// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include #include #include "src/ast/access_decoration.h" #include "src/ast/alias.h" #include "src/ast/array.h" #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/constant_id_decoration.h" #include "src/ast/continue_statement.h" #include "src/ast/depth_texture.h" #include "src/ast/discard_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/if_statement.h" #include "src/ast/internal_decoration.h" #include "src/ast/loop_statement.h" #include "src/ast/matrix.h" #include "src/ast/pointer.h" #include "src/ast/return_statement.h" #include "src/ast/sampled_texture.h" #include "src/ast/sampler.h" #include "src/ast/storage_texture.h" #include "src/ast/struct_block_decoration.h" #include "src/ast/switch_statement.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/ast/vector.h" #include "src/ast/workgroup_decoration.h" #include "src/sem/access_control_type.h" #include "src/sem/array.h" #include "src/sem/call.h" #include "src/sem/depth_texture_type.h" #include "src/sem/function.h" #include "src/sem/member_accessor_expression.h" #include "src/sem/multisampled_texture_type.h" #include "src/sem/pointer_type.h" #include "src/sem/sampled_texture_type.h" #include "src/sem/sampler_type.h" #include "src/sem/statement.h" #include "src/sem/storage_texture_type.h" #include "src/sem/struct.h" #include "src/sem/variable.h" #include "src/utils/get_or_create.h" #include "src/utils/math.h" namespace tint { namespace resolver { namespace { using IntrinsicType = tint::sem::IntrinsicType; // Helper class that temporarily assigns a value to a reference for the scope of // the object. Once the ScopedAssignment is destructed, the original value is // restored. template class ScopedAssignment { public: ScopedAssignment(T& ref, T val) : ref_(ref) { old_value_ = ref; ref = val; } ~ScopedAssignment() { ref_ = old_value_; } private: T& ref_; T old_value_; }; // Helper function that returns the range union of two source locations. The // `start` and `end` locations are assumed to refer to the same source file. Source CombineSourceRange(const Source& start, const Source& end) { return Source(Source::Range(start.range.begin, end.range.end), start.file_path, start.file_content); } bool IsValidStorageTextureDimension(ast::TextureDimension dim) { switch (dim) { case ast::TextureDimension::k1d: case ast::TextureDimension::k2d: case ast::TextureDimension::k2dArray: case ast::TextureDimension::k3d: return true; default: return false; } } bool IsValidStorageTextureImageFormat(ast::ImageFormat format) { switch (format) { case ast::ImageFormat::kR32Uint: case ast::ImageFormat::kR32Sint: case ast::ImageFormat::kR32Float: case ast::ImageFormat::kRg32Uint: case ast::ImageFormat::kRg32Sint: case ast::ImageFormat::kRg32Float: case ast::ImageFormat::kRgba8Unorm: case ast::ImageFormat::kRgba8Snorm: case ast::ImageFormat::kRgba8Uint: case ast::ImageFormat::kRgba8Sint: case ast::ImageFormat::kRgba16Uint: case ast::ImageFormat::kRgba16Sint: case ast::ImageFormat::kRgba16Float: case ast::ImageFormat::kRgba32Uint: case ast::ImageFormat::kRgba32Sint: case ast::ImageFormat::kRgba32Float: return true; default: return false; } } } // namespace Resolver::Resolver(ProgramBuilder* builder) : builder_(builder), intrinsic_table_(IntrinsicTable::Create()) {} Resolver::~Resolver() = default; Resolver::BlockInfo::BlockInfo(const ast::BlockStatement* b, Resolver::BlockInfo::Type ty, Resolver::BlockInfo* p) : block(b), type(ty), parent(p) {} Resolver::BlockInfo::~BlockInfo() = default; void Resolver::set_referenced_from_function_if_needed(VariableInfo* var, bool local) { if (current_function_ == nullptr) { return; } if (var->storage_class == ast::StorageClass::kNone || var->storage_class == ast::StorageClass::kFunction) { return; } current_function_->referenced_module_vars.add(var); if (local) { current_function_->local_referenced_module_vars.add(var); } } bool Resolver::Resolve() { bool result = ResolveInternal(); // Even if resolving failed, create all the semantic nodes for information we // did generate. CreateSemanticNodes(); return result; } // https://gpuweb.github.io/gpuweb/wgsl.html#storable-types bool Resolver::IsStorable(sem::Type* type) { type = type->UnwrapIfNeeded(); if (type->is_scalar() || type->Is() || type->Is()) { return true; } if (sem::ArrayType* arr = type->As()) { return IsStorable(arr->type()); } if (sem::StructType* str = type->As()) { for (const auto* member : str->impl()->members()) { if (!IsStorable(member->type())) { return false; } } return true; } return false; } // https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types bool Resolver::IsHostShareable(sem::Type* type) { type = type->UnwrapIfNeeded(); if (type->IsAnyOf()) { return true; } if (auto* vec = type->As()) { return IsHostShareable(vec->type()); } if (auto* mat = type->As()) { return IsHostShareable(mat->type()); } if (auto* arr = type->As()) { return IsHostShareable(arr->type()); } if (auto* str = type->As()) { for (auto* member : str->impl()->members()) { if (!IsHostShareable(member->type())) { return false; } } return true; } return false; } bool Resolver::IsValidAssignment(sem::Type* lhs, sem::Type* rhs) { // TODO(crbug.com/tint/659): This is a rough approximation, and is missing // checks for writability of pointer storage class, access control, etc. // This will need to be fixed after WGSL agrees the behavior of pointers / // references. // Check: if (lhs->UnwrapIfNeeded() != rhs->UnwrapIfNeeded()) { // Try RHS dereference if (lhs->UnwrapIfNeeded() != rhs->UnwrapAll()) { return false; } } return true; } bool Resolver::ResolveInternal() { Mark(&builder_->AST()); // Process everything else in the order they appear in the module. This is // necessary for validation of use-before-declaration. for (auto* decl : builder_->AST().GlobalDeclarations()) { if (auto* ty = decl->As()) { if (!Type(ty)) { return false; } } else if (auto* func = decl->As()) { Mark(func); if (!Function(func)) { return false; } } else if (auto* var = decl->As()) { Mark(var); if (!GlobalVariable(var)) { return false; } } else { TINT_UNREACHABLE(diagnostics_) << "unhandled global declaration: " << decl->TypeInfo().name; return false; } } for (auto* node : builder_->ASTNodes().Objects()) { if (marked_.count(node) == 0) { if (node->IsAnyOf()) { // TODO(crbug.com/tint/724) - Remove once tint:724 is complete. // ast::AccessDecorations are generated by the WGSL parser, used to // build sem::AccessControls and then leaked. // ast::StrideDecoration are used to build a sem::ArrayTypes, but // multiple arrays of the same stride, size and element type are // currently de-duplicated by the type manager, and we leak these // decorations. // ast::Types are being built, but not yet being handled. This is WIP. continue; } TINT_ICE(diagnostics_) << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" << "At: " << node->source(); } } return true; } sem::Type* Resolver::Type(ast::Type* ty) { Mark(ty); sem::Type* s = nullptr; if (ty->Is()) { s = builder_->create(); } else if (ty->Is()) { s = builder_->create(); } else if (ty->Is()) { s = builder_->create(); } else if (ty->Is()) { s = builder_->create(); } else if (ty->Is()) { s = builder_->create(); } else if (auto* alias = ty->As()) { auto* el = Type(alias->type()); s = builder_->create(alias->symbol(), el); } else if (auto* access = ty->As()) { auto* el = Type(access->type()); s = builder_->create(access->access_control(), el); } else if (auto* vec = ty->As()) { auto* el = Type(vec->type()); s = builder_->create(el, vec->size()); } else if (auto* mat = ty->As()) { auto* el = Type(mat->type()); s = builder_->create(el, mat->rows(), mat->columns()); } else if (auto* arr = ty->As()) { auto* el = Type(arr->type()); s = builder_->create(el, arr->size(), arr->decorations()); } else if (auto* ptr = ty->As()) { auto* el = Type(ptr->type()); s = builder_->create(el, ptr->storage_class()); } else if (auto* str = ty->As()) { s = builder_->create(str); } else if (auto* sampler = ty->As()) { s = builder_->create(sampler->kind()); } else if (auto* sampled_tex = ty->As()) { auto* el = Type(sampled_tex->type()); s = builder_->create(sampled_tex->dim(), el); } else if (auto* depth_tex = ty->As()) { s = builder_->create(depth_tex->dim()); } else if (auto* storage_tex = ty->As()) { auto* el = Type(storage_tex->type()); s = builder_->create(storage_tex->dim(), storage_tex->image_format(), el); } if (s == nullptr) { return nullptr; } if (!Type(s)) { return nullptr; } return s; } // TODO(crbug.com/tint/724): This method should be replaced by Type(ast::Type*) bool Resolver::Type(sem::Type* ty) { ty = ty->UnwrapAliasIfNeeded(); if (auto* str = ty->As()) { if (!Structure(str)) { return false; } } else if (auto* arr = ty->As()) { if (!Array(arr, Source{})) { return false; } } return true; } Resolver::VariableInfo* Resolver::Variable(ast::Variable* var, sem::Type* type /*=nullptr*/) { auto it = variable_to_info_.find(var); if (it != variable_to_info_.end()) { return it->second; } auto* ctype = Canonical(type ? type : var->declared_type()); auto* info = variable_infos_.Create(var, ctype); variable_to_info_.emplace(var, info); // Resolve variable's type if (auto* arr = info->type->As()) { if (!Array(arr, var->source())) { return nullptr; } } return info; } bool Resolver::GlobalVariable(ast::Variable* var) { if (variable_stack_.has(var->symbol())) { diagnostics_.add_error("v-0011", "redeclared global identifier '" + builder_->Symbols().NameFor(var->symbol()) + "'", var->source()); return false; } auto* info = Variable(var); if (!info) { return false; } variable_stack_.set_global(var->symbol(), info); if (!var->is_const() && info->storage_class == ast::StorageClass::kNone) { diagnostics_.add_error( "v-0022", "global variables must have a storage class", var->source()); return false; } if (var->is_const() && !