// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SRC_TINT_RESOLVER_RESOLVER_H_ #define SRC_TINT_RESOLVER_RESOLVER_H_ #include #include #include #include #include #include #include #include "src/tint/program_builder.h" #include "src/tint/resolver/const_eval.h" #include "src/tint/resolver/dependency_graph.h" #include "src/tint/resolver/intrinsic_table.h" #include "src/tint/resolver/sem_helper.h" #include "src/tint/resolver/validator.h" #include "src/tint/scope_stack.h" #include "src/tint/sem/binding_point.h" #include "src/tint/sem/block_statement.h" #include "src/tint/sem/constant.h" #include "src/tint/sem/function.h" #include "src/tint/sem/struct.h" #include "src/tint/utils/bitset.h" #include "src/tint/utils/unique_vector.h" // Forward declarations namespace tint::ast { class IndexAccessorExpression; class BinaryExpression; class BitcastExpression; class CallExpression; class CallStatement; class CaseStatement; class ForLoopStatement; class Function; class IdentifierExpression; class LoopStatement; class MemberAccessorExpression; class ReturnStatement; class SwitchStatement; class UnaryOpExpression; class Variable; class WhileStatement; } // namespace tint::ast namespace tint::sem { class Array; class Atomic; class BlockStatement; class Builtin; class CaseStatement; class ForLoopStatement; class IfStatement; class LoopStatement; class Statement; class StructMember; class SwitchStatement; class TypeConstructor; class WhileStatement; } // namespace tint::sem namespace tint::resolver { /// Resolves types for all items in the given tint program class Resolver { public: /// Constructor /// @param builder the program builder explicit Resolver(ProgramBuilder* builder); /// Destructor ~Resolver(); /// @returns error messages from the resolver std::string error() const { return diagnostics_.str(); } /// @returns true if the resolver was successful bool Resolve(); /// @param type the given type /// @returns true if the given type is a plain type bool IsPlain(const sem::Type* type) const { return validator_.IsPlain(type); } /// @param type the given type /// @returns true if the given type is a fixed-footprint type bool IsFixedFootprint(const sem::Type* type) const { return validator_.IsFixedFootprint(type); } /// @param type the given type /// @returns true if the given type is storable bool IsStorable(const sem::Type* type) const { return validator_.IsStorable(type); } /// @param type the given type /// @returns true if the given type is host-shareable bool IsHostShareable(const sem::Type* type) const { return validator_.IsHostShareable(type); } /// @returns the validator for testing const Validator* GetValidatorForTesting() const { return &validator_; } private: Validator::ValidTypeStorageLayouts valid_type_storage_layouts_; /// Structure holding semantic information about a block (i.e. scope), such as /// parent block and variables declared in the block. /// Used to validate variable scoping rules. struct BlockInfo { enum class Type { kGeneric, kLoop, kLoopContinuing, kSwitchCase }; BlockInfo(const ast::BlockStatement* block, Type type, BlockInfo* parent); ~BlockInfo(); template BlockInfo* FindFirstParent(Pred&& pred) { BlockInfo* curr = this; while (curr && !pred(curr)) { curr = curr->parent; } return curr; } BlockInfo* FindFirstParent(BlockInfo::Type ty) { return FindFirstParent([ty](auto* block_info) { return block_info->type == ty; }); } ast::BlockStatement const* const block; const Type type; BlockInfo* const parent; std::vector decls; // first_continue is set to the index of the first variable in decls // declared after the first continue statement in a loop block, if any. constexpr static size_t kNoContinue = size_t(~0); size_t first_continue = kNoContinue; }; // Structure holding information for a TypeDecl struct TypeDeclInfo { ast::TypeDecl const* const ast; sem::Type* const sem; }; /// Resolves the program, without creating final the semantic nodes. /// @returns true on success, false on error bool ResolveInternal(); /// Creates the nodes and adds them to the sem::Info mappings of the /// ProgramBuilder. void CreateSemanticNodes() const; /// Expression traverses the graph of expressions starting at `expr`, building a postordered /// list (leaf-first) of all the expression nodes. Each of the expressions are then resolved by /// dispatching to the appropriate expression handlers below. /// @returns the resolved semantic node for the expression `expr`, or nullptr on failure. sem::Expression* Expression(const ast::Expression* expr); //////////////////////////////////////////////////////////////////////////////////////////////// // Expression