// Copyright 2021 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/resolver/dependency_graph.h" #include #include #include #include "src/tint/ast/alias.h" #include "src/tint/ast/assignment_statement.h" #include "src/tint/ast/block_statement.h" #include "src/tint/ast/break_if_statement.h" #include "src/tint/ast/break_statement.h" #include "src/tint/ast/call_statement.h" #include "src/tint/ast/compound_assignment_statement.h" #include "src/tint/ast/const.h" #include "src/tint/ast/continue_statement.h" #include "src/tint/ast/diagnostic_attribute.h" #include "src/tint/ast/discard_statement.h" #include "src/tint/ast/for_loop_statement.h" #include "src/tint/ast/id_attribute.h" #include "src/tint/ast/identifier.h" #include "src/tint/ast/if_statement.h" #include "src/tint/ast/increment_decrement_statement.h" #include "src/tint/ast/internal_attribute.h" #include "src/tint/ast/interpolate_attribute.h" #include "src/tint/ast/invariant_attribute.h" #include "src/tint/ast/let.h" #include "src/tint/ast/location_attribute.h" #include "src/tint/ast/loop_statement.h" #include "src/tint/ast/must_use_attribute.h" #include "src/tint/ast/override.h" #include "src/tint/ast/return_statement.h" #include "src/tint/ast/stage_attribute.h" #include "src/tint/ast/stride_attribute.h" #include "src/tint/ast/struct.h" #include "src/tint/ast/struct_member_align_attribute.h" #include "src/tint/ast/struct_member_offset_attribute.h" #include "src/tint/ast/struct_member_size_attribute.h" #include "src/tint/ast/switch_statement.h" #include "src/tint/ast/templated_identifier.h" #include "src/tint/ast/traverse_expressions.h" #include "src/tint/ast/var.h" #include "src/tint/ast/variable_decl_statement.h" #include "src/tint/ast/while_statement.h" #include "src/tint/ast/workgroup_attribute.h" #include "src/tint/builtin/builtin.h" #include "src/tint/builtin/builtin_value.h" #include "src/tint/scope_stack.h" #include "src/tint/sem/builtin.h" #include "src/tint/switch.h" #include "src/tint/symbol_table.h" #include "src/tint/utils/block_allocator.h" #include "src/tint/utils/compiler_macros.h" #include "src/tint/utils/defer.h" #include "src/tint/utils/map.h" #include "src/tint/utils/scoped_assignment.h" #include "src/tint/utils/string_stream.h" #include "src/tint/utils/unique_vector.h" #define TINT_DUMP_DEPENDENCY_GRAPH 0 namespace tint::resolver { namespace { // Forward declaration struct Global; /// Dependency describes how one global depends on another global struct DependencyInfo { /// The source of the symbol that forms the dependency Source source; }; /// DependencyEdge describes the two Globals used to define a dependency /// relationship. struct DependencyEdge { /// The Global that depends on #to const Global* from; /// The Global that is depended on by #from const Global* to; }; /// DependencyEdgeCmp implements the contracts of std::equal_to /// and std::hash. struct DependencyEdgeCmp { /// Equality operator bool operator()(const DependencyEdge& lhs, const DependencyEdge& rhs) const { return lhs.from == rhs.from && lhs.to == rhs.to; } /// Hashing operator inline std::size_t operator()(const DependencyEdge& d) const { return utils::Hash(d.from, d.to); } }; /// A map of DependencyEdge to DependencyInfo using DependencyEdges = utils::Hashmap; /// Global describes a module-scope variable, type or function. struct Global { explicit Global(const ast::Node* n) : node(n) {} /// The declaration ast::Node const ast::Node* node; /// A list of dependencies that this global depends on utils::Vector deps; }; /// A map of global name to Global using GlobalMap = utils::Hashmap; /// Raises an ICE that a global ast::Node type was not handled by this system. void UnhandledNode(diag::List& diagnostics, const ast::Node* node) { TINT_ICE(Resolver, diagnostics) << "unhandled node