// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "tests/unittests/validation/ValidationTest.h" #include "common/Constants.h" #include "utils/ComboRenderPipelineDescriptor.h" #include "utils/WGPUHelpers.h" #include #include class RenderPipelineValidationTest : public ValidationTest { protected: void SetUp() override { ValidationTest::SetUp(); vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); fsModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); fsModuleUint = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0u, 255u, 0u, 255u); })"); } wgpu::ShaderModule vsModule; wgpu::ShaderModule fsModule; wgpu::ShaderModule fsModuleUint; }; namespace { bool BlendFactorContainsSrcAlpha(const wgpu::BlendFactor& blendFactor) { return blendFactor == wgpu::BlendFactor::SrcAlpha || blendFactor == wgpu::BlendFactor::OneMinusSrcAlpha || blendFactor == wgpu::BlendFactor::SrcAlphaSaturated; } } // namespace // Test cases where creation should succeed TEST_F(RenderPipelineValidationTest, CreationSuccess) { { // New format utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; device.CreateRenderPipeline(&descriptor); } } // Tests that depth bias parameters must not be NaN. TEST_F(RenderPipelineValidationTest, DepthBiasParameterNotBeNaN) { // Control case, depth bias parameters in ComboRenderPipeline default to 0 which is finite { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.EnableDepthStencil(); device.CreateRenderPipeline(&descriptor); } // Infinite depth bias clamp is valid { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); depthStencil->depthBiasClamp = INFINITY; device.CreateRenderPipeline(&descriptor); } // NAN depth bias clamp is invalid { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); depthStencil->depthBiasClamp = NAN; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Infinite depth bias slope is valid { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); depthStencil->depthBiasSlopeScale = INFINITY; device.CreateRenderPipeline(&descriptor); } // NAN depth bias slope is invalid { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::DepthStencilState* depthStencil = descriptor.EnableDepthStencil(); depthStencil->depthBiasSlopeScale = NAN; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } // Tests that at least one color target state is required. TEST_F(RenderPipelineValidationTest, ColorTargetStateRequired) { { // This one succeeds because attachment 0 is the color attachment utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cFragment.targetCount = 1; device.CreateRenderPipeline(&descriptor); } { // Fail because lack of color target states (and depth/stencil state) utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cFragment.targetCount = 0; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } // Tests that the color formats must be renderable. TEST_F(RenderPipelineValidationTest, NonRenderableFormat) { { // Succeeds because RGBA8Unorm is renderable utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; device.CreateRenderPipeline(&descriptor); } { // Fails because RG11B10Ufloat is non-renderable utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cTargets[0].format = wgpu::TextureFormat::RG11B10Ufloat; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } // Tests that the color formats must be blendable when blending is enabled. // Those are renderable color formats with "float" capabilities in // https://gpuweb.github.io/gpuweb/#plain-color-formats TEST_F(RenderPipelineValidationTest, NonBlendableFormat) { { // Succeeds because RGBA8Unorm is blendable utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cTargets[0].blend = &descriptor.cBlends[0]; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; device.CreateRenderPipeline(&descriptor); } { // Fails because RGBA32Float is not blendable utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cTargets[0].blend = &descriptor.cBlends[0]; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } { // Succeeds because RGBA32Float is not blendable but blending is disabled utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.cTargets[0].blend = nullptr; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; device.CreateRenderPipeline(&descriptor); } { // Fails because RGBA8Uint is not blendable utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModuleUint; descriptor.cTargets[0].blend = &descriptor.cBlends[0]; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } { // Succeeds because RGBA8Uint is not blendable but blending is disabled utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModuleUint; descriptor.cTargets[0].blend = nullptr; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Uint; device.CreateRenderPipeline(&descriptor); } } // Tests that the format of the color state descriptor must match the output of the fragment