// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dawn_native/vulkan/DeviceVk.h" #include "common/Platform.h" #include "dawn_native/BackendConnection.h" #include "dawn_native/Commands.h" #include "dawn_native/DynamicUploader.h" #include "dawn_native/Error.h" #include "dawn_native/ErrorData.h" #include "dawn_native/VulkanBackend.h" #include "dawn_native/vulkan/AdapterVk.h" #include "dawn_native/vulkan/BackendVk.h" #include "dawn_native/vulkan/BindGroupLayoutVk.h" #include "dawn_native/vulkan/BindGroupVk.h" #include "dawn_native/vulkan/BufferVk.h" #include "dawn_native/vulkan/CommandBufferVk.h" #include "dawn_native/vulkan/ComputePipelineVk.h" #include "dawn_native/vulkan/DescriptorSetService.h" #include "dawn_native/vulkan/FencedDeleter.h" #include "dawn_native/vulkan/PipelineLayoutVk.h" #include "dawn_native/vulkan/QueueVk.h" #include "dawn_native/vulkan/RenderPassCache.h" #include "dawn_native/vulkan/RenderPipelineVk.h" #include "dawn_native/vulkan/ResourceMemoryAllocatorVk.h" #include "dawn_native/vulkan/SamplerVk.h" #include "dawn_native/vulkan/ShaderModuleVk.h" #include "dawn_native/vulkan/StagingBufferVk.h" #include "dawn_native/vulkan/SwapChainVk.h" #include "dawn_native/vulkan/TextureVk.h" #include "dawn_native/vulkan/UtilsVulkan.h" #include "dawn_native/vulkan/VulkanError.h" namespace dawn_native { namespace vulkan { Device::Device(Adapter* adapter, const DeviceDescriptor* descriptor) : DeviceBase(adapter, descriptor) { InitTogglesFromDriver(); if (descriptor != nullptr) { ApplyToggleOverrides(descriptor); } // Set the device as lost until successfully created. mLossStatus = LossStatus::AlreadyLost; } MaybeError Device::Initialize() { // Copy the adapter's device info to the device so that we can change the "knobs" mDeviceInfo = ToBackend(GetAdapter())->GetDeviceInfo(); VulkanFunctions* functions = GetMutableFunctions(); *functions = ToBackend(GetAdapter())->GetBackend()->GetFunctions(); VkPhysicalDevice physicalDevice = ToBackend(GetAdapter())->GetPhysicalDevice(); VulkanDeviceKnobs usedDeviceKnobs = {}; DAWN_TRY_ASSIGN(usedDeviceKnobs, CreateDevice(physicalDevice)); *static_cast(&mDeviceInfo) = usedDeviceKnobs; DAWN_TRY(functions->LoadDeviceProcs(mVkDevice, mDeviceInfo)); GatherQueueFromDevice(); mDescriptorSetService = std::make_unique(this); mDeleter = std::make_unique(this); mMapRequestTracker = std::make_unique(this); mRenderPassCache = std::make_unique(this); mResourceMemoryAllocator = std::make_unique(this); mExternalMemoryService = std::make_unique(this); mExternalSemaphoreService = std::make_unique(this); DAWN_TRY(PrepareRecordingContext()); // The environment can request to use D32S8 or D24S8 when it's not available. Override // the decision if it is not applicable. ApplyDepth24PlusS8Toggle(); return {}; } Device::~Device() { BaseDestructor(); mDescriptorSetService = nullptr; // The frontend asserts DynamicUploader is destructed by the backend. // It is usually destructed in Destroy(), but Destroy isn't always called if device // initialization failed. mDynamicUploader = nullptr; // We still need to properly handle Vulkan object deletion even if the device has been lost, // so the Deleter and vkDevice cannot be destroyed in Device::Destroy(). // We need handle deleting all child objects by calling Tick() again with a large serial to // force all operations to look as if they were completed, and delete all objects before // destroying the Deleter and vkDevice. // The Deleter may be null if initialization failed. if (mDeleter != nullptr) { mCompletedSerial = std::numeric_limits::max(); mDeleter->Tick(mCompletedSerial); mDeleter = nullptr; } // VkQueues are destroyed when the VkDevice is destroyed // The VkDevice is needed to destroy child objects, so it must be destroyed last after all // child objects have been deleted. if (mVkDevice != VK_NULL_HANDLE) { fn.DestroyDevice(mVkDevice, nullptr); mVkDevice = VK_NULL_HANDLE; } } ResultOrError Device::CreateBindGroupImpl( const BindGroupDescriptor* descriptor) { return BindGroup::Create(this, descriptor); } ResultOrError