type: " << node->TypeInfo().name; } /// Raises an error diagnostic with the given message and source. void AddError(diag::List& diagnostics, const std::string& msg, const Source& source) { diagnostics.add_error(diag::System::Resolver, msg, source); } /// Raises a note diagnostic with the given message and source. void AddNote(diag::List& diagnostics, const std::string& msg, const Source& source) { diagnostics.add_note(diag::System::Resolver, msg, source); } /// DependencyScanner is used to traverse a module to build the list of /// global-to-global dependencies. class DependencyScanner { public: /// Constructor /// @param syms the program symbol table /// @param globals_by_name map of global symbol to Global pointer /// @param diagnostics diagnostic messages, appended with any errors found /// @param graph the dependency graph to populate with resolved symbols /// @param edges the map of globals-to-global dependency edges, which will /// be populated by calls to Scan() DependencyScanner(const SymbolTable& syms, const GlobalMap& globals_by_name, diag::List& diagnostics, DependencyGraph& graph, DependencyEdges& edges) : symbols_(syms), globals_(globals_by_name), diagnostics_(diagnostics), graph_(graph), dependency_edges_(edges) { // Register all the globals at global-scope for (auto it : globals_by_name) { scope_stack_.Set(it.key, it.value->node); } } /// Walks the global declarations, resolving symbols, and determining the /// dependencies of each global. void Scan(Global* global) { TINT_SCOPED_ASSIGNMENT(current_global_, global); Switch( global->node, [&](const ast::Struct* str) { Declare(str->name->symbol, str); for (auto* member : str->members) { TraverseAttributes(member->attributes); TraverseExpression(member->type); } }, [&](const ast::Alias* alias) { Declare(alias->name->symbol, alias); TraverseExpression(alias->type); }, [&](const ast::Function* func) { Declare(func->name->symbol, func); TraverseFunction(func); }, [&](const ast::Variable* v) { Declare(v->name->symbol, v); TraverseVariable(v); }, [&](const ast::DiagnosticDirective*) { // Diagnostic directives do not affect the dependency graph. }, [&](const ast::Enable*) { // Enable directives do not affect the dependency graph. }, [&](const ast::ConstAssert* assertion) { TraverseExpression(assertion->condition); }, [&](Default) { UnhandledNode(diagnostics_, global->node); }); } private: /// Traverses the variable, performing symbol resolution. void TraverseVariable(const ast::Variable* v) { if (auto* var = v->As()) { TraverseExpression(var->declared_address_space); TraverseExpression(var->declared_access); } TraverseExpression(v->type); TraverseAttributes(v->attributes); TraverseExpression(v->initializer); } /// Traverses the function, performing symbol resolution and determining global dependencies. void TraverseFunction(const ast::Function* func) { TraverseAttributes(func->attributes); TraverseAttributes(func->return_type_attributes); // Perform symbol resolution on all the parameter types before registering // the parameters themselves. This allows the case of declaring a parameter // with the same identifier as its type. for (auto* param : func->params) { TraverseAttributes(param->attributes); TraverseExpression(param->type); } // Resolve the return type TraverseExpression(func->return_type); // Push the scope stack for the parameters and function body. scope_stack_.Push(); TINT_DEFER(scope_stack_.Pop()); for (auto* param : func->params) { if (auto* shadows = scope_stack_.Get(param->name->symbol)) { graph_.shadows.Add(param, shadows); } Declare(param->name->symbol, param); } if (func->body) { TraverseStatements(func->body->statements); } } /// Traverses the statements, performing symbol resolution and determining /// global dependencies. void TraverseStatements(utils::VectorRef