// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dawn_native/ShaderModule.h" #include "absl/strings/str_format.h" #include "common/Constants.h" #include "common/HashUtils.h" #include "dawn_native/BindGroupLayout.h" #include "dawn_native/ChainUtils_autogen.h" #include "dawn_native/CompilationMessages.h" #include "dawn_native/Device.h" #include "dawn_native/ObjectContentHasher.h" #include "dawn_native/Pipeline.h" #include "dawn_native/PipelineLayout.h" #include "dawn_native/RenderPipeline.h" #include "dawn_native/TintUtils.h" #include #include namespace dawn_native { namespace { std::string GetShaderDeclarationString(BindGroupIndex group, BindingNumber binding) { return absl::StrFormat("the shader module declaration at set %u, binding %u", static_cast(group), static_cast(binding)); } tint::transform::VertexFormat ToTintVertexFormat(wgpu::VertexFormat format) { switch (format) { case wgpu::VertexFormat::Uint8x2: return tint::transform::VertexFormat::kUint8x2; case wgpu::VertexFormat::Uint8x4: return tint::transform::VertexFormat::kUint8x4; case wgpu::VertexFormat::Sint8x2: return tint::transform::VertexFormat::kSint8x2; case wgpu::VertexFormat::Sint8x4: return tint::transform::VertexFormat::kSint8x4; case wgpu::VertexFormat::Unorm8x2: return tint::transform::VertexFormat::kUnorm8x2; case wgpu::VertexFormat::Unorm8x4: return tint::transform::VertexFormat::kUnorm8x4; case wgpu::VertexFormat::Snorm8x2: return tint::transform::VertexFormat::kSnorm8x2; case wgpu::VertexFormat::Snorm8x4: return tint::transform::VertexFormat::kSnorm8x4; case wgpu::VertexFormat::Uint16x2: return tint::transform::VertexFormat::kUint16x2; case wgpu::VertexFormat::Uint16x4: return tint::transform::VertexFormat::kUint16x4; case wgpu::VertexFormat::Sint16x2: return tint::transform::VertexFormat::kSint16x2; case wgpu::VertexFormat::Sint16x4: return tint::transform::VertexFormat::kSint16x4; case wgpu::VertexFormat::Unorm16x2: return tint::transform::VertexFormat::kUnorm16x2; case wgpu::VertexFormat::Unorm16x4: return tint::transform::VertexFormat::kUnorm16x4; case wgpu::VertexFormat::Snorm16x2: return tint::transform::VertexFormat::kSnorm16x2; case wgpu::VertexFormat::Snorm16x4: return tint::transform::VertexFormat::kSnorm16x4; case wgpu::VertexFormat::Float16x2: return tint::transform::VertexFormat::kFloat16x2; case wgpu::VertexFormat::Float16x4: return tint::transform::VertexFormat::kFloat16x4; case wgpu::VertexFormat::Float32: return tint::transform::VertexFormat::kFloat32; case wgpu::VertexFormat::Float32x2: return tint::transform::VertexFormat::kFloat32x2; case wgpu::VertexFormat::Float32x3: return tint::transform::VertexFormat::kFloat32x3; case wgpu::VertexFormat::Float32x4: return tint::transform::VertexFormat::kFloat32x4; case wgpu::VertexFormat::Uint32: return tint::transform::VertexFormat::kUint32; case wgpu::VertexFormat::Uint32x2: return tint::transform::VertexFormat::kUint32x2; case wgpu::VertexFormat::Uint32x3: return tint::transform::VertexFormat::kUint32x3; case wgpu::VertexFormat::Uint32x4: return tint::transform::VertexFormat::kUint32x4; case wgpu::VertexFormat::Sint32: return tint::transform::VertexFormat::kSint32; case wgpu::VertexFormat::Sint32x2: return tint::transform::VertexFormat::kSint32x2; case wgpu::VertexFormat::Sint32x3: return tint::transform::VertexFormat::kSint32x3; case wgpu::VertexFormat::Sint32x4: return tint::transform::VertexFormat::kSint32x4; case wgpu::VertexFormat::Undefined: break; } UNREACHABLE(); } tint::transform::VertexStepMode ToTintVertexStepMode(wgpu::VertexStepMode mode) { switch (mode) { case wgpu::VertexStepMode::Vertex: return tint::transform::VertexStepMode::kVertex; case wgpu::VertexStepMode::Instance: return tint::transform::VertexStepMode::kInstance; } } ResultOrError TintPipelineStageToShaderStage( tint::ast::PipelineStage stage) { switch (stage) { case tint::ast::PipelineStage::kVertex: return SingleShaderStage::Vertex; case tint::ast::PipelineStage::kFragment: return SingleShaderStage::Fragment; case tint::ast::PipelineStage::kCompute: return SingleShaderStage::Compute; case tint::ast::PipelineStage::kNone: UNREACHABLE(); } } BindingInfoType TintResourceTypeToBindingInfoType( tint::inspector::ResourceBinding::ResourceType type) { switch (type) { case tint::inspector::ResourceBinding::ResourceType::kUniformBuffer: case tint::inspector::ResourceBinding::ResourceType::kStorageBuffer: case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageBuffer: return BindingInfoType::Buffer; case tint::inspector::ResourceBinding::ResourceType::kSampler: case tint::inspector::ResourceBinding::ResourceType::kComparisonSampler: return BindingInfoType::Sampler; case tint::inspector::ResourceBinding::ResourceType::kSampledTexture: case tint::inspector::ResourceBinding::ResourceType::kMultisampledTexture: case tint::inspector::ResourceBinding::ResourceType::kDepthTexture: case tint::inspector::ResourceBinding::ResourceType::kDepthMultisampledTexture: return BindingInfoType::Texture; case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageTexture: case tint::inspector::ResourceBinding::ResourceType::kWriteOnlyStorageTexture: return BindingInfoType::StorageTexture; case tint::inspector::ResourceBinding::ResourceType::kExternalTexture: return BindingInfoType::ExternalTexture; default: UNREACHABLE(); return BindingInfoType::Buffer; } } wgpu::TextureFormat TintImageFormatToTextureFormat( tint::inspector::ResourceBinding::ImageFormat format) { switch (format) { case tint::inspector::ResourceBinding::ImageFormat::kR8Unorm: return wgpu::TextureFormat::R8Unorm; case tint::inspector::ResourceBinding::ImageFormat::kR8Snorm: return wgpu::TextureFormat::R8Snorm; case tint::inspector::ResourceBinding::ImageFormat::kR8Uint: return wgpu::TextureFormat::R8Uint; case tint::inspector::ResourceBinding::ImageFormat::kR8Sint: return wgpu::TextureFormat::R8Sint; case tint::inspector::ResourceBinding::ImageFormat::kR16Uint: return wgpu::TextureFormat::R16Uint; case tint::inspector::ResourceBinding::ImageFormat::kR16Sint: return wgpu::TextureFormat::R16Sint; case tint::inspector::ResourceBinding::ImageFormat::kR16Float: return wgpu::TextureFormat::R16Float; case tint::inspector::ResourceBinding::ImageFormat::kRg8Unorm: return wgpu::TextureFormat::RG8Unorm; case tint::inspector::ResourceBinding::ImageFormat::kRg8Snorm: return wgpu::TextureFormat::RG8Snorm; case tint::inspector::ResourceBinding::ImageFormat::kRg8Uint: return wgpu::TextureFormat::RG8Uint; case tint::inspector::ResourceBinding::ImageFormat::kRg8Sint: return wgpu::TextureFormat::RG8Sint; case tint::inspector::ResourceBinding::ImageFormat::kR32Uint: return wgpu::TextureFormat::R32Uint; case tint::inspector::ResourceBinding::ImageFormat::kR32Sint: return wgpu::TextureFormat::R32Sint; case tint::inspector::ResourceBinding::ImageFormat::kR32Float: return wgpu::TextureFormat::R32Float; case tint::inspector::ResourceBinding::ImageFormat::kRg16Uint: return wgpu::TextureFormat::RG16Uint; case tint::inspector::ResourceBinding::ImageFormat::kRg16Sint: return wgpu::TextureFormat::RG16Sint; case tint::inspector::ResourceBinding::ImageFormat::kRg16Float: return wgpu::TextureFormat::RG16Float; case tint::inspector::ResourceBinding::ImageFormat::kRgba8Unorm: return wgpu::TextureFormat::RGBA8Unorm; case tint::inspector::ResourceBinding::ImageFormat::kRgba8UnormSrgb: return wgpu::TextureFormat::RGBA8UnormSrgb; case tint::inspector::ResourceBinding::ImageFormat::kRgba8Snorm: return wgpu::TextureFormat::RGBA8Snorm; case tint::inspector::ResourceBinding::ImageFormat::kRgba8Uint: return wgpu::TextureFormat::RGBA8Uint; case tint::inspector::ResourceBinding::ImageFormat::kRgba8Sint: return wgpu::TextureFormat::RGBA8Sint; case tint::inspector::ResourceBinding::ImageFormat::kBgra8Unorm: return wgpu::TextureFormat::BGRA8Unorm; case tint::inspector::ResourceBinding::ImageFormat::kBgra8UnormSrgb: return wgpu::TextureFormat::BGRA8UnormSrgb; case tint::inspector::ResourceBinding::ImageFormat::kRgb10A2Unorm: return wgpu::TextureFormat::RGB10A2Unorm; case tint::inspector::ResourceBinding::ImageFormat::kRg11B10Float: return wgpu::TextureFormat::RG11B10Ufloat; case tint::inspector::ResourceBinding::ImageFormat::kRg32Uint: return wgpu::TextureFormat::RG32Uint; case tint::inspector::ResourceBinding::ImageFormat::kRg32Sint: return wgpu::TextureFormat::RG32Sint; case tint::inspector::ResourceBinding::ImageFormat::kRg32Float: return wgpu::TextureFormat::RG32Float; case tint::inspector::ResourceBinding::ImageFormat::kRgba16Uint: return wgpu::TextureFormat::RGBA16Uint; case tint::inspector::ResourceBinding::ImageFormat::kRgba16Sint: return wgpu::TextureFormat::RGBA16Sint; case tint::inspector::ResourceBinding::ImageFormat::kRgba16Float: return wgpu::TextureFormat::RGBA16Float; case tint::inspector::ResourceBinding::ImageFormat::kRgba32Uint: return wgpu::TextureFormat::RGBA32Uint; case tint::inspector::ResourceBinding::ImageFormat::kRgba32Sint: return wgpu::TextureFormat::RGBA32Sint; case tint::inspector::ResourceBinding::ImageFormat::kRgba32Float: return wgpu::TextureFormat::RGBA32Float; case tint::inspector::ResourceBinding::ImageFormat::kNone: return wgpu::TextureFormat::Undefined; } } wgpu::TextureViewDimension TintTextureDimensionToTextureViewDimension( tint::inspector::ResourceBinding::TextureDimension dim) { switch (dim) { case tint::inspector::ResourceBinding::TextureDimension::k1d: return wgpu::TextureViewDimension::e1D; case tint::inspector::ResourceBinding::TextureDimension::k2d: return wgpu::TextureViewDimension::e2D; case tint::inspector::ResourceBinding::TextureDimension::k2dArray: return wgpu::TextureViewDimension::e2DArray; case tint::inspector::ResourceBinding::TextureDimension::k3d: return wgpu::TextureViewDimension::e3D; case tint::inspector::ResourceBinding::TextureDimension::kCube: return wgpu::TextureViewDimension::Cube; case tint::inspector::ResourceBinding::TextureDimension::kCubeArray: return wgpu::TextureViewDimension::CubeArray; case tint::inspector::ResourceBinding::TextureDimension::kNone: return wgpu::TextureViewDimension::Undefined; } } SampleTypeBit TintSampledKindToSampleTypeBit( tint::inspector::ResourceBinding::SampledKind s) { switch (s) { case tint::inspector::ResourceBinding::SampledKind::kSInt: return SampleTypeBit::Sint; case tint::inspector::ResourceBinding::SampledKind::kUInt: return SampleTypeBit::Uint; case tint::inspector::ResourceBinding::SampledKind::kFloat: return SampleTypeBit::Float | SampleTypeBit::UnfilterableFloat; case tint::inspector::ResourceBinding::SampledKind::kUnknown: return SampleTypeBit::None; } } ResultOrError TintComponentTypeToTextureComponentType( tint::inspector::ComponentType type) { switch (type) { case tint::inspector::ComponentType::kFloat: return wgpu::TextureComponentType::Float; case tint::inspector::ComponentType::kSInt: return wgpu::TextureComponentType::Sint; case tint::inspector::ComponentType::kUInt: return wgpu::TextureComponentType::Uint; case tint::inspector::ComponentType::kUnknown: return DAWN_VALIDATION_ERROR( "Attempted to convert 'Unknown' component type from Tint"); } } ResultOrError TintComponentTypeToVertexFormatBaseType( tint::inspector::ComponentType type) { switch (type) { case tint::inspector::ComponentType::kFloat: return VertexFormatBaseType::Float; case tint::inspector::ComponentType::kSInt: return VertexFormatBaseType::Sint; case tint::inspector::ComponentType::kUInt: return VertexFormatBaseType::Uint; case tint::inspector::ComponentType::kUnknown: return DAWN_VALIDATION_ERROR( "Attempted to convert 'Unknown' component type from Tint"); } } ResultOrError TintResourceTypeToBufferBindingType( tint::inspector::ResourceBinding::ResourceType resource_type) { switch (resource_type) { case tint::inspector::ResourceBinding::ResourceType::kUniformBuffer: return wgpu::BufferBindingType::Uniform; case tint::inspector::ResourceBinding::ResourceType::kStorageBuffer: return wgpu::BufferBindingType::Storage; case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageBuffer: return wgpu::BufferBindingType::ReadOnlyStorage; default: return DAWN_VALIDATION_ERROR("Attempted to convert non-buffer resource type"); } } ResultOrError TintResourceTypeToStorageTextureAccess( tint::inspector::ResourceBinding::ResourceType resource_type) { switch (resource_type) { case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageTexture: return wgpu::StorageTextureAccess::ReadOnly; case tint::inspector::ResourceBinding::ResourceType::kWriteOnlyStorageTexture: return wgpu::StorageTextureAccess::WriteOnly; default: return DAWN_VALIDATION_ERROR( "Attempted to convert non-storage texture resource type"); } } ResultOrError TintComponentTypeToInterStageComponentType( tint::inspector::ComponentType type) { switch (type) { case tint::inspector::ComponentType::kFloat: return InterStageComponentType::Float; case tint::inspector::ComponentType::kSInt: return InterStageComponentType::Sint; case tint::inspector::ComponentType::kUInt: return InterStageComponentType::Uint; case tint::inspector::ComponentType::kUnknown: return DAWN_VALIDATION_ERROR( "Attempted to convert 'Unknown' component type from Tint"); } } ResultOrError TintCompositionTypeToInterStageComponentCount( tint::inspector::CompositionType type) { switch (type) { case tint::inspector::CompositionType::kScalar: return 1u; case tint::inspector::CompositionType::kVec2: return 2u; case tint::inspector::CompositionType::kVec3: return 3u; case tint::inspector::CompositionType::kVec4: return 4u; case tint::inspector::CompositionType::kUnknown: return DAWN_VALIDATION_ERROR( "Attempt to convert 'Unknown' composition type from Tint"); } } ResultOrError TintInterpolationTypeToInterpolationType( tint::inspector::InterpolationType type) { switch (type) { case tint::inspector::InterpolationType::kPerspective: return InterpolationType::Perspective; case tint::inspector::InterpolationType::kLinear: return InterpolationType::Linear; case tint::inspector::InterpolationType::kFlat: return InterpolationType::Flat; case tint::inspector::InterpolationType::kUnknown: return DAWN_VALIDATION_ERROR( "Attempted to convert 'Unknown' interpolation type from Tint"); } } ResultOrError TintInterpolationSamplingToInterpolationSamplingType( tint::inspector::InterpolationSampling type) { switch (type) { case tint::inspector::InterpolationSampling::kNone: return InterpolationSampling::None; case tint::inspector::InterpolationSampling::kCenter: return InterpolationSampling::Center; case tint::inspector::InterpolationSampling::kCentroid: return InterpolationSampling::Centroid; case tint::inspector::InterpolationSampling::kSample: return InterpolationSampling::Sample; case tint::inspector::InterpolationSampling::kUnknown: return DAWN_VALIDATION_ERROR( "Attempted to convert 'Unknown' interpolation sampling type from Tint"); } } ResultOrError ParseWGSL(const tint::Source::File* file, OwnedCompilationMessages* outMessages) { std::ostringstream errorStream; errorStream << "Tint WGSL reader failure:" << std::endl; tint::Program program = tint::reader::wgsl::Parse(file); if (outMessages != nullptr) { outMessages->AddMessages(program.Diagnostics()); } if (!program.IsValid()) { auto err = program.Diagnostics().str(); errorStream << "Parser: " << err << std::endl << "Shader: " << std::endl << file->content << std::endl; return DAWN_VALIDATION_ERROR(errorStream.str().c_str()); } return std::move(program); } ResultOrError ParseSPIRV(const std::vector& spirv, OwnedCompilationMessages* outMessages) { std::ostringstream errorStream; errorStream << "Tint SPIRV reader failure:" << std::endl; tint::Program program = tint::reader::spirv::Parse(spirv); if (outMessages != nullptr) { outMessages->AddMessages(program.Diagnostics()); } if (!program.IsValid()) { auto err = program.Diagnostics().str(); errorStream << "Parser: " << err << std::endl; return DAWN_VALIDATION_ERROR(errorStream.str().c_str()); } return std::move(program); } std::vector GetBindGroupMinBufferSizes(const BindingGroupInfoMap& shaderBindings, const BindGroupLayoutBase* layout) { std::vector requiredBufferSizes(layout->GetUnverifiedBufferCount()); uint32_t packedIdx = 0; for (BindingIndex bindingIndex{0}; bindingIndex < layout->GetBufferCount(); ++bindingIndex) { const BindingInfo& bindingInfo = layout->GetBindingInfo(bindingIndex); if (bindingInfo.buffer.minBindingSize != 0) { // Skip bindings that have minimum buffer size set in the layout continue; } ASSERT(packedIdx < requiredBufferSizes.size()); const auto& shaderInfo = shaderBindings.find(bindingInfo.binding); if (shaderInfo != shaderBindings.end()) { requiredBufferSizes[packedIdx] = shaderInfo->second.buffer.minBindingSize; } else { // We have to include buffers if they are included in the bind group's // packed vector. We don't actually need to check these at draw time, so // if this is a problem in the future