shader. TEST_F(RenderPipelineValidationTest, FragmentOutputFormatCompatibility) { std::array kScalarTypes = {{"f32", "i32", "u32"}}; std::array kColorFormats = {{wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::RGBA8Sint, wgpu::TextureFormat::RGBA8Uint}}; for (size_t i = 0; i < kScalarTypes.size(); ++i) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; std::ostringstream stream; stream << R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4<)" << kScalarTypes[i] << R"(> { var result : vec4<)" << kScalarTypes[i] << R"(>; return result; })"; descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); for (size_t j = 0; j < kColorFormats.size(); ++j) { descriptor.cTargets[0].format = kColorFormats[j]; if (i == j) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } // Tests that the component count of the color state target format must be fewer than that of the // fragment shader output. TEST_F(RenderPipelineValidationTest, FragmentOutputComponentCountCompatibility) { std::array kColorFormats = {wgpu::TextureFormat::R8Unorm, wgpu::TextureFormat::RG8Unorm, wgpu::TextureFormat::RGBA8Unorm}; std::array kBlendFactors = {wgpu::BlendFactor::Zero, wgpu::BlendFactor::One, wgpu::BlendFactor::SrcAlpha, wgpu::BlendFactor::OneMinusSrcAlpha, wgpu::BlendFactor::Src, wgpu::BlendFactor::DstAlpha, wgpu::BlendFactor::OneMinusDstAlpha, wgpu::BlendFactor::Dst}; for (size_t componentCount = 1; componentCount <= 4; ++componentCount) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; std::ostringstream stream; stream << R"( [[stage(fragment)]] fn main() -> [[location(0)]] )"; switch (componentCount) { case 1: stream << R"(f32 { return 1.0; })"; break; case 2: stream << R"(vec2 { return vec2(1.0, 1.0); })"; break; case 3: stream << R"(vec3 { return vec3(1.0, 1.0, 1.0); })"; break; case 4: stream << R"(vec4 { return vec4(1.0, 1.0, 1.0, 1.0); })"; break; default: UNREACHABLE(); } descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); for (auto colorFormat : kColorFormats) { descriptor.cTargets[0].format = colorFormat; descriptor.cTargets[0].blend = nullptr; if (componentCount >= utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } descriptor.cTargets[0].blend = &descriptor.cBlends[0]; for (auto colorSrcFactor : kBlendFactors) { descriptor.cBlends[0].color.srcFactor = colorSrcFactor; for (auto colorDstFactor : kBlendFactors) { descriptor.cBlends[0].color.dstFactor = colorDstFactor; for (auto alphaSrcFactor : kBlendFactors) { descriptor.cBlends[0].alpha.srcFactor = alphaSrcFactor; for (auto alphaDstFactor : kBlendFactors) { descriptor.cBlends[0].alpha.dstFactor = alphaDstFactor; bool valid = true; if (componentCount >= utils::GetWGSLRenderableColorTextureComponentCount(colorFormat)) { if (BlendFactorContainsSrcAlpha( descriptor.cTargets[0].blend->color.srcFactor) || BlendFactorContainsSrcAlpha( descriptor.cTargets[0].blend->color.dstFactor) || descriptor.cTargets[0].blend->alpha.srcFactor != wgpu::BlendFactor::Zero || descriptor.cTargets[0].blend->alpha.dstFactor == wgpu::BlendFactor::Src || descriptor.cTargets[0].blend->alpha.dstFactor == wgpu::BlendFactor::OneMinusSrc || BlendFactorContainsSrcAlpha( descriptor.cTargets[0].blend->alpha.dstFactor)) { valid = componentCount == 4; } } else { valid = false; } if (valid) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } } } } } /// Tests that the sample count of the render pipeline must be valid. TEST_F(RenderPipelineValidationTest, SampleCount) { { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 4; device.CreateRenderPipeline(&descriptor); } { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 3; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } // Tests that the sample count of the render pipeline must be equal to the one of every attachments // in the render pass. TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) { constexpr uint32_t kMultisampledCount = 4; constexpr wgpu::TextureFormat kColorFormat = wgpu::TextureFormat::RGBA8Unorm; constexpr wgpu::TextureFormat kDepthStencilFormat = wgpu::TextureFormat::Depth24PlusStencil8; wgpu::TextureDescriptor baseTextureDescriptor; baseTextureDescriptor.size.width = 4; baseTextureDescriptor.size.height = 4; baseTextureDescriptor.size.depthOrArrayLayers = 1; baseTextureDescriptor.mipLevelCount = 1; baseTextureDescriptor.dimension = wgpu::TextureDimension::e2D; baseTextureDescriptor.usage = wgpu::TextureUsage::RenderAttachment; utils::ComboRenderPipelineDescriptor nonMultisampledPipelineDescriptor; nonMultisampledPipelineDescriptor.multisample.count = 1; nonMultisampledPipelineDescriptor.vertex.module = vsModule; nonMultisampledPipelineDescriptor.cFragment.module = fsModule; wgpu::RenderPipeline nonMultisampledPipeline = device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor); nonMultisampledPipelineDescriptor.cFragment.targetCount = 