stmts) { for (auto* s : stmts) { TraverseStatement(s); } } /// Traverses the statement, performing symbol resolution and determining /// global dependencies. void TraverseStatement(const ast::Statement* stmt) { if (!stmt) { return; } Switch( stmt, // [&](const ast::AssignmentStatement* a) { TraverseExpression(a->lhs); TraverseExpression(a->rhs); }, [&](const ast::BlockStatement* b) { scope_stack_.Push(); TINT_DEFER(scope_stack_.Pop()); TraverseStatements(b->statements); }, [&](const ast::BreakIfStatement* b) { TraverseExpression(b->condition); }, [&](const ast::CallStatement* r) { TraverseExpression(r->expr); }, [&](const ast::CompoundAssignmentStatement* a) { TraverseExpression(a->lhs); TraverseExpression(a->rhs); }, [&](const ast::ForLoopStatement* l) { scope_stack_.Push(); TINT_DEFER(scope_stack_.Pop()); TraverseStatement(l->initializer); TraverseExpression(l->condition); TraverseStatement(l->continuing); TraverseStatement(l->body); }, [&](const ast::IncrementDecrementStatement* i) { TraverseExpression(i->lhs); }, [&](const ast::LoopStatement* l) { scope_stack_.Push(); TINT_DEFER(scope_stack_.Pop()); TraverseStatements(l->body->statements); TraverseStatement(l->continuing); }, [&](const ast::IfStatement* i) { TraverseExpression(i->condition); TraverseStatement(i->body); if (i->else_statement) { TraverseStatement(i->else_statement); } }, [&](const ast::ReturnStatement* r) { TraverseExpression(r->value); }, [&](const ast::SwitchStatement* s) { TraverseExpression(s->condition); for (auto* c : s->body) { for (auto* sel : c->selectors) { TraverseExpression(sel->expr); } TraverseStatement(c->body); } }, [&](const ast::VariableDeclStatement* v) { if (auto* shadows = scope_stack_.Get(v->variable->name->symbol)) { graph_.shadows.Add(v->variable, shadows); } TraverseVariable(v->variable); Declare(v->variable->name->symbol, v->variable); }, [&](const ast::WhileStatement* w) { scope_stack_.Push(); TINT_DEFER(scope_stack_.Pop()); TraverseExpression(w->condition); TraverseStatement(w->body); }, [&](const ast::ConstAssert* assertion) { TraverseExpression(assertion->condition); }, [&](Default) { if (TINT_UNLIKELY((!stmt->IsAnyOf()))) { UnhandledNode(diagnostics_, stmt); } }); } /// Adds the symbol definition to the current scope, raising an error if two /// symbols collide within the same scope. void Declare(Symbol symbol, const ast::Node* node) { auto* old = scope_stack_.Set(symbol, node); if (old != nullptr && node != old) { auto name = symbols_.NameFor(symbol); AddError(diagnostics_, "redeclaration of '" + name + "'", node->source); AddNote(diagnostics_, "'" + name + "' previously declared here", old->source); } } /// Traverses the expression @p root_expr, performing symbol resolution and determining global /// dependencies. void TraverseExpression(const ast::Expression* root_expr) { if (!root_expr) { return; } utils::Vector pending{root_expr}; while (!pending.IsEmpty()) { ast::TraverseExpressions(pending.Pop(), diagnostics_, [&](const ast::Expression* expr) { Switch( expr, [&](const ast::IdentifierExpression* e) { AddDependency(e->identifier, e->identifier->symbol); if (auto* tmpl_ident = e->identifier->As()) { for (auto* arg : tmpl_ident->arguments) { pending.Push(arg); } } }, [&](const ast::CallExpression* call) { TraverseExpression(call->target); }, [&](const ast::BitcastExpression* cast) { TraverseExpression(cast->type); }); return ast::TraverseAction::Descend; }); } } /// Traverses the attribute list, performing symbol resolution and /// determining global dependencies. void TraverseAttributes(utils::VectorRef attrs) { for (auto* attr : attrs) { TraverseAttribute(attr); } } /// Traverses the attribute, performing symbol resolution and determining /// global dependencies. void TraverseAttribute(const