(info->storage_class == ast::StorageClass::kNone)) { diagnostics_.add_error("v-global01", "global constants shouldn't have a storage class", var->source()); return false; } for (auto* deco : var->decorations()) { Mark(deco); if (!(deco->Is() || deco->Is() || deco->Is() || deco->Is() || deco->Is())) { diagnostics_.add_error("decoration is not valid for variables", deco->source()); return false; } } if (var->has_constructor()) { Mark(var->constructor()); if (!Expression(var->constructor())) { return false; } } if (!ValidateGlobalVariable(info)) { return false; } if (!ApplyStorageClassUsageToType(var->declared_storage_class(), info->type, var->source())) { diagnostics_.add_note("while instantiating variable " + builder_->Symbols().NameFor(var->symbol()), var->source()); return false; } return true; } bool Resolver::ValidateGlobalVariable(const VariableInfo* info) { switch (info->storage_class) { case ast::StorageClass::kStorage: { // https://gpuweb.github.io/gpuweb/wgsl/#variable-declaration // Variables in the storage storage class and variables with a storage // texture type must have an access attribute applied to the store type. // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // A variable in the storage storage class is a storage buffer variable. // Its store type must be a host-shareable structure type with block // attribute, satisfying the storage class constraints. auto* access = info->type->As(); auto* str = access ? access->type()->As() : nullptr; if (!str) { diagnostics_.add_error( "variables declared in the storage class must be of an " "[[access]] qualified structure type", info->declaration->source()); return false; } if (!str->IsBlockDecorated()) { diagnostics_.add_error( "structure used as a storage buffer must be declared with the " "[[block]] decoration", str->impl()->source()); if (info->declaration->source().range.begin.line) { diagnostics_.add_note("structure used as storage buffer here", info->declaration->source()); } return false; } break; } case ast::StorageClass::kUniform: { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // A variable in the uniform storage class is a uniform buffer variable. // Its store type must be a host-shareable structure type with block // attribute, satisfying the storage class constraints. auto* str = info->type->As(); if (!str) { diagnostics_.add_error( "variables declared in the storage class must be of a " "structure type", info->declaration->source()); return false; } if (!str->IsBlockDecorated()) { diagnostics_.add_error( "structure used as a uniform buffer must be declared with the " "[[block]] decoration", str->impl()->source()); if (info->declaration->source().range.begin.line) { diagnostics_.add_note("structure used as uniform buffer here", info->declaration->source()); } return false; } break; } default: break; } return ValidateVariable(info->declaration); } bool Resolver::ValidateVariable(const ast::Variable* var) { auto* type = variable_to_info_[var]->type; if (auto* r = type->UnwrapAll()->As()) { if (r->IsRuntimeArray()) { diagnostics_.add_error( "v-0015", "runtime arrays may only appear as the last member of a struct", var->source()); return false; } } if (auto* r = type->UnwrapAll()->As()) { if (r->dim() != ast::TextureDimension::k2d) { diagnostics_.add_error("Only 2d multisampled textures are supported", var->source()); return false; } auto* data_type = r->type()->UnwrapAll(); if (!data_type->is_numeric_scalar()) { diagnostics_.add_error( "texture_multisampled_2d: type must be f32, i32 or u32", var->source()); return false; } } if (auto* r = type->UnwrapAll()->As()) { auto* ac = type->As(); if (!ac) { diagnostics_.add_error("Storage Textures must have access control.", var->source()); return false; } if (ac->IsReadWrite()) { diagnostics_.add_error( "Storage Textures only support Read-Only and Write-Only access " "control.", var->source()); return false; } if (!IsValidStorageTextureDimension(r->dim())) { diagnostics_.add_error( "Cube dimensions for storage textures are not " "supported.", var->source()); return false; } if (!IsValidStorageTextureImageFormat(r->image_format())) { diagnostics_.add_error( "image format must be one of the texel formats specified for storage " "textues in https://gpuweb.github.io/gpuweb/wgsl/#texel-formats", var->source()); return false; } } return true; } bool Resolver::ValidateParameter(const ast::Variable* param) { return ValidateVariable(param); } bool Resolver::ValidateFunction(const ast::Function* func, const FunctionInfo* info) { if (symbol_to_function_.find(func->symbol()) != symbol_to_function_.end()) { diagnostics_.add_error("v-0016", "function names must be unique '" + builder_->Symbols().NameFor(func->symbol()) + "'", func->source()); return false; } for (auto* param : func->params()) { if (!ValidateParameter(param)) { return false; } } if (!func->return_type()->Is()) { if (func->body()) { if (!func->get_last_statement() || !func->get_last_statement()->Is()) { diagnostics_.add_error( "v-0002", "non-void function must end with a return statement", func->source()); return false; } } else if (!ast::HasDecoration( func->decorations())) { TINT_ICE(diagnostics_) << "Function " << builder_->Symbols().NameFor(func->symbol()) << " has no body and does not have the [[internal]] decoration"; } for (auto* deco : func->return_type_decorations()) { if (!deco->IsAnyOf()) { diagnostics_.add_error( "decoration is not valid for function return types", deco->source()); return false; } } } if (func->IsEntryPoint()) { if (!ValidateEntryPoint(func, info)) { return false; } } return true; } bool Resolver::ValidateEntryPoint(const ast::Function* func, const FunctionInfo* info) { auto stage_deco_count = 0; for (auto* deco : func->decorations()) { if (deco->Is()) { stage_deco_count++; } else if (!deco->Is()) { diagnostics_.add_error("decoration is not valid for functions", deco->source()); return false; } } if (stage_deco_count > 1) { diagnostics_.add_error( "v-0020", "only one stage decoration permitted per entry point", func->source()); return false; } // Use a lambda to validate the entry point decorations for a type. // Persistent state is used to track which builtins and locations have already // been seen, in order to catch conflicts. // TODO(jrprice): This state could be stored in FunctionInfo instead, and then // passed to sem::Function since it would be useful there too. std::unordered_set builtins; std::unordered_set locations; enum class ParamOrRetType { kParameter, kReturnType, }; // Helper to stringify a pipeline IO decoration. auto deco_to_str = [](const ast::Decoration* deco) { std::stringstream str; if (auto* builtin = deco->As()) { str << "builtin(" << builtin->value() << ")"; } else if (auto* location = deco->As()) { str << "location(" << location->value() << ")"; } return str.str(); }; // Inner lambda that is applied to a type and all of its members. auto validate_entry_point_decorations_inner = [&](const ast::DecorationList& decos, sem::Type* ty, Source source, ParamOrRetType param_or_ret, bool is_struct_member) { // Scan decorations for pipeline IO attributes. // Check for overlap with attributes that have been seen previously. ast::Decoration* pipeline_io_attribute = nullptr; for (auto* deco : decos) { if (auto* builtin = deco->As()) { if (pipeline_io_attribute) { diagnostics_.add_error("multiple entry point IO attributes", deco->source()); diagnostics_.add_note( "previously