0; nonMultisampledPipelineDescriptor.EnableDepthStencil(); wgpu::RenderPipeline nonMultisampledPipelineWithDepthStencilOnly = device.CreateRenderPipeline(&nonMultisampledPipelineDescriptor); utils::ComboRenderPipelineDescriptor multisampledPipelineDescriptor; multisampledPipelineDescriptor.multisample.count = kMultisampledCount; multisampledPipelineDescriptor.vertex.module = vsModule; multisampledPipelineDescriptor.cFragment.module = fsModule; wgpu::RenderPipeline multisampledPipeline = device.CreateRenderPipeline(&multisampledPipelineDescriptor); multisampledPipelineDescriptor.cFragment.targetCount = 0; multisampledPipelineDescriptor.EnableDepthStencil(); wgpu::RenderPipeline multisampledPipelineWithDepthStencilOnly = device.CreateRenderPipeline(&multisampledPipelineDescriptor); // It is not allowed to use multisampled render pass and non-multisampled render pipeline. { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.format = kColorFormat; textureDescriptor.sampleCount = kMultisampledCount; wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {multisampledColorTexture.CreateView()}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(nonMultisampledPipeline); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.sampleCount = kMultisampledCount; textureDescriptor.format = kDepthStencilFormat; wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {}, multisampledDepthStencilTexture.CreateView()); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(nonMultisampledPipelineWithDepthStencilOnly); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } // It is allowed to use multisampled render pass and multisampled render pipeline. { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.format = kColorFormat; textureDescriptor.sampleCount = kMultisampledCount; wgpu::Texture multisampledColorTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {multisampledColorTexture.CreateView()}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(multisampledPipeline); renderPass.EndPass(); encoder.Finish(); } { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.sampleCount = kMultisampledCount; textureDescriptor.format = kDepthStencilFormat; wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {}, multisampledDepthStencilTexture.CreateView()); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly); renderPass.EndPass(); encoder.Finish(); } // It is not allowed to use non-multisampled render pass and multisampled render pipeline. { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.format = kColorFormat; textureDescriptor.sampleCount = 1; wgpu::Texture nonMultisampledColorTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor nonMultisampledRenderPassDescriptor( {nonMultisampledColorTexture.CreateView()}); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&nonMultisampledRenderPassDescriptor); renderPass.SetPipeline(multisampledPipeline); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } { wgpu::TextureDescriptor textureDescriptor = baseTextureDescriptor; textureDescriptor.sampleCount = 1; textureDescriptor.format = kDepthStencilFormat; wgpu::Texture multisampledDepthStencilTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor( {}, multisampledDepthStencilTexture.CreateView()); wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDescriptor); renderPass.SetPipeline(multisampledPipelineWithDepthStencilOnly); renderPass.EndPass(); ASSERT_DEVICE_ERROR(encoder.Finish()); } } // Tests that the sample count of the render pipeline must be valid // when the alphaToCoverage mode is enabled. TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) { { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 4; descriptor.multisample.alphaToCoverageEnabled = true; device.CreateRenderPipeline(&descriptor); } { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.multisample.count = 1; descriptor.multisample.alphaToCoverageEnabled = true; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } // Tests that the texture component type in shader must match the bind group layout. TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) { constexpr uint32_t kNumTextureComponentType = 3u; std::array kScalarTypes = {{"f32", "i32", "u32"}}; std::array kTextureComponentTypes = {{ wgpu::TextureSampleType::Float, wgpu::TextureSampleType::Sint, wgpu::TextureSampleType::Uint, }}; for (size_t i = 0; i < kNumTextureComponentType; ++i) { for (size_t j = 0; j < kNumTextureComponentType; ++j) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; std::ostringstream stream; stream << R"( [[group(0), binding(0)]] var myTexture : texture_2d<)" << kScalarTypes[i] << R"(>; [[stage(fragment)]] fn main() { ignore(textureDimensions(myTexture)); })"; descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout( device, {{0, wgpu::ShaderStage::Fragment, kTextureComponentTypes[j]}}); descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl); if (i == j) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } // Tests that the texture view dimension in shader must match the bind group layout. TEST_F(RenderPipelineValidationTest, TextureViewDimensionCompatibility) { constexpr uint32_t kNumTextureViewDimensions = 6u; std::array kTextureKeywords = {{ "texture_1d", "texture_2d", "texture_2d_array", "texture_cube", "texture_cube_array", "texture_3d", }}; std::array kTextureViewDimensions = {{ wgpu::TextureViewDimension::e1D, wgpu::TextureViewDimension::e2D, wgpu::TextureViewDimension::e2DArray, wgpu::TextureViewDimension::Cube, wgpu::TextureViewDimension::CubeArray, wgpu::TextureViewDimension::e3D, }}; for (size_t i = 0; i < kNumTextureViewDimensions; ++i) { for (size_t j = 0; j < kNumTextureViewDimensions; ++j) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; std::ostringstream stream; stream << R"( [[group(0), binding(0)]] var myTexture : )" << kTextureKeywords[i] << R"(; [[stage(fragment)]] fn main() { ignore(textureDimensions(myTexture)); })"; descriptor.cFragment.module = utils::CreateShaderModule(device, stream.str().c_str()); descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout( device, {{0, wgpu::ShaderStage::Fragment, wgpu::TextureSampleType::Float, kTextureViewDimensions[j]}}); descriptor.layout = utils::MakeBasicPipelineLayout(device, &bgl); if (i == j) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } // Test that declaring a storage buffer in the vertex shader without setting pipeline layout won't // cause crash. TEST_F(RenderPipelineValidationTest, StorageBufferInVertexShaderNoLayout) { wgpu::ShaderModule vsModuleWithStorageBuffer = utils::CreateShaderModule(device, R"( [[block]] struct Dst { data : array; }; [[group(0), binding(0)]] var dst : Dst; [[stage(vertex)]] fn main([[builtin(vertex_index)]] VertexIndex : u32) -> [[builtin(position)]] vec4 { dst.data[VertexIndex] = 0x1234u; return vec4(); })"); utils::ComboRenderPipelineDescriptor descriptor; descriptor.layout = nullptr; descriptor.vertex.module = vsModuleWithStorageBuffer; descriptor.cFragment.module = fsModule; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Tests that strip primitive topologies require an index format TEST_F(RenderPipelineValidationTest, StripIndexFormatRequired) { constexpr uint32_t kNumStripType = 2u; constexpr uint32_t kNumListType = 3u; constexpr uint32_t kNumIndexFormat = 3u; std::array kStripTopologyTypes = { {wgpu::PrimitiveTopology::LineStrip, wgpu::PrimitiveTopology::TriangleStrip}}; std::array kListTopologyTypes = { {wgpu::PrimitiveTopology::PointList, wgpu::PrimitiveTopology::LineList, wgpu::PrimitiveTopology::TriangleList}}; std::array kIndexFormatTypes = { {wgpu::IndexFormat::Undefined, wgpu::IndexFormat::Uint16, wgpu::IndexFormat::Uint32}}; for (wgpu::PrimitiveTopology primitiveTopology : kStripTopologyTypes) { for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.primitive.topology = primitiveTopology; descriptor.primitive.stripIndexFormat = indexFormat; if (indexFormat == wgpu::IndexFormat::Undefined) { // Fail because the index format is undefined and the primitive // topology is a strip type. ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } else { // Succeeds because the index format is given. device.CreateRenderPipeline(&descriptor); } } } for (wgpu::PrimitiveTopology primitiveTopology : kListTopologyTypes) { for (wgpu::IndexFormat indexFormat : kIndexFormatTypes) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.primitive.topology = primitiveTopology; descriptor.primitive.stripIndexFormat = indexFormat; if (indexFormat == wgpu::IndexFormat::Undefined) { // Succeeds even when the index format is undefined because the // primitive topology isn't a strip type. device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } } } // Test that specifying a clampDepth value results in an error if the feature is not enabled. TEST_F(RenderPipelineValidationTest, ClampDepthWithoutExtension) { { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::PrimitiveDepthClampingState clampingState; clampingState.clampDepth = true; descriptor.primitive.nextInChain = &clampingState; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::PrimitiveDepthClampingState clampingState; clampingState.clampDepth = false; descriptor.primitive.nextInChain = &clampingState; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } // Test that depthStencil.depthCompare must not be undefiend. TEST_F(RenderPipelineValidationTest, DepthCompareUndefinedIsError) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.EnableDepthStencil(wgpu::TextureFormat::Depth32Float); // Control case: Always is valid. descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Always; device.CreateRenderPipeline(&descriptor); // Error case: Undefined is invalid. descriptor.cDepthStencil.depthCompare = wgpu::CompareFunction::Undefined; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Test that the entryPoint names must be present for the correct stage in the shader module. TEST_F(RenderPipelineValidationTest, EntryPointNameValidation) { wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn vertex_main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); } [[stage(fragment)]] fn fragment_main() -> [[location(0)]] vec4 { return vec4(1.0, 0.0, 0.0, 1.0); } )"); utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = module; descriptor.vertex.entryPoint = "vertex_main"; descriptor.cFragment.module = module; descriptor.cFragment.entryPoint = "fragment_main"; // Success case. device.CreateRenderPipeline(&descriptor); // Test for the vertex stage entryPoint name. { // The entryPoint name doesn't exist in the module. descriptor.vertex.entryPoint = "main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); // The entryPoint name exists, but not for the correct stage. descriptor.vertex.entryPoint = "fragment_main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } descriptor.vertex.entryPoint = "vertex_main"; // Test for the fragment stage entryPoint name. { // The entryPoint name doesn't exist in the module. descriptor.cFragment.entryPoint = "main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); // The entryPoint name exists, but not for the correct stage. descriptor.cFragment.entryPoint = "vertex_main"; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } // Test that vertex attrib validation is for the correct entryPoint TEST_F(RenderPipelineValidationTest, VertexAttribCorrectEntryPoint) { wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn vertex0([[location(0)]] attrib0 : vec4) -> [[builtin(position)]] vec4 { return attrib0; } [[stage(vertex)]] fn vertex1([[location(1)]] attrib1 : vec4) -> [[builtin(position)]] vec4 { return attrib1; } )"); utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = module; descriptor.cFragment.module = fsModule; descriptor.vertex.bufferCount = 1; descriptor.cBuffers[0].attributeCount = 1; descriptor.cBuffers[0].arrayStride = 16; descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4; descriptor.cAttributes[0].offset = 0; // Success cases, the attribute used by the entryPoint is declared in the pipeline. descriptor.vertex.entryPoint = "vertex0"; descriptor.cAttributes[0].shaderLocation = 0; device.CreateRenderPipeline(&descriptor); descriptor.vertex.entryPoint = "vertex1"; descriptor.cAttributes[0].shaderLocation = 1; device.CreateRenderPipeline(&descriptor); // Error cases, the attribute used by the entryPoint isn't declared in the pipeline. descriptor.vertex.entryPoint = "vertex1"; descriptor.cAttributes[0].shaderLocation = 0; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); descriptor.vertex.entryPoint = "vertex0"; descriptor.cAttributes[0].shaderLocation = 1; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Test that fragment output validation is for the correct entryPoint TEST_F(RenderPipelineValidationTest, FragmentOutputCorrectEntryPoint) { wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn fragmentFloat() -> [[location(0)]] vec4 { return vec4(0.0, 0.0, 0.0, 0.0); } [[stage(fragment)]] fn fragmentUint() -> [[location(0)]] vec4 { return vec4(0u, 0u, 0u, 0u); } )"); utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = module; // Success case, the component type matches between the pipeline and the entryPoint descriptor.cFragment.entryPoint = "fragmentFloat"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; device.CreateRenderPipeline(&descriptor); descriptor.cFragment.entryPoint = "fragmentUint"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint; device.CreateRenderPipeline(&descriptor); // Error case, the component type doesn't match between the pipeline and the entryPoint descriptor.cFragment.entryPoint = "fragmentUint"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Float; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); descriptor.cFragment.entryPoint = "fragmentFloat"; descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA32Uint; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Test that unwritten fragment outputs must have a write mask of 0. TEST_F(RenderPipelineValidationTest, UnwrittenFragmentOutputsMask0) { wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(); } )"); wgpu::ShaderModule fsModuleWriteNone = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() {} )"); wgpu::ShaderModule fsModuleWrite0 = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(); } )"); wgpu::ShaderModule fsModuleWrite1 = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(1)]] vec4 { return vec4(); } )"); wgpu::ShaderModule fsModuleWriteBoth = utils::CreateShaderModule(device, R"( struct FragmentOut { [[location(0)]] target0 : vec4; [[location(1)]] target1 : vec4; }; [[stage(fragment)]] fn main() -> FragmentOut { var out : FragmentOut; return out; } )"); // Control case: write to target 0 { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 1; descriptor.cFragment.module = fsModuleWrite0; device.CreateRenderPipeline(&descriptor); } // Control case: write to target 0 and target 1 { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 2; descriptor.cFragment.module = fsModuleWriteBoth; device.CreateRenderPipeline(&descriptor); } // Write only target 1 (not in pipeline fragment state). // Errors because target 0 does not have a write mask of 0. { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 1; descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All; descriptor.cFragment.module = fsModuleWrite1; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Write only target 1 (not in pipeline fragment state). // OK because target 0 has a write mask of 0. { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 1; descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; descriptor.cFragment.module = fsModuleWrite1; device.CreateRenderPipeline(&descriptor); } // Write only target 0 with two color targets. // Errors because target 1 does not have a write mask of 0. { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 2; descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red; descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Alpha; descriptor.cFragment.module = fsModuleWrite0; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Write only target 0 with two color targets. // OK because target 1 has a write mask of 0. { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 2; descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::All; descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None; descriptor.cFragment.module = fsModuleWrite0; device.CreateRenderPipeline(&descriptor); } // Write nothing with two color targets. // Errors because both target 0 and 1 have nonzero write masks. { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 2; descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::Red; descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::Green; descriptor.cFragment.module = fsModuleWriteNone; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } // Write nothing with two color targets. // OK because target 0 and 1 have write masks of 0. { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.targetCount = 2; descriptor.cTargets[0].writeMask = wgpu::ColorWriteMask::None; descriptor.cTargets[1].writeMask = wgpu::ColorWriteMask::None; descriptor.cFragment.module = fsModuleWriteNone; device.CreateRenderPipeline(&descriptor); } } // Test that fragment output validation is for the correct entryPoint // TODO(dawn:216): Re-enable when we correctly reflect which bindings are used for an entryPoint. TEST_F(RenderPipelineValidationTest, DISABLED_BindingsFromCorrectEntryPoint) { wgpu::ShaderModule module = utils::CreateShaderModule(device, R"( [[block]] struct Uniforms { data : vec4; }; [[group(0), binding(0)]] var var0 : Uniforms; [[group(0), binding(1)]] var var1 : Uniforms; [[stage(vertex)]] fn vertex0() -> [[builtin(position)]] vec4 { return var0.data; } [[stage(vertex)]] fn vertex1() -> [[builtin(position)]] vec4 { return var1.data; } )"); wgpu::BindGroupLayout bgl0 = utils::MakeBindGroupLayout( device, {{0, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}}); wgpu::PipelineLayout layout0 = utils::MakeBasicPipelineLayout(device, &bgl0); wgpu::BindGroupLayout bgl1 = utils::MakeBindGroupLayout( device, {{1, wgpu::ShaderStage::Vertex, wgpu::BufferBindingType::Uniform}}); wgpu::PipelineLayout layout1 = utils::MakeBasicPipelineLayout(device, &bgl1); utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = module; descriptor.cFragment.module = fsModule; // Success case, the BGL matches the bindings used by the entryPoint descriptor.vertex.entryPoint = "vertex0"; descriptor.layout = layout0; device.CreateRenderPipeline(&descriptor); descriptor.vertex.entryPoint = "vertex1"; descriptor.layout = layout1; device.CreateRenderPipeline(&descriptor); // Error case, the BGL doesn't match the bindings used by the entryPoint descriptor.vertex.entryPoint = "vertex1"; descriptor.layout = layout0; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); descriptor.vertex.entryPoint = "vertex0"; descriptor.layout = layout1; ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } class DepthClampingValidationTest : public RenderPipelineValidationTest { protected: WGPUDevice CreateTestDevice() override { dawn_native::DeviceDescriptor descriptor; descriptor.requiredExtensions = {"depth_clamping"}; return adapter.CreateDevice(&descriptor); } }; // Tests that specifying a clampDepth value succeeds if the extension is