we can optimize it further. requiredBufferSizes[packedIdx] = 0; } ++packedIdx; } return requiredBufferSizes; } MaybeError ValidateCompatibilityWithBindGroupLayout(DeviceBase* device, BindGroupIndex group, const EntryPointMetadata& entryPoint, const BindGroupLayoutBase* layout) { const BindGroupLayoutBase::BindingMap& layoutBindings = layout->GetBindingMap(); // Iterate over all bindings used by this group in the shader, and find the // corresponding binding in the BindGroupLayout, if it exists. for (const auto& it : entryPoint.bindings[group]) { BindingNumber bindingNumber = it.first; const ShaderBindingInfo& shaderInfo = it.second; const auto& bindingIt = layoutBindings.find(bindingNumber); if (bindingIt == layoutBindings.end()) { return DAWN_VALIDATION_ERROR("Missing bind group layout entry for " + GetShaderDeclarationString(group, bindingNumber)); } BindingIndex bindingIndex(bindingIt->second); const BindingInfo& layoutInfo = layout->GetBindingInfo(bindingIndex); if (layoutInfo.bindingType != shaderInfo.bindingType) { return DAWN_VALIDATION_ERROR( "The binding type of the bind group layout entry conflicts " + GetShaderDeclarationString(group, bindingNumber)); } if ((layoutInfo.visibility & StageBit(entryPoint.stage)) == 0) { return DAWN_VALIDATION_ERROR("The bind group layout entry for " + GetShaderDeclarationString(group, bindingNumber) + " is not visible for the shader stage"); } switch (layoutInfo.bindingType) { case BindingInfoType::Texture: { if (layoutInfo.texture.multisampled != shaderInfo.texture.multisampled) { return DAWN_VALIDATION_ERROR( "The texture multisampled flag of the bind group layout entry is " "different from " + GetShaderDeclarationString(group, bindingNumber)); } if ((SampleTypeToSampleTypeBit(layoutInfo.texture.sampleType) & shaderInfo.texture.compatibleSampleTypes) == 0) { return DAWN_VALIDATION_ERROR( "The texture sampleType of the bind group layout entry is " "not compatible with " + GetShaderDeclarationString(group, bindingNumber)); } if (layoutInfo.texture.viewDimension != shaderInfo.texture.viewDimension) { return DAWN_VALIDATION_ERROR( "The texture viewDimension of the bind group layout entry is " "different " "from " + GetShaderDeclarationString(group, bindingNumber)); } break; } case BindingInfoType::StorageTexture: { ASSERT(layoutInfo.storageTexture.format != wgpu::TextureFormat::Undefined); ASSERT(shaderInfo.storageTexture.format != wgpu::TextureFormat::Undefined); if (layoutInfo.storageTexture.access != shaderInfo.storageTexture.access) { return DAWN_VALIDATION_ERROR( "The storageTexture access mode of the bind group layout entry is " "different from " + GetShaderDeclarationString(group, bindingNumber)); } if (layoutInfo.storageTexture.format != shaderInfo.storageTexture.format) { return DAWN_VALIDATION_ERROR( "The storageTexture format of the bind group layout entry is " "different from " + GetShaderDeclarationString(group, bindingNumber)); } if (layoutInfo.storageTexture.viewDimension != shaderInfo.storageTexture.viewDimension) { return DAWN_VALIDATION_ERROR( "The storageTexture viewDimension of the bind group layout entry " "is different from " + GetShaderDeclarationString(group, bindingNumber)); } break; } case BindingInfoType::ExternalTexture: { if (shaderInfo.bindingType != BindingInfoType::ExternalTexture) { return DAWN_VALIDATION_ERROR( "The external texture bind group layout entry conflicts with " + GetShaderDeclarationString(group, bindingNumber)); } break; } case BindingInfoType::Buffer: { // Binding mismatch between shader and bind group is invalid. For example, a // writable binding in the shader with a readonly storage buffer in the bind // group layout is invalid. However, a readonly binding in the shader with a // writable storage buffer in the bind group layout is valid, a storage // binding in the shader with an internal storage buffer in the bind group // layout is also valid. bool validBindingConversion = (layoutInfo.buffer.type == wgpu::BufferBindingType::Storage && shaderInfo.buffer.type == wgpu::BufferBindingType::ReadOnlyStorage) || (layoutInfo.buffer.type == kInternalStorageBufferBinding && shaderInfo.buffer.type == wgpu::BufferBindingType::Storage); if (layoutInfo.buffer.type != shaderInfo.buffer.type && !validBindingConversion) { return DAWN_VALIDATION_ERROR( "The buffer type of the bind group layout entry conflicts " + GetShaderDeclarationString(group, bindingNumber)); } if (layoutInfo.buffer.minBindingSize != 0 && shaderInfo.buffer.minBindingSize > layoutInfo.buffer.minBindingSize) { return DAWN_VALIDATION_ERROR( "The minimum buffer size of the bind group layout entry is smaller " "than " + GetShaderDeclarationString(group, bindingNumber)); } break; } case BindingInfoType::Sampler: if ((layoutInfo.sampler.type == wgpu::SamplerBindingType::Comparison) != shaderInfo.sampler.isComparison) { return DAWN_VALIDATION_ERROR( "The sampler type of the bind group layout entry is " "not compatible with " + GetShaderDeclarationString(group, bindingNumber)); } } } return {}; } ResultOrError ReflectShaderUsingTint( DeviceBase*, const tint::Program* program) { ASSERT(program->IsValid()); EntryPointMetadataTable result; std::ostringstream errorStream; errorStream << "Tint Reflection failure:" << std::endl; tint::inspector::Inspector inspector(program); auto entryPoints = inspector.GetEntryPoints(); if (inspector.has_error()) { errorStream << "Inspector: " << inspector.error() << std::endl; return DAWN_VALIDATION_ERROR(errorStream.str().c_str()); } constexpr uint32_t kMaxInterStageShaderLocation = kMaxInterStageShaderVariables - 1; for (auto& entryPoint : entryPoints) { ASSERT(result.count(entryPoint.name) == 0); if (!entryPoint.overridable_constants.empty()) { return DAWN_VALIDATION_ERROR( "Pipeline overridable constants are not implemented yet"); } auto metadata = std::make_unique(); DAWN_TRY_ASSIGN(metadata->stage, TintPipelineStageToShaderStage(entryPoint.stage)); if (metadata->stage == SingleShaderStage::Compute) { if (entryPoint.workgroup_size_x > kMaxComputeWorkgroupSizeX) { errorStream << "Workgroup X dimension exceeds maximum allowed:" << entryPoint.workgroup_size_x << " > " << kMaxComputeWorkgroupSizeX; return DAWN_VALIDATION_ERROR(errorStream.str()); } if (entryPoint.workgroup_size_y > kMaxComputeWorkgroupSizeY) { errorStream << "Workgroup Y dimension exceeds maximum allowed: " << entryPoint.workgroup_size_y << " > " << kMaxComputeWorkgroupSizeY; return DAWN_VALIDATION_ERROR(errorStream.str()); } if (entryPoint.workgroup_size_z > kMaxComputeWorkgroupSizeZ) { errorStream << "Workgroup Z dimension exceeds maximum allowed: " << entryPoint.workgroup_size_z << " > " << kMaxComputeWorkgroupSizeZ; return DAWN_VALIDATION_ERROR(errorStream.str()); } // Dimensions have already been validated against their individual limits above. // This assertion ensures that the product of such limited dimensions cannot // possibly overflow a uint32_t. static_assert(static_cast(kMaxComputeWorkgroupSizeX) * kMaxComputeWorkgroupSizeY * kMaxComputeWorkgroupSizeZ <= std::numeric_limits::max(), "Per-dimension workgroup size limits are too high"); uint32_t num_invocations = entryPoint.workgroup_size_x * entryPoint.workgroup_size_y * entryPoint.workgroup_size_z; if (num_invocations > kMaxComputeWorkgroupInvocations) { errorStream << "Number of workgroup invocations exceeds maximum allowed: " << num_invocations << " > " << kMaxComputeWorkgroupInvocations; return DAWN_VALIDATION_ERROR(errorStream.str()); } const size_t workgroup_storage_size = inspector.GetWorkgroupStorageSize(entryPoint.name); if (workgroup_storage_size > kMaxComputeWorkgroupStorageSize) { errorStream << "Workgroup shared storage size for " << entryPoint.name << " exceeds the maximum allowed: " << workgroup_storage_size << " > " << kMaxComputeWorkgroupStorageSize; return DAWN_VALIDATION_ERROR(errorStream.str()); } metadata->localWorkgroupSize.x = entryPoint.workgroup_size_x; metadata->localWorkgroupSize.y = entryPoint.workgroup_size_y; metadata->localWorkgroupSize.z = entryPoint.workgroup_size_z; } if (metadata->stage == SingleShaderStage::Vertex) { for (const auto& input_var : entryPoint.input_variables) { if (!input_var.has_location_decoration) { return DAWN_VALIDATION_ERROR( "Need Location decoration on Vertex input"); } uint32_t unsanitizedLocation = input_var.location_decoration; if (DAWN_UNLIKELY(unsanitizedLocation >= kMaxVertexAttributes)) { std::stringstream ss; ss << "Attribute location (" << unsanitizedLocation << ") over limits"; return DAWN_VALIDATION_ERROR(ss.str()); } VertexAttributeLocation location(static_cast(unsanitizedLocation)); DAWN_TRY_ASSIGN( metadata->vertexInputBaseTypes[location], TintComponentTypeToVertexFormatBaseType(input_var.component_type)); metadata->usedVertexInputs.set(location); } // [[position]] must be declared in a vertex shader. uint32_t totalInterStageShaderComponents = 4; for (const auto& output_var : entryPoint.output_variables) { if (DAWN_UNLIKELY(!output_var.has_location_decoration)) { std::stringstream ss; ss << "Missing location qualifier on vertex output, " << output_var.name; return DAWN_VALIDATION_ERROR(ss.str()); } uint32_t location = output_var.location_decoration; if (DAWN_UNLIKELY(location > kMaxInterStageShaderLocation)) { std::stringstream ss; ss << "Vertex output location (" << location << ") over limits"; return DAWN_VALIDATION_ERROR(ss.str()); } metadata->usedInterStageVariables.set(location); DAWN_TRY_ASSIGN( metadata->interStageVariables[location].baseType, TintComponentTypeToInterStageComponentType(output_var.component_type)); DAWN_TRY_ASSIGN(metadata->interStageVariables[location].componentCount, TintCompositionTypeToInterStageComponentCount( output_var.composition_type)); DAWN_TRY_ASSIGN(metadata->interStageVariables[location].interpolationType, TintInterpolationTypeToInterpolationType( output_var.interpolation_type)); DAWN_TRY_ASSIGN( metadata->interStageVariables[location].interpolationSampling, TintInterpolationSamplingToInterpolationSamplingType( output_var.interpolation_sampling)); totalInterStageShaderComponents += metadata->interStageVariables[location].componentCount; } if (DAWN_UNLIKELY(totalInterStageShaderComponents > kMaxInterStageShaderComponents)) { return DAWN_VALIDATION_ERROR( "Total vertex output components count exceeds limits"); } } if (metadata->stage == SingleShaderStage::Fragment) { uint32_t totalInterStageShaderComponents = 0; for (const auto& input_var : entryPoint.input_variables) { if (!input_var.has_location_decoration) { return DAWN_VALIDATION_ERROR( "Need location decoration on fragment input"); } uint32_t location = input_var.location_decoration; if (DAWN_UNLIKELY(location > kMaxInterStageShaderLocation)) { std::stringstream ss; ss << "Fragment input location (" << location << ") over limits"; return DAWN_VALIDATION_ERROR(ss.str()); } metadata->usedInterStageVariables.set(location); DAWN_TRY_ASSIGN( metadata->interStageVariables[location].baseType, TintComponentTypeToInterStageComponentType(input_var.component_type)); DAWN_TRY_ASSIGN(metadata->interStageVariables[location].componentCount, TintCompositionTypeToInterStageComponentCount( input_var.composition_type)); DAWN_TRY_ASSIGN( metadata->interStageVariables[location].interpolationType, TintInterpolationTypeToInterpolationType(input_var.interpolation_type)); DAWN_TRY_ASSIGN( metadata->interStageVariables[location].interpolationSampling, TintInterpolationSamplingToInterpolationSamplingType( input_var.interpolation_sampling)); totalInterStageShaderComponents += metadata->interStageVariables[location].componentCount; } if (entryPoint.front_facing_used) { totalInterStageShaderComponents += 1; } if (entryPoint.input_sample_mask_used) { totalInterStageShaderComponents += 1; } if (entryPoint.sample_index_used) { totalInterStageShaderComponents += 1; } if (entryPoint.input_position_used) { totalInterStageShaderComponents += 4; } if (totalInterStageShaderComponents > kMaxInterStageShaderComponents) { return DAWN_VALIDATION_ERROR( "Total fragment input components count exceeds limits"); } for (const auto& output_var : entryPoint.output_variables) { if (!output_var.has_location_decoration) { return DAWN_VALIDATION_ERROR( "Need location decoration on fragment output"); } uint32_t unsanitizedAttachment = output_var.location_decoration; if (unsanitizedAttachment >= kMaxColorAttachments) { return DAWN_VALIDATION_ERROR( "Fragment output index must be less than max number of color " "attachments"); } ColorAttachmentIndex attachment( static_cast(unsanitizedAttachment)); DAWN_TRY_ASSIGN( metadata->fragmentOutputVariables[attachment].baseType, TintComponentTypeToTextureComponentType(output_var.component_type)); uint32_t componentCount; DAWN_TRY_ASSIGN(componentCount, TintCompositionTypeToInterStageComponentCount( output_var.composition_type)); // componentCount should be no larger than 4u ASSERT(componentCount <= 4u); metadata->fragmentOutputVariables[attachment].componentCount = componentCount; metadata->fragmentOutputsWritten.set(attachment); } } for (const tint::inspector::ResourceBinding& resource : inspector.GetResourceBindings(entryPoint.name)) { BindingNumber bindingNumber(resource.binding); BindGroupIndex bindGroupIndex(resource.bind_group); if (bindGroupIndex >= kMaxBindGroupsTyped) { return DAWN_VALIDATION_ERROR("Shader has bind group index over limits"); } const auto& it = metadata->bindings[bindGroupIndex].emplace( bindingNumber, ShaderBindingInfo{}); if (!it.second) { return DAWN_VALIDATION_ERROR("Shader has duplicate bindings"); } ShaderBindingInfo* info = &it.first->second; info->bindingType = TintResourceTypeToBindingInfoType(resource.resource_type); switch (info->bindingType) { case BindingInfoType::Buffer: info->buffer.minBindingSize = resource.size_no_padding; DAWN_TRY_ASSIGN(info->buffer.type, TintResourceTypeToBufferBindingType( resource.resource_type)); break; case BindingInfoType::Sampler: switch (resource.resource_type) { case tint::inspector::ResourceBinding::ResourceType::kSampler: info->sampler.isComparison = false; break; case tint::inspector::ResourceBinding::ResourceType:: kComparisonSampler: info->sampler.isComparison = true; break; default: UNREACHABLE(); } break; case BindingInfoType::Texture: info->texture.viewDimension = TintTextureDimensionToTextureViewDimension(resource.dim); if (resource.resource_type == tint::inspector::ResourceBinding::ResourceType::kDepthTexture || resource.resource_type == tint::inspector::ResourceBinding::ResourceType:: kDepthMultisampledTexture) { info->texture.compatibleSampleTypes = SampleTypeBit::Depth; } else { info->texture.compatibleSampleTypes = TintSampledKindToSampleTypeBit(resource.sampled_kind); } info->texture.multisampled = resource.resource_type == tint::inspector::ResourceBinding:: ResourceType::kMultisampledTexture || resource.resource_type == tint::inspector::ResourceBinding::ResourceType:: kDepthMultisampledTexture; break; case BindingInfoType::StorageTexture: DAWN_TRY_ASSIGN( info->storageTexture.access, TintResourceTypeToStorageTextureAccess(resource.resource_type)); info->storageTexture.format = TintImageFormatToTextureFormat(resource.image_format); info->storageTexture.viewDimension = TintTextureDimensionToTextureViewDimension(resource.dim); break; case BindingInfoType::ExternalTexture: break; default: return DAWN_VALIDATION_ERROR("Unknown binding type in Shader"); } } std::vector samplerTextureUses = inspector.GetSamplerTextureUses(entryPoint.name); metadata->samplerTexturePairs.reserve(samplerTextureUses.size()); std::transform( samplerTextureUses.begin(), samplerTextureUses.end(), std::back_inserter(metadata->samplerTexturePairs), [](const tint::inspector::SamplerTexturePair& pair) { EntryPointMetadata::SamplerTexturePair result; result.sampler = {BindGroupIndex(pair.sampler_binding_point.group), BindingNumber(pair.sampler_binding_point.binding)}; result.texture = {BindGroupIndex(pair.texture_binding_point.group), BindingNumber(pair.texture_binding_point.binding)}; return result; }); result[entryPoint.name] = std::move(metadata); } return std::move(result); } } // anonymous namespace ShaderModuleParseResult::ShaderModuleParseResult() = default; ShaderModuleParseResult::~ShaderModuleParseResult() = default; ShaderModuleParseResult::ShaderModuleParseResult(ShaderModuleParseResult&& rhs) = default; ShaderModuleParseResult& ShaderModuleParseResult::operator=(ShaderModuleParseResult&& rhs) = default; bool ShaderModuleParseResult::HasParsedShader() const { return tintProgram != nullptr; } // TintSource is a PIMPL container for a tint::Source::File, which needs to be kept alive for as // long as tint diagnostics are inspected / printed. class TintSource { public: template TintSource(ARGS&&... args) : file(std::forward(args)...) { } tint::Source::File file; }; MaybeError ValidateShaderModuleDescriptor(DeviceBase* device, const