consumed " + deco_to_str(pipeline_io_attribute), pipeline_io_attribute->source()); return false; } pipeline_io_attribute = deco; if (builtins.count(builtin->value())) { diagnostics_.add_error( deco_to_str(builtin) + " attribute appears multiple times as pipeline " + (param_or_ret == ParamOrRetType::kParameter ? "input" : "output"), func->source()); return false; } builtins.emplace(builtin->value()); } else if (auto* location = deco->As()) { if (pipeline_io_attribute) { diagnostics_.add_error("multiple entry point IO attributes", deco->source()); diagnostics_.add_note( "previously consumed " + deco_to_str(pipeline_io_attribute), pipeline_io_attribute->source()); return false; } pipeline_io_attribute = deco; if (locations.count(location->value())) { diagnostics_.add_error( deco_to_str(location) + " attribute appears multiple times as pipeline " + (param_or_ret == ParamOrRetType::kParameter ? "input" : "output"), func->source()); return false; } locations.emplace(location->value()); } } // Check that we saw a pipeline IO attribute iff we need one. if (Canonical(ty)->Is()) { if (pipeline_io_attribute) { diagnostics_.add_error( "entry point IO attributes must not be used on structure " + std::string(param_or_ret == ParamOrRetType::kParameter ? "parameters" : "return types"), pipeline_io_attribute->source()); return false; } } else { if (!pipeline_io_attribute) { std::string err = "missing entry point IO attribute"; if (!is_struct_member) { err += (param_or_ret == ParamOrRetType::kParameter ? " on parameter" : " on return type"); } diagnostics_.add_error(err, source); return false; } } return true; }; // Outer lambda for validating the entry point decorations for a type. auto validate_entry_point_decorations = [&](const ast::DecorationList& decos, sem::Type* ty, Source source, ParamOrRetType param_or_ret) { // Validate the decorations for the type. if (!validate_entry_point_decorations_inner(decos, ty, source, param_or_ret, false)) { return false; } if (auto* struct_ty = Canonical(ty)->As()) { // Validate the decorations for each struct members, and also check for // invalid member types. for (auto* member : struct_ty->impl()->members()) { auto* member_ty = Canonical(member->type()); if (member_ty->Is()) { diagnostics_.add_error( "entry point IO types cannot contain nested structures", member->source()); diagnostics_.add_note("while analysing entry point " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } else if (auto* arr = member_ty->As()) { if (arr->IsRuntimeArray()) { diagnostics_.add_error( "entry point IO types cannot contain runtime sized arrays", member->source()); diagnostics_.add_note( "while analysing entry point " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } } if (!validate_entry_point_decorations_inner(member->decorations(), member_ty, member->source(), param_or_ret, true)) { diagnostics_.add_note("while analysing entry point " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } } } return true; }; for (auto* param : func->params()) { if (!validate_entry_point_decorations( param->decorations(), param->declared_type(), param->source(), ParamOrRetType::kParameter)) { return false; } } // Clear IO sets after parameter validation. Builtin and location attributes // in return types should be validated independently from those used in // parameters. builtins.clear(); locations.clear(); if (!func->return_type()->Is()) { if (!validate_entry_point_decorations(func->return_type_decorations(), func->return_type(), func->source(), ParamOrRetType::kReturnType)) { return false; } } if (func->pipeline_stage() == ast::PipelineStage::kVertex && builtins.count(ast::Builtin::kPosition) == 0) { // Check module-scope variables, as the SPIR-V sanitizer generates these. bool found = false; for (auto* var : info->referenced_module_vars) { if (auto* builtin = ast::GetDecoration( var->declaration->decorations())) { if (builtin->value() == ast::Builtin::kPosition) { found = true; break; } } } // TODO(bclayton): Reenable after CTS is updated if (((false)) && !found) { diagnostics_.add_error( "a vertex shader must include the 'position' builtin in its return " "type", func->source()); return false; } } return true; } bool Resolver::Function(ast::Function* func) { auto* func_info = function_infos_.Create(func); ScopedAssignment sa(current_function_, func_info); variable_stack_.push_scope(); for (auto* param : func->params()) { Mark(param); auto* param_info = Variable(param); if (!param_info) { return false; } // TODO(amaiorano): Validate parameter decorations for (auto* deco : param->decorations()) { Mark(deco); } variable_stack_.set(param->symbol(), param_info); func_info->parameters.emplace_back(param_info); if (!ApplyStorageClassUsageToType(param->declared_storage_class(), param->declared_type(), param->source())) { diagnostics_.add_note("while instantiating parameter " + builder_->Symbols().NameFor(param->symbol()), param->source()); return false; } if (auto* str = param_info->type->As()) { auto* info = Structure(str); if (!info) { return false; } switch (func->pipeline_stage()) { case ast::PipelineStage::kVertex: info->pipeline_stage_uses.emplace( sem::PipelineStageUsage::kVertexInput); break; case ast::PipelineStage::kFragment: info->pipeline_stage_uses.emplace( sem::PipelineStageUsage::kFragmentInput); break; case ast::PipelineStage::kCompute: info->pipeline_stage_uses.emplace( sem::PipelineStageUsage::kComputeInput); break; case ast::PipelineStage::kNone: break; } } } if (auto* str = Canonical(func->return_type())->As()) { if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, func->source())) { diagnostics_.add_note("while instantiating return type for " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } auto* info = Structure(str); if (!info) { return false; } switch (func->pipeline_stage()) { case ast::PipelineStage::kVertex: info->pipeline_stage_uses.emplace( sem::PipelineStageUsage::kVertexOutput); break; case ast::PipelineStage::kFragment: info->pipeline_stage_uses.emplace( sem::PipelineStageUsage::kFragmentOutput); break; case ast::PipelineStage::kCompute: info->pipeline_stage_uses.emplace( sem::PipelineStageUsage::kComputeOutput); break; case ast::PipelineStage::kNone: break; } } if (func->body()) { Mark(func->body()); if (!BlockStatement(func->body())) { return false; } } variable_stack_.pop_scope(); for (auto* deco : func->decorations()) { Mark(deco); } for (auto* deco : func->return_type_decorations()) { Mark(deco); } if (!ValidateFunction(func, func_info)) { return false; } // Register the function information _after_ processing the statements. This // allows us to catch a function calling itself when determining the call // information as this function doesn't exist until it's finished. symbol_to_function_[func->symbol()] = func_info; function_to_info_.emplace(func, func_info); return true; } bool Resolver::BlockStatement(const ast::BlockStatement* stmt) { return BlockScope(stmt, BlockInfo::Type::kGeneric, [&] { return Statements(stmt->list()); }); } bool Resolver::Statements(const ast::StatementList& stmts) { for (auto* stmt : stmts) { Mark(stmt); if (!Statement(stmt)) { return false; } } return true; } bool Resolver::Statement(ast::Statement* stmt) { auto* sem_statement = builder_->create(stmt, current_block_->block); builder_->Sem().Add(stmt, sem_statement); ScopedAssignment sa(current_statement_, sem_statement); if (auto* a = stmt->As()) { return Assignment(a); } if (auto* b = stmt->As()) { return BlockStatement(b); } if (stmt->Is()) { if (!current_block_->FindFirstParent(BlockInfo::Type::kLoop) && !current_block_->FindFirstParent(BlockInfo::Type::kSwitchCase)) { diagnostics_.add_error("break statement must be in a loop or switch case", stmt->source()); return false; } return true; } if (auto* c = stmt->As()) { Mark(c->expr()); return Expression(c->expr()); } if (auto* c = stmt->As()) { return CaseStatement(c); } if (stmt->Is()) { // Set if we've hit the first continue statement in our parent loop if (auto* loop_block = current_block_->FindFirstParent(BlockInfo::Type::kLoop)) { if (loop_block->first_continue == size_t(~0)) { loop_block->first_continue = loop_block->decls.size(); } } else { diagnostics_.add_error("continue statement must be in a loop", stmt->source()); return false; } return true; } if (stmt->Is()) { return true; } if (stmt->Is()) { return true; } if (auto* i = stmt->As()) { return IfStatement(i); } if (auto* l = stmt->As()) { // We don't call DetermineBlockStatement on the body and continuing block as // these would make their BlockInfo siblings as in the AST, but we want the // body BlockInfo to parent the continuing BlockInfo for semantics