Device::CreateBindGroupLayoutImpl( const BindGroupLayoutDescriptor* descriptor) { return BindGroupLayout::Create(this, descriptor); } ResultOrError Device::CreateBufferImpl(const BufferDescriptor* descriptor) { return Buffer::Create(this, descriptor); } CommandBufferBase* Device::CreateCommandBuffer(CommandEncoder* encoder, const CommandBufferDescriptor* descriptor) { return CommandBuffer::Create(encoder, descriptor); } ResultOrError Device::CreateComputePipelineImpl( const ComputePipelineDescriptor* descriptor) { return ComputePipeline::Create(this, descriptor); } ResultOrError Device::CreatePipelineLayoutImpl( const PipelineLayoutDescriptor* descriptor) { return PipelineLayout::Create(this, descriptor); } ResultOrError Device::CreateQueueImpl() { return Queue::Create(this); } ResultOrError Device::CreateRenderPipelineImpl( const RenderPipelineDescriptor* descriptor) { return RenderPipeline::Create(this, descriptor); } ResultOrError Device::CreateSamplerImpl(const SamplerDescriptor* descriptor) { return Sampler::Create(this, descriptor); } ResultOrError Device::CreateShaderModuleImpl( const ShaderModuleDescriptor* descriptor) { return ShaderModule::Create(this, descriptor); } ResultOrError Device::CreateSwapChainImpl( const SwapChainDescriptor* descriptor) { return SwapChain::Create(this, descriptor); } ResultOrError Device::CreateSwapChainImpl( Surface* surface, NewSwapChainBase* previousSwapChain, const SwapChainDescriptor* descriptor) { return DAWN_VALIDATION_ERROR("New swapchains not implemented."); } ResultOrError Device::CreateTextureImpl(const TextureDescriptor* descriptor) { return Texture::Create(this, descriptor); } ResultOrError Device::CreateTextureViewImpl( TextureBase* texture, const TextureViewDescriptor* descriptor) { return TextureView::Create(texture, descriptor); } Serial Device::GetCompletedCommandSerial() const { return mCompletedSerial; } Serial Device::GetLastSubmittedCommandSerial() const { return mLastSubmittedSerial; } Serial Device::GetPendingCommandSerial() const { return mLastSubmittedSerial + 1; } MaybeError Device::TickImpl() { CheckPassedFences(); RecycleCompletedCommands(); mDescriptorSetService->Tick(mCompletedSerial); mMapRequestTracker->Tick(mCompletedSerial); // Uploader should tick before the resource allocator // as it enqueues resources to be released. mDynamicUploader->Deallocate(mCompletedSerial); mResourceMemoryAllocator->Tick(mCompletedSerial); mDeleter->Tick(mCompletedSerial); if (mRecordingContext.used) { DAWN_TRY(SubmitPendingCommands()); } else if (mCompletedSerial == mLastSubmittedSerial) { // If there's no GPU work in flight we still need to artificially increment the serial // so that CPU operations waiting on GPU completion can know they don't have to wait. mCompletedSerial++; mLastSubmittedSerial++; } return {}; } VkInstance Device::GetVkInstance() const { return ToBackend(GetAdapter())->GetBackend()->GetVkInstance(); } const VulkanDeviceInfo& Device::GetDeviceInfo() const { return mDeviceInfo; } VkDevice Device::GetVkDevice() const { return mVkDevice; } uint32_t Device::GetGraphicsQueueFamily() const { return mQueueFamily; } VkQueue Device::GetQueue() const { return mQueue; } MapRequestTracker* Device::GetMapRequestTracker() const { return mMapRequestTracker.get(); } DescriptorSetService* Device::GetDescriptorSetService() const { return mDescriptorSetService.get(); } FencedDeleter* Device::GetFencedDeleter() const { return mDeleter.get(); } RenderPassCache* Device::GetRenderPassCache() const { return mRenderPassCache.get(); } CommandRecordingContext* Device::GetPendingRecordingContext() { ASSERT(mRecordingContext.commandBuffer != VK_NULL_HANDLE); mRecordingContext.used = true; return &mRecordingContext; } MaybeError Device::SubmitPendingCommands() { if (!mRecordingContext.used) { return {}; } DAWN_TRY(CheckVkSuccess(fn.EndCommandBuffer(mRecordingContext.commandBuffer), "vkEndCommandBuffer")); std::vector dstStageMasks(mRecordingContext.waitSemaphores.size(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT); VkSubmitInfo submitInfo; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.pNext = nullptr; submitInfo.waitSemaphoreCount = static_cast(mRecordingContext.waitSemaphores.size()); submitInfo.pWaitSemaphores = AsVkArray(mRecordingContext.waitSemaphores.data()); submitInfo.pWaitDstStageMask = dstStageMasks.data(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &mRecordingContext.commandBuffer; submitInfo.signalSemaphoreCount = static_cast(mRecordingContext.signalSemaphores.size()); submitInfo.pSignalSemaphores = AsVkArray(mRecordingContext.signalSemaphores.data()); VkFence fence = VK_NULL_HANDLE; DAWN_TRY_ASSIGN(fence, GetUnusedFence()); DAWN_TRY(CheckVkSuccess(fn.QueueSubmit(mQueue, 1, &submitInfo, fence), "vkQueueSubmit")); // Enqueue the semaphores before incrementing the serial, so that they can be deleted as // soon as the current submission is finished. for (VkSemaphore semaphore : mRecordingContext.waitSemaphores) { mDeleter->DeleteWhenUnused(semaphore); } for (VkSemaphore semaphore : mRecordingContext.signalSemaphores) { mDeleter->DeleteWhenUnused(semaphore); } mLastSubmittedSerial++; mFencesInFlight.emplace(fence, mLastSubmittedSerial); CommandPoolAndBuffer submittedCommands = {mRecordingContext.commandPool, mRecordingContext.commandBuffer}; mCommandsInFlight.Enqueue(submittedCommands, mLastSubmittedSerial); mRecordingContext = CommandRecordingContext(); DAWN_TRY(PrepareRecordingContext()); return {}; } ResultOrError Device::CreateDevice(VkPhysicalDevice physicalDevice) { VulkanDeviceKnobs usedKnobs = {}; // Some device features can only be enabled using a VkPhysicalDeviceFeatures2 // struct, which is supported by the VK_EXT_get_physical_properties2 instance // extension, which was promoted as a core API in Vulkan 1.1. // // Prepare a VkPhysicalDeviceFeatures2 struct for this use case, it will // only be populated if |hasPhysicalDeviceFeatures2| is true. // bool hasPhysicalDeviceFeatures2 = ToBackend(GetAdapter())->GetBackend()->GetGlobalInfo().getPhysicalDeviceProperties2; VkPhysicalDeviceFeatures2 features2 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2, .pNext = nullptr, }; PNextChainBuilder featuresChain(&features2); float zero = 0.0f; std::vector layersToRequest; std::vector extensionsToRequest; std::vector queuesToRequest; if (mDeviceInfo.debugMarker) { extensionsToRequest.push_back(kExtensionNameExtDebugMarker); usedKnobs.debugMarker = true; } if (mDeviceInfo.externalMemory) { extensionsToRequest.push_back(kExtensionNameKhrExternalMemory); usedKnobs.externalMemory = true; } if (mDeviceInfo.externalMemoryFD) { extensionsToRequest.push_back(kExtensionNameKhrExternalMemoryFD); usedKnobs.externalMemoryFD = true; } if (mDeviceInfo.externalMemoryDmaBuf) { extensionsToRequest.push_back(kExtensionNameExtExternalMemoryDmaBuf); usedKnobs.externalMemoryDmaBuf = true; } if (mDeviceInfo.imageDrmFormatModifier) { extensionsToRequest.push_back(kExtensionNameExtImageDrmFormatModifier); usedKnobs.imageDrmFormatModifier = true; } if (mDeviceInfo.externalMemoryZirconHandle) { extensionsToRequest.push_back(kExtensionNameFuchsiaExternalMemory); usedKnobs.externalMemoryZirconHandle = true; } if (mDeviceInfo.externalSemaphore) { extensionsToRequest.push_back(kExtensionNameKhrExternalSemaphore); usedKnobs.externalSemaphore = true; } if (mDeviceInfo.externalSemaphoreFD) { extensionsToRequest.push_back(kExtensionNameKhrExternalSemaphoreFD); usedKnobs.externalSemaphoreFD = true; } if (mDeviceInfo.externalSemaphoreZirconHandle) { extensionsToRequest.push_back(kExtensionNameFuchsiaExternalSemaphore); usedKnobs.externalSemaphoreZirconHandle = true; } if (mDeviceInfo.swapchain) { extensionsToRequest.push_back(kExtensionNameKhrSwapchain); usedKnobs.swapchain = true; } if (mDeviceInfo.maintenance1) { extensionsToRequest.push_back(kExtensionNameKhrMaintenance1); usedKnobs.maintenance1 = true; } if (mDeviceInfo.subgroupSizeControl) { // This extension is part of Vulkan 1.1 which always provides support // for VkPhysicalDeviceFeatures2. ASSERT(hasPhysicalDeviceFeatures2); // Always require subgroup size control if