ShaderModuleDescriptor* descriptor, ShaderModuleParseResult* parseResult, OwnedCompilationMessages* outMessages) { ASSERT(parseResult != nullptr); const ChainedStruct* chainedDescriptor = descriptor->nextInChain; if (chainedDescriptor == nullptr) { return DAWN_VALIDATION_ERROR("Shader module descriptor missing chained descriptor"); } // For now only a single SPIRV or WGSL subdescriptor is allowed. DAWN_TRY(ValidateSingleSType(chainedDescriptor, wgpu::SType::ShaderModuleSPIRVDescriptor, wgpu::SType::ShaderModuleWGSLDescriptor)); ScopedTintICEHandler scopedICEHandler(device); const ShaderModuleSPIRVDescriptor* spirvDesc = nullptr; FindInChain(chainedDescriptor, &spirvDesc); const ShaderModuleWGSLDescriptor* wgslDesc = nullptr; FindInChain(chainedDescriptor, &wgslDesc); // We have a temporary toggle to force the SPIRV ingestion to go through a WGSL // intermediate step. It is done by switching the spirvDesc for a wgslDesc below. ShaderModuleWGSLDescriptor newWgslDesc; std::string newWgslCode; if (spirvDesc && device->IsToggleEnabled(Toggle::ForceWGSLStep)) { std::vector spirv(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize); tint::Program program; DAWN_TRY_ASSIGN(program, ParseSPIRV(spirv, outMessages)); tint::writer::wgsl::Options options; auto result = tint::writer::wgsl::Generate(&program, options); if (!result.success) { std::ostringstream errorStream; errorStream << "Tint WGSL failure:" << std::endl; errorStream << "Generator: " << result.error << std::endl; return DAWN_VALIDATION_ERROR(errorStream.str().c_str()); } newWgslCode = std::move(result.wgsl); newWgslDesc.source = newWgslCode.c_str(); spirvDesc = nullptr; wgslDesc = &newWgslDesc; } if (spirvDesc) { if (device->IsToggleEnabled(Toggle::DisallowSpirv)) { return DAWN_VALIDATION_ERROR("SPIR-V is disallowed."); } std::vector spirv(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize); tint::Program program; DAWN_TRY_ASSIGN(program, ParseSPIRV(spirv, outMessages)); parseResult->tintProgram = std::make_unique(std::move(program)); } else if (wgslDesc) { auto tintSource = std::make_unique("", wgslDesc->source); if (device->IsToggleEnabled(Toggle::DumpShaders)) { std::ostringstream dumpedMsg; dumpedMsg << "// Dumped WGSL:" << std::endl << wgslDesc->source; device->EmitLog(WGPULoggingType_Info, dumpedMsg.str().c_str()); } tint::Program program; DAWN_TRY_ASSIGN(program, ParseWGSL(&tintSource->file, outMessages)); parseResult->tintProgram = std::make_unique(std::move(program)); parseResult->tintSource = std::move(tintSource); } return {}; } RequiredBufferSizes ComputeRequiredBufferSizesForLayout(const EntryPointMetadata& entryPoint, const PipelineLayoutBase* layout) { RequiredBufferSizes bufferSizes; for (BindGroupIndex group : IterateBitSet(layout->GetBindGroupLayoutsMask())) { bufferSizes[group] = GetBindGroupMinBufferSizes(entryPoint.bindings[group], layout->GetBindGroupLayout(group)); } return bufferSizes; } ResultOrError RunTransforms(tint::transform::Transform* transform, const tint::Program* program, const tint::transform::DataMap& inputs, tint::transform::DataMap* outputs, OwnedCompilationMessages* outMessages) { tint::transform::Output output = transform->Run(program, inputs); if (outMessages != nullptr) { outMessages->AddMessages(output.program.Diagnostics()); } if (!output.program.IsValid()) { std::string err = "Tint program failure: " + output.program.Diagnostics().str(); return DAWN_VALIDATION_ERROR(err.c_str()); } if (outputs != nullptr) { *outputs = std::move(output.data); } return std::move(output.program); } void AddVertexPullingTransformConfig(const RenderPipelineBase& renderPipeline, const std::string& entryPoint, BindGroupIndex pullingBufferBindingSet, tint::transform::DataMap* transformInputs) { tint::transform::VertexPulling::Config cfg; cfg.entry_point_name = entryPoint; cfg.pulling_group = static_cast(pullingBufferBindingSet); cfg.vertex_state.resize(renderPipeline.GetVertexBufferCount()); for (VertexBufferSlot slot : IterateBitSet(renderPipeline.GetVertexBufferSlotsUsed())) { const VertexBufferInfo& dawnInfo = renderPipeline.GetVertexBuffer(slot); tint::transform::VertexBufferLayoutDescriptor* tintInfo = &cfg.vertex_state[static_cast(slot)]; tintInfo->array_stride = dawnInfo.arrayStride; tintInfo->step_mode = ToTintVertexStepMode(dawnInfo.stepMode); } for (VertexAttributeLocation location : IterateBitSet(renderPipeline.GetAttributeLocationsUsed())) { const VertexAttributeInfo& dawnInfo = renderPipeline.GetAttribute(location); tint::transform::VertexAttributeDescriptor tintInfo; tintInfo.format = ToTintVertexFormat(dawnInfo.format); tintInfo.offset = dawnInfo.offset; tintInfo.shader_location = static_cast(static_cast(location)); uint8_t vertexBufferSlot = static_cast(dawnInfo.vertexBufferSlot); cfg.vertex_state[vertexBufferSlot].attributes.push_back(tintInfo); } transformInputs->Add(cfg); } MaybeError ValidateCompatibilityWithPipelineLayout(DeviceBase* device, const EntryPointMetadata& entryPoint, const PipelineLayoutBase* layout) { for (BindGroupIndex group : IterateBitSet(layout->GetBindGroupLayoutsMask())) { DAWN_TRY(ValidateCompatibilityWithBindGroupLayout(device, group, entryPoint, layout->GetBindGroupLayout(group))); } for (BindGroupIndex group : IterateBitSet(~layout->GetBindGroupLayoutsMask())) { if (entryPoint.bindings[group].size() > 0) { std::ostringstream ostream; ostream << "No bind group layout entry matches the declaration set " << static_cast(group) << " in the shader module"; return DAWN_VALIDATION_ERROR(ostream.str()); } } // Validate that filtering samplers are not used with