(backendObj); return backendObj; } void DeviceBase::UncacheSampler(SamplerBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->samplers.erase(obj); ASSERT(removedCount == 1); } ResultOrError DeviceBase::GetOrCreateShaderModule( const ShaderModuleDescriptor* descriptor) { ShaderModuleBase blueprint(this, descriptor); auto iter = mCaches->shaderModules.find(&blueprint); if (iter != mCaches->shaderModules.end()) { (*iter)->Reference(); return *iter; } ShaderModuleBase* backendObj; DAWN_TRY_ASSIGN(backendObj, CreateShaderModuleImpl(descriptor)); backendObj->SetIsCachedReference(); mCaches->shaderModules.insert(backendObj); return backendObj; } void DeviceBase::UncacheShaderModule(ShaderModuleBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->shaderModules.erase(obj); ASSERT(removedCount == 1); } Ref DeviceBase::GetOrCreateAttachmentState( AttachmentStateBlueprint* blueprint) { auto iter = mCaches->attachmentStates.find(blueprint); if (iter != mCaches->attachmentStates.end()) { return static_cast(*iter); } Ref attachmentState = AcquireRef(new AttachmentState(this, *blueprint)); attachmentState->SetIsCachedReference(); mCaches->attachmentStates.insert(attachmentState.Get()); return attachmentState; } Ref DeviceBase::GetOrCreateAttachmentState( const RenderBundleEncoderDescriptor* descriptor) { AttachmentStateBlueprint blueprint(descriptor); return GetOrCreateAttachmentState(&blueprint); } Ref DeviceBase::GetOrCreateAttachmentState( const RenderPipelineDescriptor* descriptor) { AttachmentStateBlueprint blueprint(descriptor); return GetOrCreateAttachmentState(&blueprint); } Ref DeviceBase::GetOrCreateAttachmentState( const RenderPassDescriptor* descriptor) { AttachmentStateBlueprint blueprint(descriptor); return GetOrCreateAttachmentState(&blueprint); } void DeviceBase::UncacheAttachmentState(AttachmentState* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->attachmentStates.erase(obj); ASSERT(removedCount == 1); } // Object creation API methods BindGroupBase* DeviceBase::CreateBindGroup(const BindGroupDescriptor* descriptor) { BindGroupBase* result = nullptr; if (ConsumedError(CreateBindGroupInternal(&result, descriptor))) { return BindGroupBase::MakeError(this); } return result; } BindGroupLayoutBase* DeviceBase::CreateBindGroupLayout( const BindGroupLayoutDescriptor* descriptor) { BindGroupLayoutBase* result = nullptr; if (ConsumedError(CreateBindGroupLayoutInternal(&result, descriptor))) { return BindGroupLayoutBase::MakeError(this); } return result; } BufferBase* DeviceBase::CreateBuffer(const BufferDescriptor* descriptor) { Ref result = nullptr; if (ConsumedError(CreateBufferInternal(descriptor), &result)) { ASSERT(result == nullptr); return BufferBase::MakeError(this, descriptor); } return result.Detach(); } CommandEncoder* DeviceBase::CreateCommandEncoder(const CommandEncoderDescriptor* descriptor) { return new CommandEncoder(this, descriptor); } ComputePipelineBase* DeviceBase::CreateComputePipeline( const ComputePipelineDescriptor* descriptor) { ComputePipelineBase* result = nullptr; if (ConsumedError(CreateComputePipelineInternal(&result, descriptor))) { return ComputePipelineBase::MakeError(this); } return result; } void DeviceBase::CreateReadyComputePipeline(const ComputePipelineDescriptor* descriptor, WGPUCreateReadyComputePipelineCallback callback, void* userdata) { ComputePipelineBase* result = nullptr; MaybeError maybeError = CreateComputePipelineInternal(&result, descriptor); if (maybeError.IsError()) { std::unique_ptr error = maybeError.AcquireError(); callback(WGPUCreateReadyPipelineStatus_Error, nullptr, error->GetMessage().c_str(), userdata); return; } std::unique_ptr request = std::make_unique(result, callback, userdata); mCreateReadyPipelineTracker->TrackTask(std::move(request), GetPendingCommandSerial()); } PipelineLayoutBase* DeviceBase::CreatePipelineLayout( const PipelineLayoutDescriptor* descriptor) { PipelineLayoutBase* result = nullptr; if (ConsumedError(CreatePipelineLayoutInternal(&result, descriptor))) { return PipelineLayoutBase::MakeError(this); } return result; } QuerySetBase* DeviceBase::CreateQuerySet(const QuerySetDescriptor* descriptor) { QuerySetBase* result = nullptr; if (ConsumedError(CreateQuerySetInternal(&result, descriptor))) { return