available. extensionsToRequest.push_back(kExtensionNameExtSubgroupSizeControl); usedKnobs.subgroupSizeControl = true; VkPhysicalDeviceSubgroupSizeControlFeaturesEXT* dst = &usedKnobs.featuresExtensions.subgroupSizeControl; *dst = mDeviceInfo.featuresExtensions.subgroupSizeControl; featuresChain.Add(dst); mComputeSubgroupSize = FindComputeSubgroupSize(); } // Always require independentBlend because it is a core Dawn feature usedKnobs.features.independentBlend = VK_TRUE; // Always require imageCubeArray because it is a core Dawn feature usedKnobs.features.imageCubeArray = VK_TRUE; // Always require fragmentStoresAndAtomics because it is required by end2end tests. usedKnobs.features.fragmentStoresAndAtomics = VK_TRUE; if (IsExtensionEnabled(Extension::TextureCompressionBC)) { ASSERT(ToBackend(GetAdapter())->GetDeviceInfo().features.textureCompressionBC == VK_TRUE); usedKnobs.features.textureCompressionBC = VK_TRUE; } // Find a universal queue family { // Note that GRAPHICS and COMPUTE imply TRANSFER so we don't need to check for it. constexpr uint32_t kUniversalFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT; int universalQueueFamily = -1; for (unsigned int i = 0; i < mDeviceInfo.queueFamilies.size(); ++i) { if ((mDeviceInfo.queueFamilies[i].queueFlags & kUniversalFlags) == kUniversalFlags) { universalQueueFamily = i; break; } } if (universalQueueFamily == -1) { return DAWN_DEVICE_LOST_ERROR("No universal queue family"); } mQueueFamily = static_cast(universalQueueFamily); } // Choose to create a single universal queue { VkDeviceQueueCreateInfo queueCreateInfo; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.pNext = nullptr; queueCreateInfo.flags = 0; queueCreateInfo.queueFamilyIndex = static_cast(mQueueFamily); queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &zero; queuesToRequest.push_back(queueCreateInfo); } VkDeviceCreateInfo createInfo; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; createInfo.queueCreateInfoCount = static_cast(queuesToRequest.size()); createInfo.pQueueCreateInfos = queuesToRequest.data(); createInfo.enabledLayerCount = static_cast(layersToRequest.size()); createInfo.ppEnabledLayerNames = layersToRequest.data(); createInfo.enabledExtensionCount = static_cast(extensionsToRequest.size()); createInfo.ppEnabledExtensionNames = extensionsToRequest.data(); createInfo.pEnabledFeatures = &usedKnobs.features; if (hasPhysicalDeviceFeatures2 && features2.pNext != nullptr) { // IMPORTANT: To enable features that are not covered by VkPhysicalDeviceFeatures, // one should include a VkPhysicalDeviceFeatures2 struct in the // VkDeviceCreateInfo.pNext chain, and set VkDeviceCreateInfo.pEnabledFeatures to null. features2.features = usedKnobs.features; createInfo.pNext = &features2; createInfo.pEnabledFeatures = nullptr; } DAWN_TRY(CheckVkSuccess(fn.CreateDevice(physicalDevice, &createInfo, nullptr, &mVkDevice), "vkCreateDevice")); // Device created. Mark it as alive. mLossStatus = LossStatus::Alive; return usedKnobs; } uint32_t Device::FindComputeSubgroupSize() const { if (!mDeviceInfo.subgroupSizeControl) { return 0; } const VkPhysicalDeviceSubgroupSizeControlPropertiesEXT& ext = mDeviceInfo.propertiesExtensions.subgroupSizeControl; if (ext.minSubgroupSize == ext.maxSubgroupSize) { return 0; } // At the moment, only Intel devices support varying subgroup sizes // and 16, which is the next value after the minimum of 8, is the sweet // spot according to [1]. Hence the following heuristics, which may // need to be adjusted in the future for other architectures, or if // a specific API is added to let client code select the size.. // // [1] https://bugs.freedesktop.org/show_bug.cgi?id=108875 uint32_t subgroupSize = ext.minSubgroupSize * 2; if (subgroupSize <= ext.maxSubgroupSize) { return subgroupSize; } else { return ext.minSubgroupSize; } } void Device::GatherQueueFromDevice() { fn.GetDeviceQueue(mVkDevice, mQueueFamily, 0, &mQueue); } void Device::InitTogglesFromDriver() { // TODO(jiawei.shao@intel.com): tighten this workaround when this issue is fixed in both // Vulkan SPEC and