// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/type_determiner.h" #include #include #include "src/ast/array_accessor_expression.h" #include "src/ast/assignment_statement.h" #include "src/ast/binary_expression.h" #include "src/ast/bitcast_expression.h" #include "src/ast/block_statement.h" #include "src/ast/break_statement.h" #include "src/ast/call_expression.h" #include "src/ast/call_statement.h" #include "src/ast/case_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/else_statement.h" #include "src/ast/identifier_expression.h" #include "src/ast/if_statement.h" #include "src/ast/intrinsic.h" #include "src/ast/loop_statement.h" #include "src/ast/member_accessor_expression.h" #include "src/ast/return_statement.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/switch_statement.h" #include "src/ast/type/array_type.h" #include "src/ast/type/bool_type.h" #include "src/ast/type/f32_type.h" #include "src/ast/type/i32_type.h" #include "src/ast/type/matrix_type.h" #include "src/ast/type/multisampled_texture_type.h" #include "src/ast/type/pointer_type.h" #include "src/ast/type/sampled_texture_type.h" #include "src/ast/type/storage_texture_type.h" #include "src/ast/type/struct_type.h" #include "src/ast/type/texture_type.h" #include "src/ast/type/u32_type.h" #include "src/ast/type/vector_type.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" namespace tint { TypeDeterminer::TypeDeterminer(Context* ctx, ast::Module* mod) : ctx_(*ctx), mod_(mod) {} TypeDeterminer::~TypeDeterminer() = default; void TypeDeterminer::set_error(const Source& src, const std::string& msg) { error_ = ""; if (src.range.begin.line > 0) { error_ += std::to_string(src.range.begin.line) + ":" + std::to_string(src.range.begin.column) + ": "; } error_ += msg; } void TypeDeterminer::set_referenced_from_function_if_needed( ast::Variable* var) { if (current_function_ == nullptr) { return; } if (var->storage_class() == ast::StorageClass::kNone || var->storage_class() == ast::StorageClass::kFunction) { return; } current_function_->add_referenced_module_variable(var); } bool TypeDeterminer::Determine() { for (auto& iter : ctx_.type_mgr().types()) { auto& type = iter.second; if (!type->IsTexture() || !type->AsTexture()->IsStorage()) { continue; } if (!DetermineStorageTextureSubtype(type->AsTexture()->AsStorage())) { set_error(Source{}, "unable to determine storage texture subtype for: " + type->type_name()); return false; } } for (const auto& var : mod_->global_variables()) { variable_stack_.set_global(var->name(), var.get()); if (var->has_constructor()) { if (!DetermineResultType(var->constructor())) { return false; } } } if (!DetermineFunctions(mod_->functions())) { return false; } // Walk over the caller to callee information and update functions with which // entry points call those functions. for (const auto& func : mod_->functions()) { if (!func->IsEntryPoint()) { continue; } for (const auto& callee : caller_to_callee_[func->name()]) { set_entry_points(callee, func->name()); } } return true; } void TypeDeterminer::set_entry_points(const std::string& fn_name, const std::string& ep_name) { name_to_function_[fn_name]->add_ancestor_entry_point(ep_name); for (const auto& callee : caller_to_callee_[fn_name]) { set_entry_points(callee, ep_name); } } bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { for (const auto& func : funcs) { if (!DetermineFunction(func.get())) { return false; } } return true; } bool TypeDeterminer::DetermineFunction(ast::Function* func) { name_to_function_[func->name()] = func; current_function_ = func; variable_stack_.push_scope(); for (const auto& param : func->params()) { variable_stack_.set(param->name(), param.get()); } if (!DetermineStatements(func->body())) { return false; } variable_stack_.pop_scope(); current_function_ = nullptr; return true; } bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) { for (const auto& stmt : *stmts) { if (!DetermineVariableStorageClass(stmt.get())) { return false; } if (!DetermineResultType(stmt.get())) { return false; } } return true; } bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { if (!stmt->IsVariableDecl()) { return true; } auto* var = stmt->AsVariableDecl()->variable(); // Nothing to do for const if (var->is_const()) { return true; } if (var->storage_class() == ast::StorageClass::kFunction) { return true; } if (var->storage_class() != ast::StorageClass::kNone) { set_error(stmt->source(), "function variable has a non-function storage class"); return false; } var->set_storage_class(ast::StorageClass::kFunction); return true; } bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { if (stmt->IsAssign()) { auto* a = stmt->AsAssign(); return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); } if (stmt->IsBlock()) { return DetermineStatements(stmt->AsBlock()); } if (stmt->IsBreak()) { return true; } if (stmt->IsCall()) { return DetermineResultType(stmt->AsCall()->expr()); } if (stmt->IsCase()) { auto* c = stmt->AsCase(); return DetermineStatements(c->body()); } if (stmt->IsContinue()) { return true; } if (stmt->IsDiscard()) { return true; } if (stmt->IsElse()) { auto* e = stmt->AsElse(); return DetermineResultType(e->condition()) && DetermineStatements(e->body()); } if (stmt->IsFallthrough()) { return true; } if (stmt->IsIf()) { auto* i = stmt->AsIf(); if (!DetermineResultType(i->condition()) || !DetermineStatements(i->body())) { return false; } for (const auto& else_stmt : i->else_statements()) { if (!DetermineResultType(else_stmt.get())) { return false; } } return true; } if (stmt->IsLoop()) { auto* l = stmt->AsLoop(); return DetermineStatements(l->body()) && DetermineStatements(l->continuing()); } if (stmt->IsReturn()) { auto* r = stmt->AsReturn(); return DetermineResultType(r->value()); } if (stmt->IsSwitch()) { auto* s = stmt->AsSwitch(); if (!DetermineResultType(s->condition())) { return false; } for (const auto& case_stmt : s->body()) { if (!DetermineResultType(case_stmt.get())) { return false; } } return true; } if (stmt->IsVariableDecl()) { auto* v = stmt->AsVariableDecl(); variable_stack_.set(v->variable()->name(), v->variable()); return DetermineResultType(v->variable()->constructor()); } set_error(stmt->source(), "unknown statement type for type determination: " + stmt->str()); return false; } bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { for (const auto& expr : list) { if (!DetermineResultType(expr.get())) { return false; } } return true; } bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { // This is blindly called above, so in some cases the expression won't exist. if (!expr) { return true; } if (expr->IsArrayAccessor()) { return DetermineArrayAccessor(expr->AsArrayAccessor()); } if (expr->IsBinary()) { return DetermineBinary(expr->AsBinary()); } if (expr->IsBitcast()) { return DetermineBitcast(expr->AsBitcast()); } if (expr->IsCall()) { return DetermineCall(expr->AsCall()); } if (expr->IsConstructor()) { return DetermineConstructor(expr->AsConstructor()); } if (expr->IsIdentifier()) { return DetermineIdentifier(expr->AsIdentifier()); } if (expr->IsMemberAccessor()) { return DetermineMemberAccessor(expr->AsMemberAccessor()); } if (expr->IsUnaryOp()) { return DetermineUnaryOp(expr->AsUnaryOp()); } set_error(expr->source(), "unknown expression for type determination"); return false; } bool TypeDeterminer::DetermineArrayAccessor( ast::ArrayAccessorExpression* expr) { if (!DetermineResultType(expr->array())) { return false; } if (!DetermineResultType(expr->idx_expr())) { return false; } auto* res = expr->array()->result_type(); auto* parent_type = res->UnwrapAll(); ast::type::Type* ret = nullptr; if (parent_type->IsArray()) { ret = parent_type->AsArray()->type(); } else if (parent_type->IsVector()) { ret = parent_type->AsVector()->type(); } else if (parent_type->IsMatrix()) { auto* m = parent_type->AsMatrix(); ret = ctx_.type_mgr().Get( std::make_unique(m->type(), m->rows())); } else { set_error(expr->source(), "invalid parent type (" + parent_type->type_name() + ") in array accessor"); return false; } // If we're extracting from a pointer, we return a pointer. if (res->IsPointer()) { ret = ctx_.type_mgr().Get(std::make_unique( ret, res->AsPointer()->storage_class())); } else if (parent_type->IsArray() && !parent_type->AsArray()->type()->is_scalar()) { // If we extract a non-scalar from an array then we also get a pointer. We // will generate a Function storage class variable to store this // into. ret = ctx_.type_mgr().Get(std::make_unique( ret, ast::StorageClass::kFunction)); } expr->set_result_type(ret); return true; } bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) { if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->type()); return true; } bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) { if (!DetermineResultType(expr->func())) { return false; } if (!DetermineResultType(expr->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. if (expr->func()->IsIdentifier()) { auto* ident = expr->func()->AsIdentifier(); if (ident->IsIntrinsic()) { if (!DetermineIntrinsic(ident, expr)) { return false; } } else { if (current_function_) { caller_to_callee_[current_function_->name()].push_back(ident->name()); auto* callee_func = mod_->FindFunctionByName(ident->name()); if (callee_func == nullptr) { set_error(expr->source(), "unable to find called function: " + ident->name()); return false; } // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_variables()) { set_referenced_from_function_if_needed(var); } } // An identifier with a single name is a function call, not an import // lookup which we can handle with the regular identifier lookup. if (!DetermineResultType(ident)) { return false; } } } else { if (!DetermineResultType(expr->func())) { return false; } } if (!expr->func()->result_type()) { auto func_name = expr->func()->AsIdentifier()->name(); set_error( expr->source(), "v-0005: function must be declared before use: '" + func_name + "'"); return false; } expr->set_result_type(expr->func()->result_type()); return true; } namespace { enum class IntrinsicDataType { kFloatOrIntScalarOrVector, kFloatScalarOrVector, kIntScalarOrVector, kFloatVector, kMatrix, }; struct IntrinsicData { ast::Intrinsic intrinsic; uint8_t param_count; IntrinsicDataType data_type; uint8_t vector_size; }; // Note, this isn't all the intrinsics. Some are handled specially before // we get to the generic code. See the DetermineIntrinsic code below. constexpr const IntrinsicData kIntrinsicData[] = { {ast::Intrinsic::kAbs, 1, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kAcos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kAsin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kAtan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kAtan2, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kCeil, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kClamp, 3, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kCos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kCosh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kCountOneBits, 1, IntrinsicDataType::kIntScalarOrVector, 0}, {ast::Intrinsic::kCross, 2, IntrinsicDataType::kFloatVector, 3}, {ast::Intrinsic::kDeterminant, 1, IntrinsicDataType::kMatrix, 0}, {ast::Intrinsic::kDistance, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kExp, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kExp2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFaceForward, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFloor, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFma, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFract, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFrexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kInverseSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLdexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLength, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLog, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLog2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kMax, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kMin, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kMix, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kModf, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kNormalize, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kPow, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kReflect, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kReverseBits, 