unfilterable textures. for (const auto& pair : entryPoint.samplerTexturePairs) { const BindGroupLayoutBase* samplerBGL = layout->GetBindGroupLayout(pair.sampler.group); const BindingInfo& samplerInfo = samplerBGL->GetBindingInfo(samplerBGL->GetBindingIndex(pair.sampler.binding)); if (samplerInfo.sampler.type != wgpu::SamplerBindingType::Filtering) { continue; } const BindGroupLayoutBase* textureBGL = layout->GetBindGroupLayout(pair.texture.group); const BindingInfo& textureInfo = textureBGL->GetBindingInfo(textureBGL->GetBindingIndex(pair.texture.binding)); ASSERT(textureInfo.bindingType != BindingInfoType::Buffer && textureInfo.bindingType != BindingInfoType::Sampler && textureInfo.bindingType != BindingInfoType::StorageTexture); if (textureInfo.bindingType != BindingInfoType::Texture) { continue; } // Uint/sint can't be statically used with a sampler, so they any // texture bindings reflected must be float or depth textures. If // the shader uses a float/depth texture but the bind group layout // specifies a uint/sint texture binding, // |ValidateCompatibilityWithBindGroupLayout| will fail since the // sampleType does not match. ASSERT(textureInfo.texture.sampleType != wgpu::TextureSampleType::Undefined && textureInfo.texture.sampleType != wgpu::TextureSampleType::Uint && textureInfo.texture.sampleType != wgpu::TextureSampleType::Sint); if (textureInfo.texture.sampleType == wgpu::TextureSampleType::UnfilterableFloat) { return DAWN_VALIDATION_ERROR( "unfilterable-float texture bindings cannot be sampled with a " "filtering sampler"); } } return {}; } // ShaderModuleBase ShaderModuleBase::ShaderModuleBase(DeviceBase* device, const ShaderModuleDescriptor* descriptor) : CachedObject(device, descriptor->label), mType(Type::Undefined) { ASSERT(descriptor->nextInChain != nullptr); const ShaderModuleSPIRVDescriptor* spirvDesc = nullptr; FindInChain(descriptor->nextInChain, &spirvDesc); const ShaderModuleWGSLDescriptor* wgslDesc = nullptr; FindInChain(descriptor->nextInChain, &wgslDesc); ASSERT(spirvDesc || wgslDesc); if (spirvDesc) { mType = Type::Spirv; mOriginalSpirv.assign(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize); } else if (wgslDesc) { mType = Type::Wgsl; mWgsl = std::string(wgslDesc->source); } } ShaderModuleBase::ShaderModuleBase(DeviceBase* device, ObjectBase::ErrorTag tag) : CachedObject(device, tag), mType(Type::Undefined) { } ShaderModuleBase::~ShaderModuleBase() { if (IsCachedReference()) { GetDevice()->UncacheShaderModule(this); } } // static Ref ShaderModuleBase::MakeError(DeviceBase* device) { return AcquireRef(new ShaderModuleBase(device, ObjectBase::kError)); } bool ShaderModuleBase::HasEntryPoint(const std::string& entryPoint) const { return mEntryPoints.count(entryPoint) > 0; } const EntryPointMetadata& ShaderModuleBase::GetEntryPoint(const std::string& entryPoint) const { ASSERT(HasEntryPoint(entryPoint)); return *mEntryPoints.at(entryPoint); } size_t ShaderModuleBase::ComputeContentHash() { ObjectContentHasher recorder; recorder.Record(mType); recorder.Record(mOriginalSpirv); recorder.Record(mWgsl); return recorder.GetContentHash(); } bool ShaderModuleBase::EqualityFunc::operator()(const ShaderModuleBase* a, const ShaderModuleBase* b) const { return a->mType == b->mType && a->mOriginalSpirv == b->mOriginalSpirv && a->mWgsl == b->mWgsl; } const tint::Program* ShaderModuleBase::GetTintProgram() const { ASSERT(mTintProgram); return mTintProgram.get(); } void ShaderModuleBase::APIGetCompilationInfo(wgpu::CompilationInfoCallback callback, void* userdata) { if (callback == nullptr) { return; } callback(WGPUCompilationInfoRequestStatus_Success, mCompilationMessages->GetCompilationInfo(), userdata); } void ShaderModuleBase::InjectCompilationMessages( std::unique_ptr compilationMessages) { // TODO(dawn:944): ensure the InjectCompilationMessages is properly handled for shader // module returned from cache. // InjectCompilationMessages should be called only once for a shader module, after it is // created. However currently InjectCompilationMessages may be called on a shader module // returned from cache rather than newly created, and violate the rule. We just skip the // injection in this case for now, but a proper solution including ensure the cache goes // before the validation is required. if (mCompilationMessages != nullptr) { return; } // Move the compilationMessages into the shader module and emit the tint errors and warnings mCompilationMessages = std::move(compilationMessages); // Emit the formatted Tint errors and warnings within the moved compilationMessages const std::vector& formattedTintMessages = mCompilationMessages->GetFormattedTintMessages(); if (formattedTintMessages.empty()) { return; } std::ostringstream t; for (auto pMessage = formattedTintMessages.begin(); pMessage != formattedTintMessages.end(); pMessage++) { if (pMessage != formattedTintMessages.begin()) { t << std::endl; } t << *pMessage; } this->GetDevice()->EmitLog(WGPULoggingType_Warning, t.str().c_str()); } OwnedCompilationMessages* ShaderModuleBase::GetCompilationMessages() const { return mCompilationMessages.get(); } MaybeError ShaderModuleBase::InitializeBase(ShaderModuleParseResult* parseResult) { mTintProgram = std::move(parseResult->tintProgram); mTintSource = std::move(parseResult->tintSource); DAWN_TRY_ASSIGN(mEntryPoints, ReflectShaderUsingTint(GetDevice(), mTintProgram.get())); return {}; } size_t PipelineLayoutEntryPointPairHashFunc::operator()( const PipelineLayoutEntryPointPair& pair) const { size_t hash = 0; HashCombine(&hash, pair.first, pair.second); return hash; } } // namespace dawn_native