QuerySetBase::MakeError(this); } return result; } SamplerBase* DeviceBase::CreateSampler(const SamplerDescriptor* descriptor) { SamplerBase* result = nullptr; if (ConsumedError(CreateSamplerInternal(&result, descriptor))) { return SamplerBase::MakeError(this); } return result; } void DeviceBase::CreateReadyRenderPipeline(const RenderPipelineDescriptor* descriptor, WGPUCreateReadyRenderPipelineCallback callback, void* userdata) { RenderPipelineBase* result = nullptr; MaybeError maybeError = CreateRenderPipelineInternal(&result, descriptor); if (maybeError.IsError()) { std::unique_ptr error = maybeError.AcquireError(); callback(WGPUCreateReadyPipelineStatus_Error, nullptr, error->GetMessage().c_str(), userdata); return; } std::unique_ptr request = std::make_unique(result, callback, userdata); mCreateReadyPipelineTracker->TrackTask(std::move(request), GetPendingCommandSerial()); } RenderBundleEncoder* DeviceBase::CreateRenderBundleEncoder( const RenderBundleEncoderDescriptor* descriptor) { RenderBundleEncoder* result = nullptr; if (ConsumedError(CreateRenderBundleEncoderInternal(&result, descriptor))) { return RenderBundleEncoder::MakeError(this); } return result; } RenderPipelineBase* DeviceBase::CreateRenderPipeline( const RenderPipelineDescriptor* descriptor) { RenderPipelineBase* result = nullptr; if (ConsumedError(CreateRenderPipelineInternal(&result, descriptor))) { return RenderPipelineBase::MakeError(this); } return result; } ShaderModuleBase* DeviceBase::CreateShaderModule(const ShaderModuleDescriptor* descriptor) { ShaderModuleBase* result = nullptr; if (ConsumedError(CreateShaderModuleInternal(&result, descriptor))) { return ShaderModuleBase::MakeError(this); } return result; } SwapChainBase* DeviceBase::CreateSwapChain(Surface* surface, const SwapChainDescriptor* descriptor) { SwapChainBase* result = nullptr; if (ConsumedError(CreateSwapChainInternal(&result, surface, descriptor))) { return SwapChainBase::MakeError(this); } return result; } TextureBase* DeviceBase::CreateTexture(const TextureDescriptor* descriptor) { Ref result; if (ConsumedError(CreateTextureInternal(descriptor), &result)) { return TextureBase::MakeError(this); } return result.Detach(); } TextureViewBase* DeviceBase::CreateTextureView(TextureBase* texture, const TextureViewDescriptor* descriptor) { TextureViewBase* result = nullptr; if (ConsumedError(CreateTextureViewInternal(&result, texture, descriptor))) { return TextureViewBase::MakeError(this); } return result; } // For Dawn Wire BufferBase* DeviceBase::CreateErrorBuffer() { BufferDescriptor desc = {}; return BufferBase::MakeError(this, &desc); } // Other Device API methods // Returns true if future ticking is needed. bool DeviceBase::Tick() { if (ConsumedError(ValidateIsAlive())) { return false; } // to avoid overly ticking, we only want to tick when: // 1. the last submitted serial has moved beyond the completed serial // 2. or the completed serial has not reached the future serial set by the trackers if (mLastSubmittedSerial > mCompletedSerial || mCompletedSerial < mFutureSerial) { CheckPassedSerials(); if (ConsumedError(TickImpl())) { return false; } // There is no GPU work in flight, we need to move the serials forward so that // so that CPU operations waiting on GPU completion can know they don't have to wait. // AssumeCommandsComplete will assign the max serial we must tick to in order to // fire the awaiting callbacks. if (mCompletedSerial == mLastSubmittedSerial) { AssumeCommandsComplete(); } // TODO(cwallez@chromium.org): decouple TickImpl from updating the serial so that we can // tick the dynamic uploader before the backend resource allocators. This would allow // reclaiming resources one tick earlier. mDynamicUploader->Deallocate(mCompletedSerial); mErrorScopeTracker->Tick(mCompletedSerial); GetDefaultQueue()->Tick(mCompletedSerial); mCreateReadyPipelineTracker->Tick(mCompletedSerial); } return !IsDeviceIdle(); } void DeviceBase::Reference() { ASSERT(mRefCount != 0); mRefCount++; } void DeviceBase::Release() { ASSERT(mRefCount != 0); mRefCount--; if (mRefCount == 0) { delete this; } } QueueBase* DeviceBase::GetDefaultQueue() { // Backends gave the default queue during initialization. ASSERT(mDefaultQueue != nullptr); // Returns a new reference to the queue. mDefaultQueue->Reference(); return mDefaultQueue.Get(); } void DeviceBase::ApplyExtensions(const DeviceDescriptor* deviceDescriptor) { ASSERT(deviceDescriptor); ASSERT(GetAdapter()->SupportsAllRequestedExtensions(deviceDescriptor->requiredExtensions)); mEnabledExtensions = GetAdapter()->GetInstance()->ExtensionNamesToExtensionsSet( deviceDescriptor->requiredExtensions); } std::vector DeviceBase::GetEnabledExtensions() const { return mEnabledExtensions.GetEnabledExtensionNames(); } bool DeviceBase::IsExtensionEnabled(Extension extension) const { return mEnabledExtensions.IsEnabled(extension); } bool DeviceBase::IsValidationEnabled() const { return !IsToggleEnabled(Toggle::SkipValidation); } bool DeviceBase::IsRobustnessEnabled() const { return !IsToggleEnabled(Toggle::DisableRobustness); } size_t DeviceBase::GetLazyClearCountForTesting() { return mLazyClearCountForTesting; } void DeviceBase::IncrementLazyClearCountForTesting() { ++mLazyClearCountForTesting; } size_t DeviceBase::GetDeprecationWarningCountForTesting() { return mDeprecationWarnings->count; } void DeviceBase::EmitDeprecationWarning(const char* warning) { mDeprecationWarnings->count++; if (mDeprecationWarnings->emitted.insert(warning).second) { dawn::WarningLog() << warning; } } // Implementation details of object creation MaybeError DeviceBase::CreateBindGroupInternal(BindGroupBase** result, const BindGroupDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateBindGroupDescriptor(this, descriptor)); } DAWN_TRY_ASSIGN(*result, CreateBindGroupImpl(descriptor)); return {}; } MaybeError DeviceBase::CreateBindGroupLayoutInternal( BindGroupLayoutBase** result, const BindGroupLayoutDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateBindGroupLayoutDescriptor(this, descriptor)); } Ref bgl; DAWN_TRY_ASSIGN(bgl, GetOrCreateBindGroupLayout(descriptor)); *result = bgl.Detach(); return {}; } ResultOrError> DeviceBase::CreateBufferInternal( const BufferDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateBufferDescriptor(this, descriptor)); } Ref buffer; DAWN_TRY_ASSIGN(buffer, CreateBufferImpl(descriptor)); if (descriptor->mappedAtCreation) { DAWN_TRY(buffer->MapAtCreation()); } return std::move(buffer); } MaybeError DeviceBase::CreateComputePipelineInternal( ComputePipelineBase** result, const ComputePipelineDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor)); } if (descriptor->layout == nullptr) { ComputePipelineDescriptor descriptorWithDefaultLayout = *descriptor; DAWN_TRY_ASSIGN(descriptorWithDefaultLayout.layout, PipelineLayoutBase::CreateDefault( this, {{SingleShaderStage::Compute, &descriptor->computeStage}})); // Ref will keep the pipeline layout alive until the end of the function where // the pipeline will take another reference. Ref layoutRef = AcquireRef(descriptorWithDefaultLayout.layout); DAWN_TRY_ASSIGN(*result, GetOrCreateComputePipeline(&descriptorWithDefaultLayout)); } else { DAWN_TRY_ASSIGN(*result, GetOrCreateComputePipeline(descriptor)); } return {}; } MaybeError DeviceBase::CreatePipelineLayoutInternal( PipelineLayoutBase** result, const PipelineLayoutDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidatePipelineLayoutDescriptor(this, descriptor)); } DAWN_TRY_ASSIGN(*result, GetOrCreatePipelineLayout(descriptor)); return {}; } MaybeError DeviceBase::CreateQuerySetInternal(QuerySetBase** result, const QuerySetDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateQuerySetDescriptor(this, descriptor)); } DAWN_TRY_ASSIGN(*result, CreateQuerySetImpl(descriptor)); return {}; } MaybeError DeviceBase::CreateRenderBundleEncoderInternal( RenderBundleEncoder** result, const RenderBundleEncoderDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateRenderBundleEncoderDescriptor(this, descriptor)); } *result = new RenderBundleEncoder(this, descriptor); return {}; } MaybeError DeviceBase::CreateRenderPipelineInternal( RenderPipelineBase** result, const RenderPipelineDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor)); } if (descriptor->layout == nullptr) { RenderPipelineDescriptor descriptorWithDefaultLayout = *descriptor; std::vector stages; stages.emplace_back(SingleShaderStage::Vertex, &descriptor->vertexStage); if (descriptor->fragmentStage != nullptr) { stages.emplace_back(SingleShaderStage::Fragment, descriptor->fragmentStage); } DAWN_TRY_ASSIGN(descriptorWithDefaultLayout.layout, PipelineLayoutBase::CreateDefault(this, std::move(stages))); // Ref will keep the pipeline layout alive until the end of the function where // the pipeline will take another reference. Ref layoutRef = AcquireRef(descriptorWithDefaultLayout.layout); DAWN_TRY_ASSIGN(*result, GetOrCreateRenderPipeline(&descriptorWithDefaultLayout)); } else { DAWN_TRY_ASSIGN(*result, GetOrCreateRenderPipeline(descriptor)); } return {}; } MaybeError DeviceBase::CreateSamplerInternal(SamplerBase** result, const SamplerDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateSamplerDescriptor(this, descriptor)); } DAWN_TRY_ASSIGN(*result, GetOrCreateSampler(descriptor)); return {}; } MaybeError DeviceBase::CreateShaderModuleInternal(ShaderModuleBase** result, const ShaderModuleDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateShaderModuleDescriptor(this, descriptor)); } DAWN_TRY_ASSIGN(*result, GetOrCreateShaderModule(descriptor)); return {}; } MaybeError DeviceBase::CreateSwapChainInternal(SwapChainBase** result, Surface* surface, const SwapChainDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateSwapChainDescriptor(this, surface, descriptor)); } // TODO(dawn:269): Remove this code path once implementation-based swapchains are removed. if (surface == nullptr) { DAWN_TRY_ASSIGN(*result, CreateSwapChainImpl(descriptor)); } else { ASSERT(descriptor->implementation == 0); NewSwapChainBase* previousSwapChain = surface->GetAttachedSwapChain(); ResultOrError maybeNewSwapChain = CreateSwapChainImpl(surface, previousSwapChain, descriptor); if (previousSwapChain != nullptr) { previousSwapChain->DetachFromSurface(); } NewSwapChainBase* newSwapChain = nullptr; DAWN_TRY_ASSIGN(newSwapChain, std::move(maybeNewSwapChain)); newSwapChain->SetIsAttached(); surface->SetAttachedSwapChain(newSwapChain); *result = newSwapChain; } return {}; } ResultOrError> DeviceBase::CreateTextureInternal( const TextureDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateTextureDescriptor(this, descriptor)); } return CreateTextureImpl(descriptor); } MaybeError DeviceBase::CreateTextureViewInternal(TextureViewBase** result, TextureBase* texture, const TextureViewDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); DAWN_TRY(ValidateObject(texture)); TextureViewDescriptor desc = GetTextureViewDescriptorWithDefaults(texture, descriptor); if (IsValidationEnabled()) { DAWN_TRY(ValidateTextureViewDescriptor(texture, &desc)); } DAWN_TRY_ASSIGN(*result, CreateTextureViewImpl(texture, &desc)); return {}; } // Other implementation details DynamicUploader* DeviceBase::GetDynamicUploader() const { return mDynamicUploader.get(); } // The Toggle device facility std::vector DeviceBase::GetTogglesUsed() const { return mEnabledToggles.GetContainedToggleNames(); } bool DeviceBase::IsToggleEnabled(Toggle toggle) const { return mEnabledToggles.Has(toggle); } void DeviceBase::SetToggle(Toggle toggle, bool isEnabled) { if (!mOverridenToggles.Has(toggle)) { mEnabledToggles.Set(toggle, isEnabled); } } void DeviceBase::ForceSetToggle(Toggle toggle, bool isEnabled) { if (!mOverridenToggles.Has(toggle) && mEnabledToggles.Has(toggle) != isEnabled) { dawn::WarningLog() << "Forcing toggle \"" << ToggleEnumToName(toggle) << "\" to " << isEnabled << " when it was overriden to be " << !isEnabled; } mEnabledToggles.Set(toggle, isEnabled); } void DeviceBase::SetDefaultToggles() { SetToggle(Toggle::LazyClearResourceOnFirstUse, true); } void DeviceBase::ApplyToggleOverrides(const DeviceDescriptor* deviceDescriptor) { ASSERT(deviceDescriptor); for (const char* toggleName : deviceDescriptor->forceEnabledToggles) { Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum(toggleName); if (toggle != Toggle::InvalidEnum) { mEnabledToggles.Set(toggle, true); mOverridenToggles.Set(toggle, true); } } for (const char* toggleName : deviceDescriptor->forceDisabledToggles) { Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum(toggleName); if (toggle != Toggle::InvalidEnum) { mEnabledToggles.Set(toggle, false); mOverridenToggles.Set(toggle, true); } } } } // namespace dawn_native