resolving methods // // Returns the semantic node pointer on success, nullptr on failure. // // These methods are invoked by Expression(), in postorder (child-first). These methods should // not attempt to resolve their children. This design avoids recursion, which is a common cause // of stack-overflows. //////////////////////////////////////////////////////////////////////////////////////////////// sem::Expression* IndexAccessor(const ast::IndexAccessorExpression*); sem::Expression* Binary(const ast::BinaryExpression*); sem::Expression* Bitcast(const ast::BitcastExpression*); sem::Call* Call(const ast::CallExpression*); sem::Function* Function(const ast::Function*); template sem::Call* FunctionCall(const ast::CallExpression*, sem::Function* target, utils::Vector& args, sem::Behaviors arg_behaviors); sem::Expression* Identifier(const ast::IdentifierExpression*); template sem::Call* BuiltinCall(const ast::CallExpression*, sem::BuiltinType, utils::Vector& args); sem::Expression* Literal(const ast::LiteralExpression*); sem::Expression* MemberAccessor(const ast::MemberAccessorExpression*); sem::Expression* UnaryOp(const ast::UnaryOpExpression*); /// If `expr` is not of an abstract-numeric type, then Materialize() will just return `expr`. /// If `expr` is of an abstract-numeric type: /// * Materialize will create and return a sem::Materialize node wrapping `expr`. /// * The AST -> Sem binding will be updated to point to the new sem::Materialize node. /// * The sem::Materialize node will have a new concrete type, which will be `target_type` if /// not nullptr, otherwise: /// * a type with the element type of `i32` (e.g. `i32`, `vec2`) if `expr` has a /// element type of abstract-integer... /// * ... or a type with the element type of `f32` (e.g. `f32`, vec3`, `mat2x3`) /// if `expr` has a element type of abstract-float. /// * The sem::Materialize constant value will be the value of `expr` value-converted to the /// materialized type. /// If `expr` is nullptr, then Materialize() will also return nullptr. const sem::Expression* Materialize(const sem::Expression* expr, const sem::Type* target_type = nullptr); /// Materializes all the arguments in `args` to the parameter types of `target`. /// @returns true on success, false on failure. template bool MaterializeArguments(utils::Vector& args, const sem::CallTarget* target); /// @returns true if an argument of an abstract numeric type, passed to a parameter of type /// `parameter_ty` should be materialized. bool ShouldMaterializeArgument(const sem::Type* parameter_ty) const; /// Converts `c` to `target_ty` /// @returns true on success, false on failure. bool Convert(const sem::Constant*& c, const sem::Type* target_ty, const Source& source); /// Transforms `args` to a vector of constants, and converts each constant to the call target's /// parameter type. /// @returns the vector of constants, `utils::Failure` on failure. template utils::Result> ConvertArguments( const utils::Vector& args, const sem::CallTarget* target); /// @param ty the type that may hold abstract numeric types /// @param target_ty the target type for the expression (variable type, parameter type, etc). /// May be nullptr. /// @param source the source of the expression requiring materialization /// @returns the concrete (materialized) type for the given type, or nullptr if the type is /// already concrete. const sem::Type* ConcreteType(const sem::Type* ty, const sem::Type* target_ty, const Source& source); // Statement resolving methods // Each return true on success, false on failure. sem::Statement* AssignmentStatement(const ast::AssignmentStatement*); sem::BlockStatement* BlockStatement(const ast::BlockStatement*); sem::Statement* BreakStatement(const ast::BreakStatement*); sem::Statement* CallStatement(const ast::CallStatement*); sem::CaseStatement* CaseStatement(const ast::CaseStatement*); sem::Statement* CompoundAssignmentStatement(const ast::CompoundAssignmentStatement*); sem::Statement* ContinueStatement(const ast::ContinueStatement*); sem::Statement* DiscardStatement(const ast::DiscardStatement*); sem::Statement* FallthroughStatement(const ast::FallthroughStatement*); sem::ForLoopStatement* ForLoopStatement(const ast::ForLoopStatement*); sem::WhileStatement* WhileStatement(const ast::WhileStatement*); sem::GlobalVariable* GlobalVariable(const ast::Variable*); sem::Statement* Parameter(const ast::Variable*); sem::IfStatement* IfStatement(const ast::IfStatement*); sem::Statement* IncrementDecrementStatement(const ast::IncrementDecrementStatement*); sem::LoopStatement* LoopStatement(const ast::LoopStatement*); sem::Statement* ReturnStatement(const