and // validation. Also, we need to set their types differently. Mark(l->body()); return BlockScope(l->body(), BlockInfo::Type::kLoop, [&] { if (!Statements(l->body()->list())) { return false; } if (l->continuing()) { // has_continuing() also checks for empty() Mark(l->continuing()); } if (l->has_continuing()) { if (!BlockScope(l->continuing(), BlockInfo::Type::kLoopContinuing, [&] { return Statements(l->continuing()->list()); })) { return false; } } return true; }); } if (auto* r = stmt->As()) { return Return(r); } if (auto* s = stmt->As()) { return Switch(s); } if (auto* v = stmt->As()) { return VariableDeclStatement(v); } diagnostics_.add_error( "unknown statement type for type determination: " + builder_->str(stmt), stmt->source()); return false; } bool Resolver::CaseStatement(ast::CaseStatement* stmt) { Mark(stmt->body()); for (auto* sel : stmt->selectors()) { Mark(sel); } return BlockScope(stmt->body(), BlockInfo::Type::kSwitchCase, [&] { return Statements(stmt->body()->list()); }); } bool Resolver::IfStatement(ast::IfStatement* stmt) { Mark(stmt->condition()); if (!Expression(stmt->condition())) { return false; } auto* cond_type = TypeOf(stmt->condition())->UnwrapAll(); if (cond_type != builder_->ty.bool_()) { diagnostics_.add_error("if statement condition must be bool, got " + cond_type->FriendlyName(builder_->Symbols()), stmt->condition()->source()); return false; } Mark(stmt->body()); if (!BlockStatement(stmt->body())) { return false; } for (auto* else_stmt : stmt->else_statements()) { Mark(else_stmt); // Else statements are a bit unusual - they're owned by the if-statement, // not a BlockStatement. constexpr ast::BlockStatement* no_block_statement = nullptr; auto* sem_else_stmt = builder_->create(else_stmt, no_block_statement); builder_->Sem().Add(else_stmt, sem_else_stmt); ScopedAssignment sa(current_statement_, sem_else_stmt); if (auto* cond = else_stmt->condition()) { Mark(cond); if (!Expression(cond)) { return false; } } Mark(else_stmt->body()); if (!BlockStatement(else_stmt->body())) { return false; } } return true; } bool Resolver::Expressions(const ast::ExpressionList& list) { for (auto* expr : list) { Mark(expr); if (!Expression(expr)) { return false; } } return true; } bool Resolver::Expression(ast::Expression* expr) { if (TypeOf(expr)) { return true; // Already resolved } if (auto* a = expr->As()) { return ArrayAccessor(a); } if (auto* b = expr->As()) { return Binary(b); } if (auto* b = expr->As()) { return Bitcast(b); } if (auto* c = expr->As()) { return Call(c); } if (auto* c = expr->As()) { return Constructor(c); } if (auto* i = expr->As()) { return Identifier(i); } if (auto* m = expr->As()) { return MemberAccessor(m); } if (auto* u = expr->As()) { return UnaryOp(u); } diagnostics_.add_error("unknown expression for type determination", expr->source()); return false; } bool Resolver::ArrayAccessor(ast::ArrayAccessorExpression* expr) { Mark(expr->array()); if (!Expression(expr->array())) { return false; } Mark(expr->idx_expr()); if (!Expression(expr->idx_expr())) { return false; } auto* res = TypeOf(expr->array()); auto* parent_type = res->UnwrapAll(); sem::Type* ret = nullptr; if (auto* arr = parent_type->As()) { ret = arr->type(); } else if (auto* vec = parent_type->As()) { ret = vec->type(); } else if (auto* mat = parent_type->As()) { ret = builder_->create(mat->type(), mat->rows()); } else { diagnostics_.add_error("invalid parent type (" + parent_type->type_name() + ") in array accessor", expr->source()); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } else if (auto* arr = parent_type->As()) { if (!arr->type()->is_scalar()) { // If we extract a non-scalar from an array then we also get a pointer. We // will generate a Function storage class variable to store this into. ret = builder_->create(ret, ast::StorageClass::kFunction); } } SetType(expr, ret); return true; } bool Resolver::Bitcast(ast::BitcastExpression* expr) { Mark(expr->expr()); if (!Expression(expr->expr())) { return false; } SetType(expr, expr->type()); return true; } bool Resolver::Call(ast::CallExpression* call) { if (!Expressions(call->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. Mark(call->func()); auto* ident = call->func()->As(); if (!ident) { diagnostics_.add_error("call target is not an identifier", call->source()); return false; } auto name = builder_->Symbols().NameFor(ident->symbol()); auto intrinsic_type = sem::ParseIntrinsicType(name); if (intrinsic_type != IntrinsicType::kNone) { if (!IntrinsicCall(call, intrinsic_type)) { return false; } } else { if (current_function_) { auto callee_func_it = symbol_to_function_.find(ident->symbol()); if (callee_func_it == symbol_to_function_.end()) { if (current_function_->declaration->symbol() == ident->symbol()) { diagnostics_.add_error("v-0004", "recursion is not permitted. '" + name + "' attempted to call itself.", call->source()); } else { diagnostics_.add_error( "v-0006: unable to find called function: " + name, call->source()); } return false; } auto* callee_func = callee_func_it->second; // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before use. current_function_->transitive_calls.add(callee_func); for (auto* transitive_call : callee_func->transitive_calls) { current_function_->transitive_calls.add(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_vars) { set_referenced_from_function_if_needed(var, false); } } auto iter = symbol_to_function_.find(ident->symbol()); if (iter == symbol_to_function_.end()) { diagnostics_.add_error( "v-0005: function must be declared before use: '" + name + "'", call->source()); return false; } auto* function = iter->second; function_calls_.emplace(call, FunctionCallInfo{function, current_statement_}); SetType(call, function->declaration->return_type()); } return true; } bool Resolver::IntrinsicCall(ast::CallExpression* call, sem::IntrinsicType intrinsic_type) { std::vector arg_tys; arg_tys.reserve(call->params().size()); for (auto* expr : call->params()) { arg_tys.emplace_back(TypeOf(expr)); } auto result = intrinsic_table_->Lookup(*builder_, intrinsic_type, arg_tys, call->source()); if (!result.intrinsic) { // Intrinsic lookup failed. diagnostics_.add(result.diagnostics); return false; } builder_->Sem().Add(call, builder_->create(call, result.intrinsic, current_statement_)); SetType(call, result.intrinsic->ReturnType()); return true; } bool Resolver::Constructor(ast::ConstructorExpression* expr) { if (auto* type_ctor = expr->As()) { for (auto* value : type_ctor->values()) { Mark(value); if (!Expression(value)) { return false; } } SetType(expr, type_ctor->type()); // Now that the argument types have been determined, make sure that they // obey the constructor type rules laid out in // https://gpuweb.github.io/gpuweb/wgsl.html#type-constructor-expr. if (auto* vec_type = type_ctor->type()->As()) { return ValidateVectorConstructor(vec_type, type_ctor->values()); } if (auto* mat_type = type_ctor->type()->As()) { return ValidateMatrixConstructor(mat_type, type_ctor->values()); } // TODO(crbug.com/tint/634): Validate array constructor } else if (auto* scalar_ctor = expr->As()) { Mark(scalar_ctor->literal()); SetType(expr, scalar_ctor->literal()->type()); } else { TINT_ICE(diagnostics_) << "unexpected constructor expression type"; } return true; } bool Resolver::ValidateVectorConstructor(const sem::Vector* vec_type, const ast::ExpressionList& values) { sem::Type* elem_type = vec_type->type()->UnwrapAll(); size_t value_cardinality_sum = 0; for (auto* value : values) { sem::Type* value_type = TypeOf(value)->UnwrapAll(); if (value_type->is_scalar()) { if (elem_type != value_type) { diagnostics_.add_error( "type in vector constructor does not match vector type: " "expected '" + elem_type->FriendlyName(builder_->Symbols()) + "', found '" + value_type->FriendlyName(builder_->Symbols()) + "'", value->source()); return false; } value_cardinality_sum++; } else if (auto* value_vec = value_type->As()) { sem::Type* value_elem_type = value_vec->type()->UnwrapAll(); // A mismatch of vector type parameter T is only an error if multiple // arguments are present. A single argument constructor constitutes a // type conversion expression. // NOTE: A conversion expression from a vec to any other vecN // is disallowed (see // https://gpuweb.github.io/gpuweb/wgsl.html#conversion-expr). if (elem_type != value_elem_type && (values.size() > 1u || value_vec->is_bool_vector())) { diagnostics_.add_error( "type in vector constructor does not match vector type: " "expected '" + elem_type->FriendlyName(builder_->Symbols()) + "', found '" + value_elem_type->FriendlyName(builder_->Symbols()) + "'", value->source()); return