enabled. TEST_F(DepthClampingValidationTest, Success) { { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::PrimitiveDepthClampingState clampingState; clampingState.clampDepth = true; descriptor.primitive.nextInChain = &clampingState; device.CreateRenderPipeline(&descriptor); } { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; wgpu::PrimitiveDepthClampingState clampingState; clampingState.clampDepth = false; descriptor.primitive.nextInChain = &clampingState; device.CreateRenderPipeline(&descriptor); } } class InterStageVariableMatchingValidationTest : public RenderPipelineValidationTest { protected: void CheckCreatingRenderPipeline(wgpu::ShaderModule vertexModule, wgpu::ShaderModule fragmentModule, bool shouldSucceed) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vertexModule; descriptor.cFragment.module = fragmentModule; if (shouldSucceed) { device.CreateRenderPipeline(&descriptor); } else { ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor)); } } }; // Tests that creating render pipeline should fail when there is a vertex output that doesn't have // its corresponding fragment input at the same location, and there is a fragment input that // doesn't have its corresponding vertex output at the same location. TEST_F(InterStageVariableMatchingValidationTest, MissingDeclarationAtSameLocation) { wgpu::ShaderModule vertexModuleOutputAtLocation0 = utils::CreateShaderModule(device, R"( struct A { [[location(0)]] vout: f32; [[builtin(position)]] pos: vec4; }; [[stage(vertex)]] fn main() -> A { var vertexOut: A; vertexOut.pos = vec4(0.0, 0.0, 0.0, 1.0); return vertexOut; })"); wgpu::ShaderModule fragmentModuleAtLocation0 = utils::CreateShaderModule(device, R"( struct B { [[location(0)]] fin: f32; }; [[stage(fragment)]] fn main(fragmentIn: B) -> [[location(0)]] vec4 { return vec4(fragmentIn.fin, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule fragmentModuleInputAtLocation1 = utils::CreateShaderModule(device, R"( struct A { [[location(1)]] vout: f32; }; [[stage(fragment)]] fn main(vertexOut: A) -> [[location(0)]] vec4 { return vec4(vertexOut.vout, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule vertexModuleOutputAtLocation1 = utils::CreateShaderModule(device, R"( struct B { [[location(1)]] fin: f32; [[builtin(position)]] pos: vec4; }; [[stage(vertex)]] fn main() -> B { var fragmentIn: B; fragmentIn.pos = vec4(0.0, 0.0, 0.0, 1.0); return fragmentIn; })"); { CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fsModule, false); CheckCreatingRenderPipeline(vsModule, fragmentModuleAtLocation0, false); CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleInputAtLocation1, false); CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleAtLocation0, false); } { CheckCreatingRenderPipeline(vertexModuleOutputAtLocation0, fragmentModuleAtLocation0, true); CheckCreatingRenderPipeline(vertexModuleOutputAtLocation1, fragmentModuleInputAtLocation1, true); } } // Tests that creating render pipeline should fail when the type of a vertex stage output variable // doesn't match the type of the fragment stage input variable at the same location. TEST_F(InterStageVariableMatchingValidationTest, DifferentTypeAtSameLocation) { constexpr std::array kTypes = {{"f32", "vec2", "vec3", "vec4", "i32", "vec2", "vec3", "vec4", "u32", "vec2", "vec3", "vec4"}}; std::array vertexModules; std::array fragmentModules; for (uint32_t i = 0; i < kTypes.size(); ++i) { std::string interfaceDeclaration; { std::ostringstream sstream; sstream << "struct A { [[location(0)]] a: " << kTypes[i] << ";" << std::endl; interfaceDeclaration = sstream.str(); } { std::ostringstream vertexStream; vertexStream << interfaceDeclaration << R"( [[builtin(position)]] pos: vec4; }; [[stage(vertex)]] fn main() -> A { var vertexOut: A; vertexOut.pos = vec4(0.0, 0.0, 0.0, 1.0); return vertexOut; })"; vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str()); } { std::ostringstream fragmentStream; fragmentStream << interfaceDeclaration << R"( }; [[stage(fragment)]] fn main(fragmentIn: A) -> [[location(0)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"; fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str()); } } for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < kTypes.size(); ++vertexModuleIndex) { wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex]; for (uint32_t fragmentModuleIndex = 0; fragmentModuleIndex < kTypes.size(); ++fragmentModuleIndex) { wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex]; bool shouldSuccess = vertexModuleIndex == fragmentModuleIndex; CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess); } } } // Tests that creating render pipeline should fail when the interpolation attribute of a vertex // stage output variable doesn't match the type of the fragment stage input variable at the same // location. TEST_F(InterStageVariableMatchingValidationTest, DifferentInterpolationAttributeAtSameLocation) { enum