ast::ReturnStatement*); sem::Statement* Statement(const ast::Statement*); sem::Statement* StaticAssert(const ast::StaticAssert*); sem::SwitchStatement* SwitchStatement(const ast::SwitchStatement* s); sem::Statement* VariableDeclStatement(const ast::VariableDeclStatement*); bool Statements(utils::VectorRef); // CollectTextureSamplerPairs() collects all the texture/sampler pairs from the target function // / builtin, and records these on the current function by calling AddTextureSamplerPair(). void CollectTextureSamplerPairs(sem::Function* func, utils::VectorRef args) const; void CollectTextureSamplerPairs(const sem::Builtin* builtin, utils::VectorRef args) const; /// Resolves the WorkgroupSize for the given function, assigning it to /// current_function_ bool WorkgroupSize(const ast::Function*); /// @returns the sem::Type for the ast::Type `ty`, building it if it /// hasn't been constructed already. If an error is raised, nullptr is /// returned. /// @param ty the ast::Type sem::Type* Type(const ast::Type* ty); /// @param enable the enable declaration /// @returns the resolved extension bool Enable(const ast::Enable* enable); /// @param named_type the named type to resolve /// @returns the resolved semantic type sem::Type* TypeDecl(const ast::TypeDecl* named_type); /// Builds and returns the semantic information for the AST array `arr`. /// This method does not mark the ast::Array node, nor attach the generated semantic information /// to the AST node. /// @returns the semantic Array information, or nullptr if an error is raised. /// @param arr the Array to get semantic information for sem::Array* Array(const ast::Array* arr); /// Resolves and validates the expression used as the count parameter of an array. /// @param count_expr the expression used as the second template parameter to an array<>. /// @returns the number of elements in the array. utils::Result ArrayCount(const ast::Expression* count_expr); /// Resolves and validates the attributes on an array. /// @param attributes the attributes on the array type. /// @param el_ty the element type of the array. /// @param explicit_stride assigned the specified stride of the array in bytes. /// @returns true on success, false on failure bool ArrayAttributes(utils::VectorRef attributes, const sem::Type* el_ty, uint32_t& explicit_stride); /// Builds and returns the semantic information for an array. /// @returns the semantic Array information, or nullptr if an error is raised. /// @param source the source of the array declaration /// @param el_ty the Array element type /// @param el_count the number of elements in the array. Zero means runtime-sized. /// @param explicit_stride the explicit byte stride of the array. Zero means implicit stride. sem::Array* Array(const Source& source, const sem::Type* el_ty, uint32_t el_count, uint32_t explicit_stride); /// Builds and returns the semantic information for the alias `alias`. /// This method does not mark the ast::Alias node, nor attach the generated /// semantic information to the AST node. /// @returns the aliased type, or nullptr if an error is raised. sem::Type* Alias(const ast::Alias* alias); /// Builds and returns the semantic information for the structure `str`. /// This method does not mark the ast::Struct node, nor attach the generated /// semantic information to the AST node. /// @returns the semantic Struct information, or nullptr if an error is /// raised. sem::Struct* Structure(const ast::Struct* str); /// @returns the semantic info for the variable `v`. If an error is raised, nullptr is /// returned. /// @note this method does not resolve the attributes as these are context-dependent (global, /// local) /// @param var the variable /// @param is_global true if this is module scope, otherwise function scope sem::Variable* Variable(const ast::Variable* var, bool is_global); /// @returns the semantic info for the `ast::Let` `v`. If an error is raised, nullptr is /// returned. /// @note this method does not resolve the attributes as these are context-dependent (global, /// local) /// @param var the variable /// @param is_global true if this is module scope, otherwise function scope sem::Variable* Let(const ast::Let* var, bool is_global); /// @returns the semantic info for the module-scope `ast::Override` `v`. If an error is raised, /// nullptr is returned. /// @note this method does not resolve the attributes as these are context-dependent (global, /// local) /// @param override the variable sem::Variable* Override(const ast::Override* override); /// @returns the semantic info for an `ast::Const` `v`. If an error