ast::Attribute* attr) { bool handled = Switch( attr, [&](const ast::BindingAttribute* binding) { TraverseExpression(binding->expr); return true; }, [&](const ast::BuiltinAttribute* builtin) { TraverseExpression(builtin->builtin); return true; }, [&](const ast::GroupAttribute* group) { TraverseExpression(group->expr); return true; }, [&](const ast::IdAttribute* id) { TraverseExpression(id->expr); return true; }, [&](const ast::InterpolateAttribute* interpolate) { TraverseExpression(interpolate->type); TraverseExpression(interpolate->sampling); return true; }, [&](const ast::LocationAttribute* loc) { TraverseExpression(loc->expr); return true; }, [&](const ast::StructMemberAlignAttribute* align) { TraverseExpression(align->expr); return true; }, [&](const ast::StructMemberSizeAttribute* size) { TraverseExpression(size->expr); return true; }, [&](const ast::WorkgroupAttribute* wg) { TraverseExpression(wg->x); TraverseExpression(wg->y); TraverseExpression(wg->z); return true; }, [&](const ast::InternalAttribute* i) { for (auto* dep : i->dependencies) { TraverseExpression(dep); } return true; }); if (handled) { return; } if (attr->IsAnyOf()) { return; } UnhandledNode(diagnostics_, attr); } /// Adds the dependency from @p from to @p to, erroring if @p to cannot be resolved. void AddDependency(const ast::Identifier* from, Symbol to) { auto* resolved = scope_stack_.Get(to); if (!resolved) { auto s = symbols_.NameFor(to); if (auto builtin_fn = builtin::ParseFunction(s); builtin_fn != builtin::Function::kNone) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(builtin_fn)); return; } if (auto builtin_ty = builtin::ParseBuiltin(s); builtin_ty != builtin::Builtin::kUndefined) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(builtin_ty)); return; } if (auto builtin_val = builtin::ParseBuiltinValue(s); builtin_val != builtin::BuiltinValue::kUndefined) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(builtin_val)); return; } if (auto addr = builtin::ParseAddressSpace(s); addr != builtin::AddressSpace::kUndefined) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(addr)); return; } if (auto fmt = builtin::ParseTexelFormat(s); fmt != builtin::TexelFormat::kUndefined) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(fmt)); return; } if (auto access = builtin::ParseAccess(s); access != builtin::Access::kUndefined) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(access)); return; } if (auto i_type = builtin::ParseInterpolationType(s); i_type != builtin::InterpolationType::kUndefined) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(i_type)); return; } if (auto i_smpl = builtin::ParseInterpolationSampling(s); i_smpl != builtin::InterpolationSampling::kUndefined) { graph_.resolved_identifiers.Add(from, ResolvedIdentifier(i_smpl)); return; } // Unresolved. graph_.resolved_identifiers.Add(from, UnresolvedIdentifier{s}); return; } if (auto global = globals_.Find(to); global && (*global)->node == resolved) { if (dependency_edges_.Add(DependencyEdge{current_global_, *global}, DependencyInfo{from->source})) { current_global_->deps.Push(*global); } } graph_.resolved_identifiers.Add(from, ResolvedIdentifier(resolved)); } using VariableMap = utils::Hashmap; const SymbolTable& symbols_; const GlobalMap& globals_; diag::List& diagnostics_; DependencyGraph& graph_; DependencyEdges& dependency_edges_; ScopeStack scope_stack_; Global* current_global_ = nullptr; }; /// The global dependency analysis system struct DependencyAnalysis { public: /// Constructor DependencyAnalysis(const SymbolTable& symbols, diag::List& diagnostics, DependencyGraph& graph) : symbols_(symbols), diagnostics_(diagnostics), graph_(graph) {} /// Performs global dependency analysis on the module, emitting any errors to /// #diagnostics. /// @returns true if analysis found no