false; } value_cardinality_sum += value_vec->size(); } else { // A vector constructor can only accept vectors and scalars. diagnostics_.add_error( "expected vector or scalar type in vector constructor; found: " + value_type->FriendlyName(builder_->Symbols()), value->source()); return false; } } // A correct vector constructor must either be a zero-value expression // or the number of components of all constructor arguments must add up // to the vector cardinality. if (value_cardinality_sum > 0 && value_cardinality_sum != vec_type->size()) { if (values.empty()) { TINT_ICE(diagnostics_) << "constructor arguments expected to be non-empty!"; } const Source& values_start = values[0]->source(); const Source& values_end = values[values.size() - 1]->source(); diagnostics_.add_error( "attempted to construct '" + vec_type->FriendlyName(builder_->Symbols()) + "' with " + std::to_string(value_cardinality_sum) + " component(s)", CombineSourceRange(values_start, values_end)); return false; } return true; } bool Resolver::ValidateMatrixConstructor(const sem::Matrix* matrix_type, const ast::ExpressionList& values) { // Zero Value expression if (values.empty()) { return true; } sem::Type* elem_type = matrix_type->type()->UnwrapAll(); if (matrix_type->columns() != values.size()) { const Source& values_start = values[0]->source(); const Source& values_end = values[values.size() - 1]->source(); diagnostics_.add_error( "expected " + std::to_string(matrix_type->columns()) + " '" + VectorPretty(matrix_type->rows(), elem_type) + "' arguments in '" + matrix_type->FriendlyName(builder_->Symbols()) + "' constructor, found " + std::to_string(values.size()), CombineSourceRange(values_start, values_end)); return false; } for (auto* value : values) { sem::Type* value_type = TypeOf(value)->UnwrapAll(); auto* value_vec = value_type->As(); if (!value_vec || value_vec->size() != matrix_type->rows() || elem_type != value_vec->type()->UnwrapAll()) { diagnostics_.add_error( "expected argument type '" + VectorPretty(matrix_type->rows(), elem_type) + "' in '" + matrix_type->FriendlyName(builder_->Symbols()) + "' constructor, found '" + value_type->FriendlyName(builder_->Symbols()) + "'", value->source()); return false; } } return true; } bool Resolver::Identifier(ast::IdentifierExpression* expr) { auto symbol = expr->symbol(); VariableInfo* var; if (variable_stack_.get(symbol, &var)) { // A constant is the type, but a variable is always a pointer so synthesize // the pointer around the variable type. if (var->declaration->is_const()) { SetType(expr, var->type); } else if (var->type->Is()) { SetType(expr, var->type); } else { SetType(expr, builder_->create(var->type, var->storage_class)); } var->users.push_back(expr); set_referenced_from_function_if_needed(var, true); if (current_block_) { // If identifier is part of a loop continuing block, make sure it doesn't // refer to a variable that is bypassed by a continue statement in the // loop's body block. if (auto* continuing_block = current_block_->FindFirstParent( BlockInfo::Type::kLoopContinuing)) { auto* loop_block = continuing_block->FindFirstParent(BlockInfo::Type::kLoop); if (loop_block->first_continue != size_t(~0)) { auto& decls = loop_block->decls; // If our identifier is in loop_block->decls, make sure its index is // less than first_continue auto iter = std::find_if( decls.begin(), decls.end(), [&symbol](auto* v) { return v->symbol() == symbol; }); if (iter != decls.end()) { auto var_decl_index = static_cast(std::distance(decls.begin(), iter)); if (var_decl_index >= loop_block->first_continue) { diagnostics_.add_error( "continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "' in continuing block", expr->source()); return false; } } } } } return true; } auto iter = symbol_to_function_.find(symbol); if (iter != symbol_to_function_.end()) { diagnostics_.add_error("missing '(' for function call", expr->source().End()); return false; } std::string name = builder_->Symbols().NameFor(symbol); if (sem::ParseIntrinsicType(name) != IntrinsicType::kNone) { diagnostics_.add_error("missing '(' for intrinsic call", expr->source().End()); return false; } diagnostics_.add_error( "v-0006: identifier must be declared before use: " + name, expr->source()); return false; } bool Resolver::MemberAccessor(ast::MemberAccessorExpression* expr) { Mark(expr->structure()); if (!Expression(expr->structure())) { return false; } auto* res = TypeOf(expr->structure()); auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); sem::Type* ret = nullptr; std::vector swizzle; if (auto* ty = data_type->As()) { Mark(expr->member()); auto symbol = expr->member()->symbol(); auto* str = Structure(ty); const sem::StructMember* member = nullptr; for (auto* m : str->members) { if (m->Declaration()->symbol() == symbol) { ret = m->Declaration()->type(); member = m; break; } } if (ret == nullptr) { diagnostics_.add_error( "struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source()); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } builder_->Sem().Add(expr, builder_->create( expr, ret, current_statement_, member)); } else if (auto* vec = data_type->As()) { Mark(expr->member()); std::string str = builder_->Symbols().NameFor(expr->member()->symbol()); auto size = str.size(); swizzle.reserve(str.size()); for (auto c : str) { switch (c) { case 'x': case 'r': swizzle.emplace_back(0); break; case 'y': case 'g': swizzle.emplace_back(1); break; case 'z': case 'b': swizzle.emplace_back(2); break; case 'w': case 'a': swizzle.emplace_back(3); break; default: diagnostics_.add_error( "invalid vector swizzle character", expr->member()->source().Begin() + swizzle.size()); return false; } } if (size < 1 || size > 4) { diagnostics_.add_error("invalid vector swizzle size", expr->member()->source()); return false; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(str.begin(), str.end(), is_rgba) && !std::all_of(str.begin(), str.end(), is_xyzw)) { diagnostics_.add_error( "invalid mixing of vector swizzle characters rgba with xyzw", expr->member()->source()); return false; } if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } } else { // The vector will have a number of components equal to the length of // the swizzle. ret = builder_->create(vec->type(), static_cast(size)); } builder_->Sem().Add( expr, builder_->create(expr, ret, current_statement_, std::move(swizzle))); } else { diagnostics_.add_error( "invalid use of member accessor on a non-vector/non-struct " + data_type->type_name(), expr->source()); return false; } SetType(expr, ret); return true; } bool Resolver::ValidateBinary(ast::BinaryExpression* expr) { using Bool = sem::Bool; using F32 = sem::F32; using I32 = sem::I32; using U32 = sem::U32; using Matrix = sem::Matrix; using Vector = sem::Vector; auto* lhs_declared_type = TypeOf(expr->lhs())->UnwrapAll(); auto* rhs_declared_type = TypeOf(expr->rhs())->UnwrapAll(); auto* lhs_type = Canonical(lhs_declared_type); auto* rhs_type = Canonical(rhs_declared_type); auto* lhs_vec = lhs_type->As(); auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr; auto* rhs_vec = rhs_type->As(); auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr; const bool matching_vec_elem_types = lhs_vec_elem_type && rhs_vec_elem_type && (lhs_vec_elem_type == rhs_vec_elem_type) && (lhs_vec->size() == rhs_vec->size()); const bool matching_types = matching_vec_elem_types || (lhs_type == rhs_type); // Binary logical expressions if (expr->IsLogicalAnd() || expr->IsLogicalOr()) { if (matching_types && lhs_type->Is()) { return true; } } if (expr->IsOr() || expr->IsAnd()) { if (matching_types && lhs_type->Is()) { return true; } if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is()) { return true; } } // Arithmetic expressions if (expr->IsArithmetic()) { // Binary arithmetic expressions over scalars if (matching_types && lhs_type->IsAnyOf()) { return true; } // Binary arithmetic expressions over vectors if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf()) { return true; } } // Binary arithmetic expressions with mixed scalar, vector, and matrix // operands if (expr->IsMultiply()) { // Multiplication of a vector and a scalar if (lhs_type->Is() && rhs_vec_elem_type && rhs_vec_elem_type->Is()) { return true; } if (lhs_vec_elem_type && lhs_vec_elem_type->Is() && rhs_type->Is()) { return true; } auto* lhs_mat = lhs_type->As(); auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr; auto* rhs_mat = rhs_type->As(); auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr; // Multiplication of a matrix and a scalar if (lhs_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is()) { return