is raised, nullptr is /// returned. /// @note this method does not resolve the attributes as these are context-dependent (global, /// local) /// @param const_ the variable /// @param is_global true if this is module scope, otherwise function scope sem::Variable* Const(const ast::Const* const_, bool is_global); /// @returns the semantic info for the `ast::Var` `var`. If an error is raised, nullptr is /// returned. /// @note this method does not resolve the attributes as these are context-dependent (global, /// local) /// @param var the variable /// @param is_global true if this is module scope, otherwise function scope sem::Variable* Var(const ast::Var* var, bool is_global); /// @returns the semantic info for the function parameter `param`. If an error is raised, /// nullptr is returned. /// @note the caller is expected to validate the parameter /// @param param the AST parameter /// @param index the index of the parameter sem::Parameter* Parameter(const ast::Parameter* param, uint32_t index); /// Records the storage class usage for the given type, and any transient /// dependencies of the type. Validates that the type can be used for the /// given storage class, erroring if it cannot. /// @param sc the storage class to apply to the type and transitent types /// @param ty the type to apply the storage class on /// @param usage the Source of the root variable declaration that uses the /// given type and storage class. Used for generating sensible error /// messages. /// @returns true on success, false on error bool ApplyStorageClassUsageToType(ast::StorageClass sc, sem::Type* ty, const Source& usage); /// @param storage_class the storage class /// @returns the default access control for the given storage class ast::Access DefaultAccessForStorageClass(ast::StorageClass storage_class); /// Allocate constant IDs for pipeline-overridable constants. /// @returns true on success, false on error bool AllocateOverridableConstantIds(); /// Set the shadowing information on variable declarations. /// @note this method must only be called after all semantic nodes are built. void SetShadows(); /// StatementScope() does the following: /// * Creates the AST -> SEM mapping. /// * Assigns `sem` to #current_statement_ /// * Assigns `sem` to #current_compound_statement_ if `sem` derives from /// sem::CompoundStatement. /// * Assigns `sem` to #current_block_ if `sem` derives from /// sem::BlockStatement. /// * Then calls `callback`. /// * Before returning #current_statement_, #current_compound_statement_, and /// #current_block_ are restored to their original values. /// @returns `sem` if `callback` returns true, otherwise `nullptr`. template SEM* StatementScope(const ast::Statement* ast, SEM* sem, F&& callback); /// Mark records that the given AST node has been visited, and asserts that /// the given node has not already been seen. Diamonds in the AST are /// illegal. /// @param node the AST node. /// @returns true on success, false on error bool Mark(const ast::Node* node); /// Adds the given error message to the diagnostics void AddError(const std::string& msg, const Source& source) const; /// Adds the given warning message to the diagnostics void AddWarning(const std::string& msg, const Source& source) const; /// Adds the given note message to the diagnostics void AddNote(const std::string& msg, const Source& source) const; /// @returns true if the symbol is the name of a builtin function. bool IsBuiltin(Symbol) const; // ArrayConstructorSig represents a unique array constructor signature. // It is a tuple of the array type, number of arguments provided and earliest evaluation stage. using ArrayConstructorSig = utils::UnorderedKeyWrapper>; // StructConstructorSig represents a unique structure constructor signature. // It is a tuple of the structure type, number of arguments provided and earliest evaluation // stage. using StructConstructorSig = utils::UnorderedKeyWrapper>; ProgramBuilder* const builder_; diag::List& diagnostics_; ConstEval const_eval_; std::unique_ptr const intrinsic_table_; DependencyGraph dependencies_; SemHelper sem_; Validator validator_; ast::Extensions enabled_extensions_; std::vector entry_points_; std::unordered_map atomic_composite_info_; utils::Bitset<0> marked_; std::unordered_map override_ids_; std::unordered_map array_ctors_; std::unordered_map struct_ctors_; sem::Function* current_function_ = nullptr; sem::Statement* current_statement_ = nullptr; sem::CompoundStatement* current_compound_statement_ = nullptr; sem::BlockStatement* current_block_ = nullptr; }; } // namespace tint::resolver #endif // SRC_TINT_RESOLVER_RESOLVER_H_