errors, otherwise false. bool Run(const ast::Module& module) { // Reserve container memory graph_.resolved_identifiers.Reserve(module.GlobalDeclarations().Length()); sorted_.Reserve(module.GlobalDeclarations().Length()); // Collect all the named globals from the AST module GatherGlobals(module); // Traverse the named globals to build the dependency graph DetermineDependencies(); // Sort the globals into dependency order SortGlobals(); // Dump the dependency graph if TINT_DUMP_DEPENDENCY_GRAPH is non-zero DumpDependencyGraph(); graph_.ordered_globals = sorted_.Release(); return !diagnostics_.contains_errors(); } private: /// @param node the ast::Node of the global declaration /// @returns the symbol of the global declaration node /// @note will raise an ICE if the node is not a type, function or variable /// declaration Symbol SymbolOf(const ast::Node* node) const { return Switch( node, // [&](const ast::TypeDecl* td) { return td->name->symbol; }, [&](const ast::Function* func) { return func->name->symbol; }, [&](const ast::Variable* var) { return var->name->symbol; }, [&](const ast::DiagnosticDirective*) { return Symbol(); }, [&](const ast::Enable*) { return Symbol(); }, [&](const ast::ConstAssert*) { return Symbol(); }, [&](Default) { UnhandledNode(diagnostics_, node); return Symbol{}; }); } /// @param node the ast::Node of the global declaration /// @returns the name of the global declaration node /// @note will raise an ICE if the node is not a type, function or variable /// declaration std::string NameOf(const ast::Node* node) const { return symbols_.NameFor(SymbolOf(node)); } /// @param node the ast::Node of the global declaration /// @returns a string representation of the global declaration kind /// @note will raise an ICE if the node is not a type, function or variable /// declaration std::string KindOf(const ast::Node* node) { return Switch( node, // [&](const ast::Struct*) { return "struct"; }, // [&](const ast::Alias*) { return "alias"; }, // [&](const ast::Function*) { return "function"; }, // [&](const ast::Variable* v) { return v->Kind(); }, // [&](const ast::ConstAssert*) { return "const_assert"; }, // [&](Default) { UnhandledNode(diagnostics_, node); return ""; }); } /// Traverses `module`, collecting all the global declarations and populating /// the #globals and #declaration_order fields. void GatherGlobals(const ast::Module& module) { for (auto* node : module.GlobalDeclarations()) { auto* global = allocator_.Create(node); if (auto symbol = SymbolOf(node); symbol.IsValid()) { globals_.Add(symbol, global); } declaration_order_.Push(global); } } /// Walks the global declarations, determining the dependencies of each global /// and adding these to each global's Global::deps field. void DetermineDependencies() { DependencyScanner scanner(symbols_, globals_, diagnostics_, graph_, dependency_edges_); for (auto* global : declaration_order_) { scanner.Scan(global); } } /// Performs a depth-first traversal of `root`'s dependencies, calling `enter` /// as the function decends into each dependency and `exit` when bubbling back /// up towards the root. /// @param enter is a function with the signature: `bool(Global*)`. The /// `enter` function returns true if TraverseDependencies() should traverse /// the dependency, otherwise it will be skipped. /// @param exit is a function with the signature: `void(Global*)`. The `exit` /// function is only called if the corresponding `enter` call returned true. template void TraverseDependencies(const Global* root, ENTER&& enter, EXIT&& exit) { // Entry is a single entry in the traversal stack. Entry points to a // dep_idx'th dependency of Entry::global. struct Entry { const Global* global; // The parent global size_t dep_idx; // The dependency index in `global->deps` }; if (!enter(root)) { return; } utils::Vector stack{Entry{root, 0}}; while (true) { auto& entry = stack.Back(); // Have we exhausted the dependencies of entry.global? if (entry.dep_idx < entry.global->deps.Length()) { // No, there's more dependencies to traverse. auto& dep = entry.global->deps[entry.dep_idx]; // Does the caller want to enter this dependency? if (enter(dep)) { // Yes. stack.Push(Entry{dep, 0}); // Enter the dependency. } else { entry.dep_idx++; // No. Skip this node. } } else { // Yes. Time to back up. // Exit this global, pop the stack, and if there's another parent node, // increment its dependency index, and loop again. exit(entry.global); stack.Pop(); if (stack.IsEmpty()) { return; // All done. } stack.Back().dep_idx++; } } } /// SortGlobals sorts the globals into dependency order, erroring if cyclic /// dependencies are found. The sorted dependencies are assigned to #sorted. void SortGlobals() { if (diagnostics_.contains_errors()) { return; // This code assumes there are no undeclared identifiers. } // Make sure all directives go before any other global declarations. for (auto* global : declaration_order_) { if (global->node->IsAnyOf()) { sorted_.Add(global->node); } } for (auto* global : declaration_order_) { if (global->node->IsAnyOf()) { // Skip directives here, as they are already added. continue; } utils::UniqueVector stack; TraverseDependencies( global, [&](const Global* g) { // Enter if (!stack.Add(g)) { CyclicDependencyFound(g, stack.Release()); return false; } if (sorted_.Contains(g->node)) { // Visited this global already. // stack was pushed, but exit() will not be called when we return // false, so pop here. stack.Pop(); return false; } return true; }, [&](const Global* g) { // Exit. Only called if Enter returned true. sorted_.Add(g->node); stack.Pop(); }); sorted_.Add(global->node); if (TINT_UNLIKELY(!stack.IsEmpty())) { // Each stack.push() must have a corresponding stack.pop_back(). TINT_ICE(Resolver, diagnostics_) << "stack not empty after returning from TraverseDependencies()"; } } } /// DepInfoFor() looks up the global dependency information for the dependency /// of global `from` depending on `to`. /// @note will raise an ICE if the edge is not found. DependencyInfo DepInfoFor(const Global* from, const Global* to) const { auto info = dependency_edges_.Find(DependencyEdge{from, to}); if (TINT_LIKELY(info)) { return *info; } TINT_ICE(Resolver, diagnostics_) << "failed to find dependency info for edge: '" << NameOf(from->node) << "' -> '" << NameOf(to->node) << "'"; return {}; } /// CyclicDependencyFound() emits an error diagnostic for a cyclic dependency. /// @param root is the global that starts the cyclic dependency, which must be /// found in `stack`. /// @param stack is the global dependency stack that contains a loop. void CyclicDependencyFound(const Global* root, utils::VectorRef stack) { utils::StringStream msg; msg << "cyclic dependency found: "; constexpr size_t kLoopNotStarted = ~0u; size_t loop_start = kLoopNotStarted; for (size_t i = 0; i < stack.Length(); i++) { auto* e = stack[i]; if (loop_start == kLoopNotStarted && e == root) { loop_start = i; } if (loop_start != kLoopNotStarted) { msg << "'" << NameOf(e->node) << "' -> "; } } msg << "'" << NameOf(root->node) << "'"; AddError(diagnostics_, msg.str(), root->node->source); for (size_t i = loop_start; i < stack.Length(); i++) { auto* from = stack[i]; auto* to = (i + 1 < stack.Length()) ? stack[i + 1] : stack[loop_start]; auto info = DepInfoFor(from, to); AddNote(diagnostics_, KindOf(from->node) + " '" + NameOf(from->node) + "' references " + KindOf(to->node) + " '" + NameOf(to->node) + "' here", info.source); } } void DumpDependencyGraph() { #if TINT_DUMP_DEPENDENCY_GRAPH == 0 if ((true)) { return; } #endif // TINT_DUMP_DEPENDENCY_GRAPH