true; } if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_type->Is()) { return true; } // Vector times matrix if (lhs_vec_elem_type && lhs_vec_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_vec->size() == rhs_mat->rows())) { return true; } // Matrix times vector if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_vec_elem_type && rhs_vec_elem_type->Is() && (lhs_mat->columns() == rhs_vec->size())) { return true; } // Matrix times matrix if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_mat->columns() == rhs_mat->rows())) { return true; } } // Comparison expressions if (expr->IsComparison()) { if (matching_types) { // Special case for bools: only == and != if (lhs_type->Is() && (expr->IsEqual() || expr->IsNotEqual())) { return true; } // For the rest, we can compare i32, u32, and f32 if (lhs_type->IsAnyOf()) { return true; } } // Same for vectors if (matching_vec_elem_types) { if (lhs_vec_elem_type->Is() && (expr->IsEqual() || expr->IsNotEqual())) { return true; } if (lhs_vec_elem_type->IsAnyOf()) { return true; } } } // Binary bitwise operations if (expr->IsBitwise()) { if (matching_types && lhs_type->IsAnyOf()) { return true; } } // Bit shift expressions if (expr->IsBitshift()) { // Type validation rules are the same for left or right shift, despite // differences in computation rules (i.e. right shift can be arithmetic or // logical depending on lhs type). if (lhs_type->IsAnyOf() && rhs_type->Is()) { return true; } if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf() && rhs_vec_elem_type && rhs_vec_elem_type->Is()) { return true; } } diagnostics_.add_error( "Binary expression operand types are invalid for this operation: " + lhs_declared_type->FriendlyName(builder_->Symbols()) + " " + FriendlyName(expr->op()) + " " + rhs_declared_type->FriendlyName(builder_->Symbols()), expr->source()); return false; } bool Resolver::Binary(ast::BinaryExpression* expr) { Mark(expr->lhs()); Mark(expr->rhs()); if (!Expression(expr->lhs()) || !Expression(expr->rhs())) { return false; } if (!ValidateBinary(expr)) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { SetType(expr, TypeOf(expr->lhs())->UnwrapPtrIfNeeded()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = builder_->create(); auto* param_type = TypeOf(expr->lhs())->UnwrapAll(); sem::Type* result_type = bool_type; if (auto* vec = param_type->As()) { result_type = builder_->create(bool_type, vec->size()); } SetType(expr, result_type); return true; } if (expr->IsMultiply()) { auto* lhs_type = TypeOf(expr->lhs())->UnwrapAll(); auto* rhs_type = TypeOf(expr->rhs())->UnwrapAll(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. auto* lhs_mat = lhs_type->As(); auto* rhs_mat = rhs_type->As(); auto* lhs_vec = lhs_type->As(); auto* rhs_vec = rhs_type->As(); sem::Type* result_type; if (lhs_mat && rhs_mat) { result_type = builder_->create( lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns()); } else if (lhs_mat && rhs_vec) { result_type = builder_->create(lhs_mat->type(), lhs_mat->rows()); } else if (lhs_vec && rhs_mat) { result_type = builder_->create(rhs_mat->type(), rhs_mat->columns()); } else if (lhs_mat) { // matrix * scalar result_type = lhs_type; } else if (rhs_mat) { // scalar * matrix result_type = rhs_type; } else if (lhs_vec && rhs_vec) { result_type = lhs_type; } else if (lhs_vec) { // Vector * scalar result_type = lhs_type; } else if (rhs_vec) { // Scalar * vector result_type = rhs_type; } else { // Scalar * Scalar result_type = lhs_type; } SetType(expr, result_type); return true; } diagnostics_.add_error("Unknown binary expression", expr->source()); return false; } bool Resolver::UnaryOp(ast::UnaryOpExpression* expr) { Mark(expr->expr()); // Result type matches the parameter type. if (!Expression(expr->expr())) { return false; } auto* result_type = TypeOf(expr->expr())->UnwrapPtrIfNeeded(); SetType(expr, result_type); return true; } bool Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { ast::Variable* var = stmt->variable(); Mark(var); sem::Type* type = var->declared_type(); bool is_global = false; if (variable_stack_.get(var->symbol(), nullptr, &is_global)) { const char* error_code = is_global ? "v-0013" : "v-0014"; diagnostics_.add_error(error_code, "redeclared identifier '" + builder_->Symbols().NameFor(var->symbol()) + "'", stmt->source()); return false; } if (auto* ctor = stmt->variable()->constructor()) { Mark(ctor); if (!Expression(ctor)) { return false; } auto* rhs_type = TypeOf(ctor); // If the variable has no type, infer it from the rhs if (type == nullptr) { type = rhs_type->UnwrapPtrIfNeeded(); } if (!IsValidAssignment(type, rhs_type)) { diagnostics_.add_error( "variable of type '" + type->FriendlyName(builder_->Symbols()) + "' cannot be initialized with a value of type '" + rhs_type->FriendlyName(builder_->Symbols()) + "'", stmt->source()); return false; } } for (auto* deco : var->decorations()) { // TODO(bclayton): Validate decorations Mark(deco); } auto* info = Variable(var, type); if (!info) { return false; } // TODO(bclayton): Remove this and fix tests. We're overriding the semantic // type stored in info->type here with a possibly non-canonicalized type. info->type = type; variable_stack_.set(var->symbol(), info); current_block_->decls.push_back(var); if (!ValidateVariable(var)) { return false; } if (!var->is_const()) { if (info->storage_class != ast::StorageClass::kFunction) { if (info->storage_class != ast::StorageClass::kNone) { diagnostics_.add_error( "function variable has a non-function storage class", stmt->source()); return false; } info->storage_class = ast::StorageClass::kFunction; } } if (!ApplyStorageClassUsageToType(info->storage_class, info->type, var->source())) { diagnostics_.add_note("while instantiating variable " + builder_->Symbols().NameFor(var->symbol()), var->source()); return false; } return true; } sem::Type* Resolver::TypeOf(ast::Expression* expr) { auto it = expr_info_.find(expr); if (it != expr_info_.end()) { return it->second.type; } return nullptr; } void Resolver::SetType(ast::Expression* expr, sem::Type* type) { if (expr_info_.count(expr)) { TINT_ICE(builder_->Diagnostics()) << "SetType() called twice for the same expression"; } expr_info_.emplace(expr, ExpressionInfo{type, current_statement_}); } void Resolver::CreateSemanticNodes() const { auto& sem = builder_->Sem(); // Collate all the 'ancestor_entry_points' - this is a map of function symbol // to all the entry points that transitively call the function. std::unordered_map> ancestor_entry_points; for (auto* func : builder_->AST().Functions()) { auto it = function_to_info_.find(func); if (it == function_to_info_.end()) { continue; // Resolver has likely errored. Process what we can. } auto* info = it->second; if (!func->IsEntryPoint()) { continue; } for (auto* call : info->transitive_calls) { auto& vec = ancestor_entry_points[call->declaration->symbol()]; vec.emplace_back(func->symbol()); } } // Create semantic nodes for all ast::Variables for (auto it : variable_to_info_) { auto* var = it.first; auto* info = it.second; auto* sem_var = builder_->create(var, info->type, info->storage_class); std::vector users; for (auto* user : info->users) { // Create semantic node for the identifier expression if necessary auto* sem_expr = sem.Get(user); if (sem_expr == nullptr) { auto* type = expr_info_.at(user).type; auto* stmt = expr_info_.at(user).statement; auto* sem_user = builder_->create(user, type, stmt, sem_var); sem_var->AddUser(sem_user); sem.Add(user, sem_user); } else { auto* sem_user = sem_expr->As(); if (!sem_user) { TINT_ICE(builder_->Diagnostics()) << "expected sem::VariableUser, got " << sem_expr->TypeInfo().name; } sem_var->AddUser(sem_user); } } sem.Add(var, sem_var); } auto remap_vars = [&sem](const std::vector& in) { std::vector out; out.reserve(in.size()); for (auto* info : in) { out.emplace_back(sem.Get(info->declaration)); } return out; }; // Create semantic nodes for all ast::Functions std::unordered_map func_info_to_sem_func; for (auto it : function_to_info_) { auto* func = it.first; auto* info = it.second; auto* sem_func = builder_->create( info->declaration, remap_vars(info->parameters), remap_vars(info->referenced_module_vars), remap_vars(info->local_referenced_module_vars), info->return_statements, ancestor_entry_points[func->symbol()]); func_info_to_sem_func.emplace(info, sem_func); sem.Add(func, sem_func); } // Create semantic nodes for all ast::CallExpressions for (auto it : function_calls_) { auto* call = it.first; auto info = it.second; auto* sem_func = func_info_to_sem_func.at(info.function); sem.Add(call, builder_->create(call, sem_func, info.statement)); } // Create semantic