1, IntrinsicDataType::kIntScalarOrVector, 0}, {ast::Intrinsic::kRound, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSign, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSinh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSmoothStep, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kStep, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kTan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kTanh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kTrunc, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, }; constexpr const uint32_t kIntrinsicDataCount = sizeof(kIntrinsicData) / sizeof(IntrinsicData); } // namespace bool TypeDeterminer::DetermineIntrinsic(ast::IdentifierExpression* ident, ast::CallExpression* expr) { if (ast::intrinsic::IsDerivative(ident->intrinsic())) { if (expr->params().size() != 1) { set_error(expr->source(), "incorrect number of parameters for " + ident->name()); return false; } // The result type must be the same as the type of the parameter. auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); expr->func()->set_result_type(param_type); return true; } if (ident->intrinsic() == ast::Intrinsic::kAny || ident->intrinsic() == ast::Intrinsic::kAll) { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique())); return true; } if (ident->intrinsic() == ast::Intrinsic::kArrayLength) { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique())); return true; } if (ast::intrinsic::IsFloatClassificationIntrinsic(ident->intrinsic())) { if (expr->params().size() != 1) { set_error(expr->source(), "incorrect number of parameters for " + ident->name()); return false; } auto* bool_type = ctx_.type_mgr().Get(std::make_unique()); auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); if (param_type->IsVector()) { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique( bool_type, param_type->AsVector()->size()))); } else { expr->func()->set_result_type(bool_type); } return true; } if (ast::intrinsic::IsTextureIntrinsic(ident->intrinsic())) { // TODO(dsinclair): Remove the LOD param from textureLoad on storage // textures when https://github.com/gpuweb/gpuweb/pull/1032 gets merged. uint32_t num_of_params = (ident->intrinsic() == ast::Intrinsic::kTextureLoad || ident->intrinsic() == ast::Intrinsic::kTextureSample) ? 3 : 4; if (expr->params().size() != num_of_params) { set_error(expr->source(), "incorrect number of parameters for " + ident->name() + ", got " + std::to_string(expr->params().size()) + " and expected " + std::to_string(num_of_params)); return false; } if (ident->intrinsic() == ast::Intrinsic::kTextureSampleCompare) { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique())); return true; } auto& texture_param = expr->params()[0]; if (!texture_param->result_type()->UnwrapPtrIfNeeded()->IsTexture()) { set_error(expr->source(), "invalid first argument for " + ident->name()); return false; } ast::type::TextureType* texture = texture_param->result_type()->UnwrapPtrIfNeeded()->AsTexture(); if (!texture->IsStorage() && !(texture->IsSampled() || texture->IsMultisampled())) { set_error(expr->source(), "invalid texture for " + ident->name()); return false; } ast::type::Type* type = nullptr; if (texture->IsStorage()) { type = texture->AsStorage()->type(); } else if (texture->IsSampled()) { type = texture->AsSampled()->type(); } else if (texture->IsMultisampled()) { type = texture->AsMultisampled()->type(); } else { set_error(expr->source(), "unknown texture type for texture sampling"); return false; } expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique(type, 4))); return true; } if (ident->intrinsic() == ast::Intrinsic::kDot) { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique())); return true; } if (ident->intrinsic() == ast::Intrinsic::kOuterProduct) { if (expr->params().size() != 2) { set_error(expr->source(), "incorrect number of parameters for " + ident->name()); return false; } auto* param0_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); auto* param1_type = expr->params()[1]->result_type()->UnwrapPtrIfNeeded(); if (!param0_type->IsVector() || !param1_type->IsVector()) { set_error(expr->source(), "invalid parameter type for " + ident->name()); return false; } expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique( ctx_.type_mgr().Get(std::make_unique()), param0_type->AsVector()->size(), param1_type->AsVector()->size()))); return true; } if (ident->intrinsic() == ast::Intrinsic::kSelect) { if (expr->params().size() != 3) { set_error(expr->source(), "incorrect number of parameters for " + ident->name() + " expected 3 got " + std::to_string(expr->params().size())); return false; } // The result type must be the same as the type of the parameter. auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); expr->func()->set_result_type(param_type); return true; } const IntrinsicData* data = nullptr; for (uint32_t i = 0; i < kIntrinsicDataCount; ++i) { if (ident->intrinsic() == kIntrinsicData[i].intrinsic) { data = &kIntrinsicData[i]; break; } } if (data == nullptr) { error_ = "unable to find intrinsic " + ident->name(); return false; } if (expr->params().size() != data->param_count) { set_error(expr->source(), "incorrect number of parameters for " + ident->name() + ". Expected " + std::to_string(data->param_count) + " got " + std::to_string(expr->params().size())); return false; } std::vector result_types; for (uint32_t i = 0; i < data->param_count; ++i) { result_types.push_back( expr->params()[i]->result_type()->UnwrapPtrIfNeeded()); switch (data->data_type) { case IntrinsicDataType::kFloatOrIntScalarOrVector: if (!result_types.back()->is_float_scalar_or_vector() && !result_types.back()->is_integer_scalar_or_vector()) { set_error(expr->source(), "incorrect type for " + ident->name() + ". " + "Requires float or int, scalar or vector values"); return false; } break; case IntrinsicDataType::kFloatScalarOrVector: if (!result_types.back()->is_float_scalar_or_vector()) { set_error(expr->source(), "incorrect type for " + ident->name() + ". " + "Requires float scalar or float vector values"); return false; } break; case IntrinsicDataType::kIntScalarOrVector: if (!result_types.back()->is_integer_scalar_or_vector()) { set_error(expr->source(), "incorrect type for " + ident->name() + ". " + "Requires integer scalar or integer vector values"); return false; } break; case IntrinsicDataType::kFloatVector: if (!result_types.back()->is_float_vector()) { set_error(expr->source(), "incorrect type for " + ident->name() + ". " + "Requires float vector values"); return false; } if (data->vector_size > 0 && result_types.back()->AsVector()->size() != data->vector_size) { set_error(expr->source(), "incorrect vector size for " + ident->name() + ". " + "Requires " + std::to_string(data->vector_size) + " elements"); return false; } break; case IntrinsicDataType::kMatrix: if (!result_types.back()->IsMatrix()) { set_error(expr->source(), "incorrect type for " + ident->name() + ". Requires matrix value"); return false; } break; } } // Verify all the parameter types match for (size_t i = 1; i < data->param_count; ++i) { if (result_types[0] != result_types[i]) { set_error(expr->source(), "mismatched parameter types for " + ident->name()); return false; } } // Handle functions which aways return the type, even if a vector is // provided. if (ident->intrinsic() == ast::Intrinsic::kLength || ident->intrinsic() == ast::Intrinsic::kDistance) { expr->func()->set_result_type(result_types[0]->is_float_scalar() ? result_types[0] : result_types[0]->AsVector()->type()); return true; } // The determinant returns the component type of the columns if (ident->intrinsic() == ast::Intrinsic::kDeterminant) { expr->func()->set_result_type(result_types[0]->AsMatrix()->type()); return true; } expr->func()->set_result_type(result_types[0]); return true; } bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { if (expr->IsTypeConstructor()) { auto* ty = expr->AsTypeConstructor(); for (const auto& value : ty->values()) { if (!DetermineResultType(value.get())) { return false; } } expr->set_result_type(ty->type()); } else { expr->set_result_type(expr->AsScalarConstructor()->literal()->type()); } return true; } bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { auto name = expr->name(); ast::Variable* var; if (variable_stack_.get(name, &var)) { // A constant is the type, but a variable is always a pointer so synthesize // the pointer around the variable type. if (var->is_const()) { expr->set_result_type(var->type()); } else if (var->type()->IsPointer()) { expr->set_result_type(var->type()); } else { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( var->type(), var->storage_class()))); } set_referenced_from_function_if_needed(var); return true; } auto iter = name_to_function_.find(name); if (iter != name_to_function_.end()) { expr->set_result_type(iter->second->return_type()); return true; } if (!SetIntrinsicIfNeeded(expr)) { set_error(expr->source(), "v-0006: identifier must be declared before use: " + name); return false; } return true; } bool TypeDeterminer::SetIntrinsicIfNeeded(ast::IdentifierExpression* ident) { if (ident->name() == "abs") { ident->set_intrinsic(ast::Intrinsic::kAbs); } else if (ident->name() == "acos") { ident->set_intrinsic(ast::Intrinsic::kAcos); } else if (ident->name() == "all") { ident->set_intrinsic(ast::Intrinsic::kAll); } else if (ident->name() == "any") { ident->set_intrinsic(ast::Intrinsic::kAny); } else if (ident->name() == "arrayLength") { ident->set_intrinsic(ast::Intrinsic::kArrayLength); } else if (ident->name() == "asin") { ident->set_intrinsic(ast::Intrinsic::kAsin); } else if (ident->name() == "atan") { ident->set_intrinsic(ast::Intrinsic::kAtan); } else if (ident->name() == "atan2") { ident->set_intrinsic(ast::Intrinsic::kAtan2); } else if (ident->name() == "ceil") { ident->set_intrinsic(ast::Intrinsic::kCeil); } else if (ident->name() == "clamp") { ident->set_intrinsic(ast::Intrinsic::kClamp); } else if (ident->name() == "cos") { ident->set_intrinsic(ast::Intrinsic::kCos); } else if (ident->name() == "cosh") { ident->set_intrinsic(ast::Intrinsic::kCosh); } else if (ident->name() == "countOneBits") { ident->set_intrinsic(ast::Intrinsic::kCountOneBits); } else if (ident->name() == "cross") { ident->set_intrinsic(ast::Intrinsic::kCross); } else if (ident->name() == "determinant") { ident->set_intrinsic(ast::Intrinsic::kDeterminant); } else if (ident->name() == "distance") { ident->set_intrinsic(ast::Intrinsic::kDistance); } else if (ident->name() == "dot") { ident->set_intrinsic(ast::Intrinsic::kDot); } else if (ident->name() == "dpdx") { ident->set_intrinsic(ast::Intrinsic::kDpdx); } else if (ident->name() == "dpdxCoarse") { ident->set_intrinsic(ast::Intrinsic::kDpdxCoarse); } else if (ident->name() == "dpdxFine") { ident->set_intrinsic(ast::Intrinsic::kDpdxFine); } else if (ident->name() == "dpdy") { ident->set_intrinsic(ast::Intrinsic::kDpdy); } else if (ident->name() == "dpdyCoarse") { ident->set_intrinsic(ast::Intrinsic::kDpdyCoarse); } else if (ident->name() == "dpdyFine") { ident->set_intrinsic(ast::Intrinsic::kDpdyFine); } else if (ident->name() == "exp") { ident->set_intrinsic(ast::Intrinsic::kExp); } else if (ident->name() == "exp2") { ident->set_intrinsic(ast::Intrinsic::kExp2); } else if (ident->name() == "faceForward") { ident->set_intrinsic(ast::Intrinsic::kFaceForward); } else if (ident->name() == "floor") { ident->set_intrinsic(ast::Intrinsic::kFloor); } else if (ident->name() == "fma") { ident->set_intrinsic(ast::Intrinsic::kFma); } else if (ident->name() == "fract") { ident->set_intrinsic(ast::Intrinsic::kFract); } else if (ident->name() == "frexp") { ident->set_intrinsic(ast::Intrinsic::kFrexp); } else if (ident->name() == "fwidth") { ident->set_intrinsic(ast::Intrinsic::kFwidth); } else if (ident->name() == "fwidthCoarse") { ident->set_intrinsic(ast::Intrinsic::kFwidthCoarse); } else if (ident->name() == "fwidthFine") { ident->set_intrinsic(ast::Intrinsic::kFwidthFine); } else if (ident->name() == "inverseSqrt") { ident->set_intrinsic(ast::Intrinsic::kInverseSqrt); } else if (ident->name() == "isFinite") { ident->set_intrinsic(ast::Intrinsic::kIsFinite); } else if (ident->name() == "isInf") { ident->set_intrinsic(ast::Intrinsic::kIsInf); } else if (ident->name() == "isNan") { ident->set_intrinsic(ast::Intrinsic::kIsNan); } else if (ident->name() == "isNormal") { ident->set_intrinsic(ast::Intrinsic::kIsNormal); } else if (ident->name() == "ldexp") { ident->set_intrinsic(ast::Intrinsic::kLdexp); } else if (ident->name() == "length") { ident->set_intrinsic(ast::Intrinsic::kLength); } else if (ident->name() == "log") { ident->set_intrinsic(ast::Intrinsic::kLog); } else if (ident->name() == "log2") { ident->set_intrinsic(ast::Intrinsic::kLog2); } else if (ident->name() == "max") { ident->set_intrinsic(ast::Intrinsic::kMax); } else if (ident->name() == "min") { ident->set_intrinsic(ast::Intrinsic::kMin); } else if (ident->name() == "mix") { ident->set_intrinsic(ast::Intrinsic::kMix); } else if (ident->name() == "modf") { ident->set_intrinsic(ast::Intrinsic::kModf); } else if (ident->name() == "normalize") { ident->set_intrinsic(ast::Intrinsic::kNormalize); } else if (ident->name() == "outerProduct") { ident->set_intrinsic(ast::Intrinsic::kOuterProduct); } else if (ident->name() == "pow") { ident->set_intrinsic(ast::Intrinsic::kPow); } else if (ident->name() == "reflect") { ident->set_intrinsic(ast::Intrinsic::kReflect); } else if (ident->name() == "reverseBits") { ident->set_intrinsic(ast::Intrinsic::kReverseBits); } else if (ident->name() == "round") { ident->set_intrinsic(ast::Intrinsic::kRound); } else if (ident->name() == "select") { ident->set_intrinsic(ast::Intrinsic::kSelect); } else if (ident->name() == "sign") { ident->set_intrinsic(ast::Intrinsic::kSign); } else if (ident->name() == "sin") { ident->set_intrinsic(ast::Intrinsic::kSin); } else if (ident->name() == "sinh") { ident->set_intrinsic(ast::Intrinsic::kSinh); } else if (ident->name() == "smoothStep") { ident->set_intrinsic(ast::Intrinsic::kSmoothStep); } else if (ident->name() == "sqrt") { ident->set_intrinsic(ast::Intrinsic::kSqrt); } else if (ident->name() == "step") { ident->set_intrinsic(ast::Intrinsic::kStep); } else if (ident->name() == "tan") { ident->set_intrinsic(ast::Intrinsic::kTan); } else if (ident->name() == "tanh") { ident->set_intrinsic(ast::Intrinsic::kTanh); } else if (ident->name() == "textureLoad") { ident->set_intrinsic(ast::Intrinsic::kTextureLoad); } else if (ident->name() == "textureSample") { ident->set_intrinsic(ast::Intrinsic::kTextureSample); } else if (ident->name() == "textureSampleBias") { ident->set_intrinsic(ast::Intrinsic::kTextureSampleBias); } else if (ident->name() == "textureSampleCompare") { ident->set_intrinsic(ast::Intrinsic::kTextureSampleCompare); } else if (ident->name() == "textureSampleLevel") { ident->set_intrinsic(ast::Intrinsic::kTextureSampleLevel); } else if (ident->name() == "trunc") { ident->set_intrinsic(ast::Intrinsic::kTrunc); } else { return false; } return true; } bool TypeDeterminer::DetermineMemberAccessor( ast::MemberAccessorExpression* expr) { if (!DetermineResultType(expr->structure())) { return false; } auto* res = expr->structure()->result_type(); auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); ast::type::Type* ret = nullptr; if (data_type->IsStruct()) { auto* strct = data_type->AsStruct()->impl(); auto name = expr->member()->name(); for (const auto& member : strct->members()) { if (member->name() == name) { ret = member->type(); break; } } if (ret == nullptr) { set_error(expr->source(), "struct member " + name + " not found"); return false; } // If we're extracting from a pointer, we return a pointer. if (res->IsPointer()) { ret = ctx_.type_mgr().Get(std::make_unique( ret, res->AsPointer()->storage_class())); } } else if (data_type->IsVector()) { auto* vec = data_type->AsVector(); auto size = expr->member()->name().size(); if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a pointer, we return a pointer. if (res->IsPointer()) { ret = ctx_.type_mgr().Get(std::make_unique( ret, res->AsPointer()->storage_class())); } } else { // The vector will have a number of components equal to the length of the // swizzle. This assumes the validator will check that the swizzle // is correct. ret = ctx_.type_mgr().Get( std::make_unique(vec->type(), size)); } } else { set_error(expr->source(), "invalid type " + data_type->type_name() + " in member accessor"); return false; } expr->set_result_type(ret); return true; } bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { expr->set_result_type(expr->lhs()->result_type()->UnwrapPtrIfNeeded()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = ctx_.type_mgr().Get(std::make_unique()); auto* param_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); if (param_type->IsVector()) { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( bool_type, param_type->AsVector()->size()))); } else { expr->set_result_type(bool_type); } return true; } if (expr->IsMultiply()) { auto* lhs_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); auto* rhs_type = expr->rhs()->result_type()->UnwrapPtrIfNeeded(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. if (lhs_type->IsMatrix() && rhs_type->IsMatrix()) { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( lhs_type->AsMatrix()->type(), lhs_type->AsMatrix()->rows(), rhs_type->AsMatrix()->columns()))); } else if (lhs_type->IsMatrix() && rhs_type->IsVector()) { auto* mat = lhs_type->AsMatrix(); expr->set_result_type(ctx_.type_mgr().Get( std::make_unique(mat->type(), mat->rows()))); } else if (lhs_type->IsVector() && rhs_type->IsMatrix()) { auto* mat = rhs_type->AsMatrix(); expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( mat->type(), mat->columns()))); } else if (lhs_type->IsMatrix()) { // matrix * scalar expr->set_result_type(lhs_type); } else if (rhs_type->IsMatrix()) { // scalar * matrix expr->set_result_type(rhs_type); } else if (lhs_type->IsVector() && rhs_type->IsVector()) { expr->set_result_type(lhs_type); } else if (lhs_type->IsVector()) { // Vector * scalar expr->set_result_type(lhs_type); } else if (rhs_type->IsVector()) { // Scalar * vector expr->set_result_type(rhs_type); } else { // Scalar * Scalar expr->set_result_type(lhs_type); } return true; } set_error(expr->source(), "Unknown binary expression"); return false; } bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { // Result type matches the parameter type. if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->expr()->result_type()->UnwrapPtrIfNeeded()); return true; } bool TypeDeterminer::DetermineStorageTextureSubtype( ast::type::StorageTextureType* tex) { if (tex->type() != nullptr) { return true; } switch (tex->image_format()) { case ast::type::ImageFormat::kR8Unorm: case ast::type::ImageFormat::kRg8Unorm: case ast::type::ImageFormat::kRgba8Unorm: case ast::type::ImageFormat::kRgba8UnormSrgb: case ast::type::ImageFormat::kBgra8Unorm: case ast::type::ImageFormat::kBgra8UnormSrgb: case ast::type::ImageFormat::kRgb10A2Unorm: case ast::type::ImageFormat::kR8Uint: case ast::type::ImageFormat::kR16Uint: case ast::type::ImageFormat::kRg8Uint: case ast::type::ImageFormat::kR32Uint: case ast::type::ImageFormat::kRg16Uint: case ast::type::ImageFormat::kRgba8Uint: case ast::type::ImageFormat::kRg32Uint: case ast::type::ImageFormat::kRgba16Uint: case ast::type::ImageFormat::kRgba32Uint: { tex->set_type( ctx_.type_mgr().Get(std::make_unique())); return true; } case ast::type::ImageFormat::kR8Snorm: case ast::type::ImageFormat::kRg8Snorm: case ast::type::ImageFormat::kRgba8Snorm: case ast::type::ImageFormat::kR8Sint: case ast::type::ImageFormat::kR16Sint: case ast::type::ImageFormat::kRg8Sint: case ast::type::ImageFormat::kR32Sint: case ast::type::ImageFormat::kRg16Sint: case ast::type::ImageFormat::kRgba8Sint: case ast::type::ImageFormat::kRg32Sint: case ast::type::ImageFormat::kRgba16Sint: case ast::type::ImageFormat::kRgba32Sint: { tex->set_type( ctx_.type_mgr().Get(std::make_unique())); return true; } case ast::type::ImageFormat::kR16Float: case ast::type::ImageFormat::kR32Float: case ast::type::ImageFormat::kRg16Float: case ast::type::ImageFormat::kRg11B10Float: case ast::type::ImageFormat::kRg32Float: case ast::type::ImageFormat::kRgba16Float: case ast::type::ImageFormat::kRgba32Float: { tex->set_type( ctx_.type_mgr().Get(std::make_unique())); return true; } case ast::type::ImageFormat::kNone: break; } return false; } } // namespace tint