printf("=========================\n"); printf("------ declaration ------ \n"); for (auto* global : declaration_order_) { printf("%s\n", NameOf(global->node).c_str()); } printf("------ dependencies ------ \n"); for (auto* node : sorted_) { auto symbol = SymbolOf(node); auto* global = *globals_.Find(symbol); printf("%s depends on:\n", symbols_.NameFor(symbol).c_str()); for (auto* dep : global->deps) { printf(" %s\n", NameOf(dep->node).c_str()); } } printf("=========================\n"); } /// Program symbols const SymbolTable& symbols_; /// Program diagnostics diag::List& diagnostics_; /// The resulting dependency graph DependencyGraph& graph_; /// Allocator of Globals utils::BlockAllocator allocator_; /// Global map, keyed by name. Populated by GatherGlobals(). GlobalMap globals_; /// Map of DependencyEdge to DependencyInfo. Populated by DetermineDependencies(). DependencyEdges dependency_edges_; /// Globals in declaration order. Populated by GatherGlobals(). utils::Vector declaration_order_; /// Globals in sorted dependency order. Populated by SortGlobals(). utils::UniqueVector sorted_; }; } // namespace DependencyGraph::DependencyGraph() = default; DependencyGraph::DependencyGraph(DependencyGraph&&) = default; DependencyGraph::~DependencyGraph() = default; bool DependencyGraph::Build(const ast::Module& module, const SymbolTable& symbols, diag::List& diagnostics, DependencyGraph& output) { DependencyAnalysis da{symbols, diagnostics, output}; return da.Run(module); } std::string ResolvedIdentifier::String(const SymbolTable& symbols, diag::List& diagnostics) const { if (auto* node = Node()) { return Switch( node, [&](const ast::TypeDecl* n) { // return "type '" + symbols.NameFor(n->name->symbol) + "'"; }, [&](const ast::Var* n) { // return "var '" + symbols.NameFor(n->name->symbol) + "'"; }, [&](const ast::Let* n) { // return "let '" + symbols.NameFor(n->name->symbol) + "'"; }, [&](const ast::Const* n) { // return "const '" + symbols.NameFor(n->name->symbol) + "'"; }, [&](const ast::Override* n) { // return "override '" + symbols.NameFor(n->name->symbol) + "'"; }, [&](const ast::Function* n) { // return "function '" + symbols.NameFor(n->name->symbol) + "'"; }, [&](const ast::Parameter* n) { // return "parameter '" + symbols.NameFor(n->name->symbol) + "'"; }, [&](Default) { TINT_UNREACHABLE(Resolver, diagnostics) << "unhandled ast::Node: " << node->TypeInfo().name; return ""; }); } if (auto builtin_fn = BuiltinFunction(); builtin_fn != builtin::Function::kNone) { return "builtin function '" + utils::ToString(builtin_fn) + "'"; } if (auto builtin_ty = BuiltinType(); builtin_ty != builtin::Builtin::kUndefined) { return "builtin type '" + utils::ToString(builtin_ty) + "'"; } if (auto builtin_val = BuiltinValue(); builtin_val != builtin::BuiltinValue::kUndefined) { return "builtin value '" + utils::ToString(builtin_val) + "'"; } if (auto access = Access(); access != builtin::Access::kUndefined) { return "access '" + utils::ToString(access) + "'"; } if (auto addr = AddressSpace(); addr != builtin::AddressSpace::kUndefined) { return "address space '" + utils::ToString(addr) + "'"; } if (auto type = InterpolationType(); type != builtin::InterpolationType::kUndefined) { return "interpolation type '" + utils::ToString(type) + "'"; } if (auto smpl = InterpolationSampling(); smpl != builtin::InterpolationSampling::kUndefined) { return "interpolation sampling '" + utils::ToString(smpl) + "'"; } if (auto fmt = TexelFormat(); fmt != builtin::TexelFormat::kUndefined) { return "texel format '" + utils::ToString(fmt) + "'"; } if (auto* unresolved = Unresolved()) { return "unresolved identifier '" + unresolved->name + "'"; } TINT_UNREACHABLE(Resolver, diagnostics) << "unhandled ResolvedIdentifier"; return ""; } } // namespace tint::resolver