#!/usr/bin/env python3 # # Copyright 2019 The Dawn Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Based on Angle's perf_test_runner.py import glob import subprocess import sys import os import re # Assume running the dawn_perf_tests build in Chromium checkout # Dawn locates at /path/to/Chromium/src/third_party/dawn/ # Chromium build usually locates at /path/to/Chromium/src/out/Release/ # You might want to change the base_path if you want to run dawn_perf_tests build from a Dawn standalone build. base_path = os.path.abspath( os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../../')) # Look for a [Rr]elease build. perftests_paths = glob.glob('out/*elease*') metric = 'wall_time' max_experiments = 10 binary_name = 'dawn_perf_tests' if sys.platform == 'win32': binary_name += '.exe' scores = [] def mean(data): """Return the sample arithmetic mean of data.""" n = len(data) if n < 1: raise ValueError('mean requires at least one data point') return float(sum(data)) / float(n) # in Python 2 use sum(data)/float(n) def sum_of_square_deviations(data, c): """Return sum of square deviations of sequence data.""" ss = sum((float(x) - c)**2 for x in data) return ss def coefficient_of_variation(data): """Calculates the population coefficient of variation.""" n = len(data) if n < 2: raise ValueError('variance requires at least two data points') c = mean(data) ss = sum_of_square_deviations(data, c) pvar = ss / n # the population variance stddev = (pvar**0.5) # population standard deviation return stddev / c def truncated_list(data, n): """Compute a truncated list, n is truncation size""" if len(data) < n * 2: raise ValueError('list not large enough to truncate') return sorted(data)[n:-n] def truncated_mean(data, n): """Compute a truncated mean, n is truncation size""" return mean(truncated_list(data, n)) def truncated_cov(data, n): """Compute a truncated coefficient of variation, n is truncation size""" return coefficient_of_variation(truncated_list(data, n)) # Find most recent binary newest_binary = None newest_mtime = None for path in perftests_paths: binary_path = os.path.join(base_path, path, binary_name) if os.path.exists(binary_path): binary_mtime = os.path.getmtime(binary_path) if (newest_binary is None) or (binary_mtime > newest_mtime): newest_binary = binary_path newest_mtime = binary_mtime perftests_path = newest_binary if perftests_path == None or not os.path.exists(perftests_path): print('Cannot find Release %s!' % binary_name) sys.exit(1) if len(sys.argv) >= 2: test_name = sys.argv[1] print('Using test executable: ' + perftests_path) print('Test name: ' + test_name) def get_results(metric, extra_args=[]): process = subprocess.Popen( [perftests_path, '--gtest_filter=' + test_name] + extra_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, err = process.communicate() output_string = output.decode('utf-8') m = re.search(r"Running (\d+) tests", output_string) if m and int(m.group(1)) > 1: print("Found more than one test result in output:") print(output_string) sys.exit(3) pattern = metric + r'.*= ([0-9.]+)' m = re.findall(pattern, output_string) if not m: print("Did not find the metric '%s' in the test output:" % metric) print(output_string) sys.exit(1) return [float(value) for value in m] # Calibrate the number of steps steps = get_results("steps", ["--calibration"])[0] print("running with %d steps." % steps) # Loop 'max_experiments' times, running the tests. for experiment in range(max_experiments): experiment_scores = get_results(metric, ["--override-steps", str(steps)]) for score in experiment_scores: sys.stdout.write("%s: %.2f" % (metric, score)) scores.append(score) if (len(scores) > 1): sys.stdout.write(", mean: %.2f" % mean(scores)) sys.stdout.write(", variation: %.2f%%" % (coefficient_of_variation(scores) * 100.0)) if (len(scores) > 7): truncation_n = len(scores) >> 3 sys.stdout.write(", truncated mean: %.2f" % truncated_mean(scores, truncation_n)) sys.stdout.write(", variation: %.2f%%" % (truncated_cov(scores, truncation_n) * 100.0)) print("")