class InterpolationType : uint8_t { None = 0, Perspective, Linear, Flat, Count, }; enum class InterpolationSampling : uint8_t { None = 0, Center, Centroid, Sample, Count, }; constexpr std::array(InterpolationType::Count)> kInterpolationTypeString = {{"", "perspective", "linear", "flat"}}; constexpr std::array(InterpolationSampling::Count)> kInterpolationSamplingString = {{"", "center", "centroid", "sample"}}; struct InterpolationAttribute { InterpolationType interpolationType; InterpolationSampling interpolationSampling; }; // Interpolation sampling is not used with flat interpolation. constexpr std::array validInterpolationAttributes = {{ {InterpolationType::None, InterpolationSampling::None}, {InterpolationType::Flat, InterpolationSampling::None}, {InterpolationType::Linear, InterpolationSampling::None}, {InterpolationType::Linear, InterpolationSampling::Center}, {InterpolationType::Linear, InterpolationSampling::Centroid}, {InterpolationType::Linear, InterpolationSampling::Sample}, {InterpolationType::Perspective, InterpolationSampling::None}, {InterpolationType::Perspective, InterpolationSampling::Center}, {InterpolationType::Perspective, InterpolationSampling::Centroid}, {InterpolationType::Perspective, InterpolationSampling::Sample}, }}; std::vector vertexModules(validInterpolationAttributes.size()); std::vector fragmentModules(validInterpolationAttributes.size()); for (uint32_t i = 0; i < validInterpolationAttributes.size(); ++i) { std::string interfaceDeclaration; { const auto& interpolationAttribute = validInterpolationAttributes[i]; std::ostringstream sstream; sstream << "struct A { [[location(0)"; if (interpolationAttribute.interpolationType != InterpolationType::None) { sstream << ", interpolate(" << kInterpolationTypeString[static_cast( interpolationAttribute.interpolationType)]; if (interpolationAttribute.interpolationSampling != InterpolationSampling::None) { sstream << ", " << kInterpolationSamplingString[static_cast( interpolationAttribute.interpolationSampling)]; } sstream << ")"; } sstream << " ]] a : vec4;" << std::endl; interfaceDeclaration = sstream.str(); } { std::ostringstream vertexStream; vertexStream << interfaceDeclaration << R"( [[builtin(position)]] pos: vec4; }; [[stage(vertex)]] fn main() -> A { var vertexOut: A; vertexOut.pos = vec4(0.0, 0.0, 0.0, 1.0); return vertexOut; })"; vertexModules[i] = utils::CreateShaderModule(device, vertexStream.str().c_str()); } { std::ostringstream fragmentStream; fragmentStream << interfaceDeclaration << R"( }; [[stage(fragment)]] fn main(fragmentIn: A) -> [[location(0)]] vec4 { return fragmentIn.a; })"; fragmentModules[i] = utils::CreateShaderModule(device, fragmentStream.str().c_str()); } } auto GetAppliedInterpolationAttribute = [](const InterpolationAttribute& attribute) { InterpolationAttribute appliedAttribute = {attribute.interpolationType, attribute.interpolationSampling}; switch (attribute.interpolationType) { // If the interpolation attribute is not specified, then // [[interpolate(perspective, center)]] or [[interpolate(perspective)]] is assumed. case InterpolationType::None: appliedAttribute.interpolationType = InterpolationType::Perspective; appliedAttribute.interpolationSampling = InterpolationSampling::Center; break; // If the interpolation type is perspective or linear, and the interpolation // sampling is not specified, then 'center' is assumed. case InterpolationType::Perspective: case InterpolationType::Linear: if (appliedAttribute.interpolationSampling == InterpolationSampling::None) { appliedAttribute.interpolationSampling = InterpolationSampling::Center; } break; case InterpolationType::Flat: break; default: UNREACHABLE(); } return appliedAttribute; }; auto InterpolationAttributeMatch = [GetAppliedInterpolationAttribute]( const InterpolationAttribute& attribute1, const InterpolationAttribute& attribute2) { InterpolationAttribute appliedAttribute1 = GetAppliedInterpolationAttribute(attribute1); InterpolationAttribute appliedAttribute2 = GetAppliedInterpolationAttribute(attribute2); return appliedAttribute1.interpolationType == appliedAttribute2.interpolationType && appliedAttribute1.interpolationSampling == appliedAttribute2.interpolationSampling; }; for (uint32_t vertexModuleIndex = 0; vertexModuleIndex < validInterpolationAttributes.size(); ++vertexModuleIndex) { wgpu::ShaderModule vertexModule = vertexModules[vertexModuleIndex]; for (uint32_t fragmentModuleIndex = 0; fragmentModuleIndex < validInterpolationAttributes.size(); ++fragmentModuleIndex) { wgpu::ShaderModule fragmentModule = fragmentModules[fragmentModuleIndex]; bool shouldSuccess = InterpolationAttributeMatch(validInterpolationAttributes[vertexModuleIndex], validInterpolationAttributes[fragmentModuleIndex]); CheckCreatingRenderPipeline(vertexModule, fragmentModule, shouldSuccess); } } }