nodes for all remaining expression types for (auto it : expr_info_) { auto* expr = it.first; auto& info = it.second; if (sem.Get(expr)) { // Expression has already been assigned a semantic node continue; } sem.Add(expr, builder_->create(expr, info.type, info.statement)); } // Create semantic nodes for all structs for (auto it : struct_info_) { auto* str = it.first; auto* info = it.second; builder_->Sem().Add( str, builder_->create( str, std::move(info->members), info->align, info->size, info->size_no_padding, info->storage_class_usage, info->pipeline_stage_uses)); } } bool Resolver::DefaultAlignAndSize(sem::Type* ty, uint32_t& align, uint32_t& size, const Source& source) { static constexpr uint32_t vector_size[] = { /* padding */ 0, /* padding */ 0, /*vec2*/ 8, /*vec3*/ 12, /*vec4*/ 16, }; static constexpr uint32_t vector_align[] = { /* padding */ 0, /* padding */ 0, /*vec2*/ 8, /*vec3*/ 16, /*vec4*/ 16, }; auto* cty = Canonical(ty); if (cty->is_scalar()) { // Note: Also captures booleans, but these are not host-shareable. align = 4; size = 4; return true; } else if (auto* vec = cty->As()) { if (vec->size() < 2 || vec->size() > 4) { TINT_UNREACHABLE(diagnostics_) << "Invalid vector size: vec" << vec->size(); return false; } align = vector_align[vec->size()]; size = vector_size[vec->size()]; return true; } else if (auto* mat = cty->As()) { if (mat->columns() < 2 || mat->columns() > 4 || mat->rows() < 2 || mat->rows() > 4) { TINT_UNREACHABLE(diagnostics_) << "Invalid matrix size: mat" << mat->columns() << "x" << mat->rows(); return false; } align = vector_align[mat->rows()]; size = vector_align[mat->rows()] * mat->columns(); return true; } else if (auto* s = cty->As()) { if (auto* si = Structure(s)) { align = si->align; size = si->size; return true; } return false; } else if (cty->Is()) { if (auto* sem = Array(ty->UnwrapAliasIfNeeded()->As(), source)) { align = sem->Align(); size = sem->Size(); return true; } return false; } TINT_UNREACHABLE(diagnostics_) << "Invalid type " << ty->TypeInfo().name; return false; } const sem::Array* Resolver::Array(sem::ArrayType* arr, const Source& source) { if (auto* sem = builder_->Sem().Get(arr)) { // Semantic info already constructed for this array type return sem; } if (!ValidateArray(arr, source)) { return nullptr; } auto* el_ty = arr->type(); uint32_t el_align = 0; uint32_t el_size = 0; if (!DefaultAlignAndSize(el_ty, el_align, el_size, source)) { return nullptr; } auto create_semantic = [&](uint32_t stride) -> sem::Array* { auto align = el_align; // WebGPU requires runtime arrays have at least one element, but the AST // records an element count of 0 for it. auto size = std::max(arr->size(), 1) * stride; auto* sem = builder_->create(arr, align, size, stride); builder_->Sem().Add(arr, sem); return sem; }; // Look for explicit stride via [[stride(n)]] decoration uint32_t explicit_stride = 0; for (auto* deco : arr->decorations()) { Mark(deco); if (auto* stride = deco->As()) { if (explicit_stride) { diagnostics_.add_error( "array must have at most one [[stride]] decoration", source); return nullptr; } explicit_stride = stride->stride(); if (!ValidateArrayStrideDecoration(stride, el_size, el_align, source)) { return nullptr; } } } if (explicit_stride) { return create_semantic(explicit_stride); } // Calculate implicit stride auto implicit_stride = utils::RoundUp(el_align, el_size); return create_semantic(implicit_stride); } bool Resolver::ValidateArray(const sem::ArrayType* arr, const Source& source) { auto* el_ty = arr->type(); if (!IsStorable(el_ty)) { builder_->Diagnostics().add_error( el_ty->FriendlyName(builder_->Symbols()) + " cannot be used as an element type of an array", source); return false; } if (auto* el_str = el_ty->As()) { if (el_str->impl()->IsBlockDecorated()) { // https://gpuweb.github.io/gpuweb/wgsl/#attributes // A structure type with the block attribute must not be: // * the element type of an array type // * the member type in another structure diagnostics_.add_error( "A structure type with a [[block]] decoration cannot be used as an " "element of an array", source); return false; } } return true; } bool Resolver::ValidateArrayStrideDecoration(const ast::StrideDecoration* deco, uint32_t el_size, uint32_t el_align, const Source& source) { auto stride = deco->stride(); bool is_valid_stride = (stride >= el_size) && (stride >= el_align) && (stride % el_align == 0); if (!is_valid_stride) { // https://gpuweb.github.io/gpuweb/wgsl/#array-layout-rules // Arrays decorated with the stride attribute must have a stride that is // at least the size of the element type, and be a multiple of the // element type's alignment value. diagnostics_.add_error( "arrays decorated with the stride attribute must have a stride " "that is at least the size of the element type, and be a multiple " "of the element type's alignment value.", source); return false; } return true; } bool Resolver::ValidateStructure(const sem::StructType* st) { for (auto* member : st->impl()->members()) { if (auto* r = member->type()->UnwrapAll()->As()) { if (r->IsRuntimeArray()) { if (member != st->impl()->members().back()) { diagnostics_.add_error( "v-0015", "runtime arrays may only appear as the last member of a struct", member->source()); return false; } if (!st->IsBlockDecorated()) { diagnostics_.add_error( "v-0015", "a struct containing a runtime-sized array " "requires the [[block]] attribute: '" + builder_->Symbols().NameFor(st->impl()->name()) + "'", member->source()); return false; } for (auto* deco : r->decorations()) { if (!deco->Is()) { diagnostics_.add_error("decoration is not valid for array types", deco->source()); return false; } } } } for (auto* deco : member->decorations()) { if (!(deco->Is() || deco->Is() || deco->Is() || deco->Is() || deco->Is())) { diagnostics_.add_error("decoration is not valid for structure members", deco->source()); return false; } } } for (auto* deco : st->impl()->decorations()) { if (!(deco->Is())) { diagnostics_.add_error("decoration is not valid for struct declarations", deco->source()); return false; } } return true; } Resolver::StructInfo* Resolver::Structure(sem::StructType* str) { auto info_it = struct_info_.find(str); if (info_it != struct_info_.end()) { // StructInfo already resolved for this structure type return info_it->second; } Mark(str->impl()); for (auto* deco : str->impl()->decorations()) { Mark(deco); } if (!ValidateStructure(str)) { return nullptr; } sem::StructMemberList sem_members; sem_members.reserve(str->impl()->members().size()); // Calculate the effective size and alignment of each field, and the overall // size of the structure. // For size, use the size attribute if provided, otherwise use the default // size for the type. // For alignment, use the alignment attribute if provided, otherwise use the // default alignment for the member type. // Diagnostic errors are raised if a basic rule is violated. // Validation of storage-class rules requires analysing the actual variable // usage of the structure, and so is performed as part of the variable // validation. // TODO(crbug.com/tint/628): Actually implement storage-class validation. uint32_t struct_size = 0; uint32_t struct_align = 1; for (auto* member : str->impl()->members()) { Mark(member); // First check the member type is legal if (!IsStorable(member->type())) { builder_->Diagnostics().add_error( std::string(member->type()->FriendlyName(builder_->Symbols())) + " cannot be used as the type of a structure member"); return nullptr; } uint32_t offset = struct_size; uint32_t align = 0; uint32_t size = 0; if (!DefaultAlignAndSize(member->type(), align, size, member->source())) { return nullptr; } bool has_offset_deco = false; bool has_align_deco = false; bool has_size_deco = false; for (auto* deco : member->decorations()) { Mark(deco); if (auto* o = deco->As()) { // Offset decorations are not part of the WGSL spec, but are emitted by // the SPIR-V reader. if (o->offset() < struct_size) { diagnostics_.add_error("offsets must be in ascending order", o->source()); return nullptr; } offset = o->offset(); align = 1; has_offset_deco = true; } else if (auto* a = deco->As()) { if (a->align() <= 0 || !utils::IsPowerOfTwo(a->align())) { diagnostics_.add_error( "align value must be a positive, power-of-two integer", a->source()); return nullptr; } align = a->align(); has_align_deco = true; } else if (auto* s = deco->As()) { if (s->size() < size) { diagnostics_.add_error( "size must be at least as big as the type's size (" + std::to_string(size) + ")", s->source()); return nullptr; } size = s->size(); has_size_deco = true; } } if (has_offset_deco && (has_align_deco || has_size_deco)) { diagnostics_.add_error( "offset decorations cannot be used with align or size decorations", member->source()); return nullptr; } offset = utils::RoundUp(align, offset); auto* sem_member = builder_->create(member, offset, align, size); builder_->Sem().Add(member, sem_member); sem_members.emplace_back(sem_member); struct_size = offset + size; struct_align = std::max(struct_align, align); } auto size_no_padding = struct_size; struct_size = utils::RoundUp(struct_align, struct_size); auto* info = struct_infos_.Create(); info->members = std::move(sem_members); info->align = struct_align; info->size = struct_size; info->size_no_padding = size_no_padding; struct_info_.emplace(str, info); return info; } bool Resolver::ValidateReturn(const ast::ReturnStatement* ret) { sem::Type* func_type = current_function_->declaration->return_type(); auto* ret_type = ret->has_value() ? TypeOf(ret->value())->UnwrapAll() : builder_->ty.void_(); if (func_type->UnwrapAll() != ret_type) { diagnostics_.add_error( "v-000y", "return statement type must match its function " "return type, returned '" + ret_type->FriendlyName(builder_->Symbols()) + "', expected '" + func_type->FriendlyName(builder_->Symbols()) + "'", ret->source()); return false; } return true; } bool Resolver::Return(ast::ReturnStatement* ret) { current_function_->return_statements.push_back(ret); if (auto* value = ret->value()) { Mark(value); // Validate after processing the return value expression so that its type is // available for validation return Expression(value) && ValidateReturn(ret); } return true; } bool Resolver::ValidateSwitch(const ast::SwitchStatement* s) { auto* cond_type = TypeOf(s->condition())->UnwrapAll(); if (!cond_type->is_integer_scalar()) { diagnostics_.add_error("v-0025", "switch statement selector expression must be of a " "scalar integer type", s->condition()->source()); return false; } bool has_default = false; std::unordered_set selector_set; for (auto* case_stmt : s->body()) { if (case_stmt->IsDefault()) { if (has_default) { // More than one default clause diagnostics_.add_error( "v-0008", "switch statement must have exactly one default clause", case_stmt->source()); return false; } has_default = true; } for (auto* selector : case_stmt->selectors()) { if (cond_type != selector->type()) { diagnostics_.add_error("v-0026", "the case selector values must have the same " "type as the selector expression.", case_stmt->source()); return false; } auto v = selector->value_as_u32(); if (selector_set.find(v) != selector_set.end()) { diagnostics_.add_error( "v-0027", "a literal value must not appear more than once in " "the case selectors for a switch statement: '" + builder_->str(selector) + "'", case_stmt->source()); return false; } selector_set.emplace(v); } } if (!has_default) { // No default clause diagnostics_.add_error("switch statement must have a default clause", s->source()); return false; } if (!s->body().empty()) { auto* last_clause = s->body().back()->As(); auto* last_stmt = last_clause->body()->last(); if (last_stmt && last_stmt->Is()) { diagnostics_.add_error("v-0028", "a fallthrough statement must not appear as " "the last statement in last clause of a switch", last_stmt->source()); return false; } } return true; } bool Resolver::Switch(ast::SwitchStatement* s) { Mark(s->condition()); if (!Expression(s->condition())) { return false; } for (auto* case_stmt : s->body()) { Mark(case_stmt); if (!CaseStatement(case_stmt)) { return false; } } if (!ValidateSwitch(s)) { return false; } return true; } bool Resolver::ValidateAssignment(const ast::AssignmentStatement* a) { auto* lhs = a->lhs(); auto* rhs = a->rhs(); // TODO(crbug.com/tint/659): This logic needs updating once pointers are // pinned down in the WGSL spec. auto* lhs_type = TypeOf(lhs)->UnwrapAll(); auto* rhs_type = TypeOf(rhs); if (!IsValidAssignment(lhs_type, rhs_type)) { diagnostics_.add_error("invalid assignment: cannot assign value of type '" + rhs_type->FriendlyName(builder_->Symbols()) + "' to a variable of type '" + lhs_type->FriendlyName(builder_->Symbols()) + "'", a->source()); return false; } // Pointers are not storable in WGSL, but the right-hand side must be // storable. The raw right-hand side might be a pointer value which must be // loaded (dereferenced) to provide the value to be stored. auto* rhs_result_type = TypeOf(rhs)->UnwrapAll(); if (!IsStorable(rhs_result_type)) { diagnostics_.add_error( "v-000x", "invalid assignment: right-hand-side is not storable: " + TypeOf(rhs)->FriendlyName(builder_->Symbols()), a->source()); return false; } // lhs must be a pointer or a constant auto* lhs_result_type = TypeOf(lhs)->UnwrapIfNeeded(); if (!lhs_result_type->Is()) { // In case lhs is a constant identifier, output a nicer message as it's // likely to be a common programmer error. if (auto* ident = lhs->As()) { VariableInfo* var; if (variable_stack_.get(ident->symbol(), &var) && var->declaration->is_const()) { diagnostics_.add_error( "v-0021", "cannot re-assign a constant: '" + builder_->Symbols().NameFor(ident->symbol()) + "'", a->source()); return false; } } // Issue a generic error. diagnostics_.add_error( "v-000x", "invalid assignment: left-hand-side does not reference storage: " + TypeOf(lhs)->FriendlyName(builder_->Symbols()), a->source()); return false; } return true; } bool Resolver::Assignment(ast::AssignmentStatement* a) { Mark(a->lhs()); Mark(a->rhs()); if (!Expression(a->lhs()) || !Expression(a->rhs())) { return false; } return ValidateAssignment(a); } bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc, sem::Type* ty, const Source& usage) { ty = ty->UnwrapIfNeeded(); if (auto* str = ty->As()) { auto* info = Structure(str); if (!info) { return false; } if (info->storage_class_usage.count(sc)) { return true; // Already applied } info->storage_class_usage.emplace(sc); for (auto* member : str->impl()->members()) { if (!ApplyStorageClassUsageToType(sc, member->type(), usage)) { std::stringstream err; err << "while analysing structure member " << str->FriendlyName(builder_->Symbols()) << "." << builder_->Symbols().NameFor(member->symbol()); diagnostics_.add_note(err.str(), member->source()); return false; } } return true; } if (auto* arr = ty->As()) { return ApplyStorageClassUsageToType(sc, arr->type(), usage); } if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) { std::stringstream err; err << "Type '" << ty->FriendlyName(builder_->Symbols()) << "' cannot be used in storage class '" << sc << "' as it is non-host-shareable"; diagnostics_.add_error(err.str(), usage); return false; } return true; } template bool Resolver::BlockScope(const ast::BlockStatement* block, BlockInfo::Type type, F&& callback) { BlockInfo block_info(block, type, current_block_); ScopedAssignment sa(current_block_, &block_info); variable_stack_.push_scope(); bool result = callback(); variable_stack_.pop_scope(); return result; } std::string Resolver::VectorPretty(uint32_t size, sem::Type* element_type) { sem::Vector vec_type(element_type, size); return vec_type.FriendlyName(builder_->Symbols()); } sem::Type* Resolver::Canonical(sem::Type* type) { using AccessControl = sem::AccessControl; using Alias = sem::Alias; using Matrix = sem::Matrix; using Type = sem::Type; using Vector = sem::Vector; std::function make_canonical; make_canonical = [&](Type* t) -> sem::Type* { // Unwrap alias sequence Type* ct = t; while (auto* p = ct->As()) { ct = p->type(); } if (auto* v = ct->As()) { return builder_->create(make_canonical(v->type()), v->size()); } if (auto* m = ct->As()) { return builder_->create(make_canonical(m->type()), m->rows(), m->columns()); } if (auto* ac = ct->As()) { return builder_->create(ac->access_control(), make_canonical(ac->type())); } return ct; }; return utils::GetOrCreate(type_to_canonical_, type, [&] { return make_canonical(type); }); } void Resolver::Mark(ast::Node* node) { if (node == nullptr) { TINT_ICE(diagnostics_) << "Resolver::Mark() called with nullptr"; } if (marked_.emplace(node).second) { return; } TINT_ICE(diagnostics_) << "AST node '" << node->TypeInfo().name << "' was encountered twice in the same AST of a Program\n" << "At: " << node->source(); } Resolver::VariableInfo::VariableInfo(ast::Variable* decl, sem::Type* ctype) : declaration(decl), type(ctype), storage_class(decl->declared_storage_class()) {} Resolver::VariableInfo::~VariableInfo() = default; Resolver::FunctionInfo::FunctionInfo(ast::Function* decl) : declaration(decl) {} Resolver::FunctionInfo::~FunctionInfo() = default; Resolver::StructInfo::StructInfo() = default; Resolver::StructInfo::~StructInfo() = default; } // namespace resolver } // namespace tint