drivers. SetToggle(Toggle::UseTemporaryBufferInCompressedTextureToTextureCopy, true); // By default try to use D32S8 for Depth24PlusStencil8 SetToggle(Toggle::VulkanUseD32S8, true); } void Device::ApplyDepth24PlusS8Toggle() { VkPhysicalDevice physicalDevice = ToBackend(GetAdapter())->GetPhysicalDevice(); bool supportsD32s8 = false; { VkFormatProperties properties; fn.GetPhysicalDeviceFormatProperties(physicalDevice, VK_FORMAT_D32_SFLOAT_S8_UINT, &properties); supportsD32s8 = properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT; } bool supportsD24s8 = false; { VkFormatProperties properties; fn.GetPhysicalDeviceFormatProperties(physicalDevice, VK_FORMAT_D24_UNORM_S8_UINT, &properties); supportsD24s8 = properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT; } ASSERT(supportsD32s8 || supportsD24s8); if (!supportsD24s8) { SetToggle(Toggle::VulkanUseD32S8, true); } if (!supportsD32s8) { SetToggle(Toggle::VulkanUseD32S8, false); } } VulkanFunctions* Device::GetMutableFunctions() { return const_cast(&fn); } ResultOrError Device::GetUnusedFence() { if (!mUnusedFences.empty()) { VkFence fence = mUnusedFences.back(); DAWN_TRY(CheckVkSuccess(fn.ResetFences(mVkDevice, 1, &*fence), "vkResetFences")); mUnusedFences.pop_back(); return fence; } VkFenceCreateInfo createInfo; createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; VkFence fence = VK_NULL_HANDLE; DAWN_TRY(CheckVkSuccess(fn.CreateFence(mVkDevice, &createInfo, nullptr, &*fence), "vkCreateFence")); return fence; } void Device::CheckPassedFences() { while (!mFencesInFlight.empty()) { VkFence fence = mFencesInFlight.front().first; Serial fenceSerial = mFencesInFlight.front().second; VkResult result = VkResult::WrapUnsafe( INJECT_ERROR_OR_RUN(fn.GetFenceStatus(mVkDevice, fence), VK_ERROR_DEVICE_LOST)); // TODO: Handle DeviceLost error. ASSERT(result == VK_SUCCESS || result == VK_NOT_READY); // Fence are added in order, so we can stop searching as soon // as we see one that's not ready. if (result == VK_NOT_READY) { return; } mUnusedFences.push_back(fence); mFencesInFlight.pop(); ASSERT(fenceSerial > mCompletedSerial); mCompletedSerial = fenceSerial; } } MaybeError Device::PrepareRecordingContext() { ASSERT(!mRecordingContext.used); ASSERT(mRecordingContext.commandBuffer == VK_NULL_HANDLE); ASSERT(mRecordingContext.commandPool == VK_NULL_HANDLE); // First try to recycle unused command pools. if (!mUnusedCommands.empty()) { CommandPoolAndBuffer commands = mUnusedCommands.back(); mUnusedCommands.pop_back(); DAWN_TRY(CheckVkSuccess(fn.ResetCommandPool(mVkDevice, commands.pool, 0), "vkResetCommandPool")); mRecordingContext.commandBuffer = commands.commandBuffer; mRecordingContext.commandPool = commands.pool; } else { // Create a new command pool for our commands and allocate the command buffer. VkCommandPoolCreateInfo createInfo; createInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT; createInfo.queueFamilyIndex = mQueueFamily; DAWN_TRY(CheckVkSuccess(fn.CreateCommandPool(mVkDevice, &createInfo, nullptr, &*mRecordingContext.commandPool), "vkCreateCommandPool")); VkCommandBufferAllocateInfo allocateInfo; allocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocateInfo.pNext = nullptr; allocateInfo.commandPool = mRecordingContext.commandPool; allocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocateInfo.commandBufferCount = 1; DAWN_TRY(CheckVkSuccess(fn.AllocateCommandBuffers(mVkDevice, &allocateInfo, &mRecordingContext.commandBuffer), "vkAllocateCommandBuffers")); } // Start the recording of commands in the command buffer. VkCommandBufferBeginInfo beginInfo; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.pNext = nullptr; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; beginInfo.pInheritanceInfo = nullptr; return CheckVkSuccess(fn.BeginCommandBuffer(mRecordingContext.commandBuffer, &beginInfo), "vkBeginCommandBuffer"); } void Device::RecycleCompletedCommands() { for (auto& commands : mCommandsInFlight.IterateUpTo(mCompletedSerial)) { mUnusedCommands.push_back(commands); } mCommandsInFlight.ClearUpTo(mCompletedSerial); } ResultOrError> Device::CreateStagingBuffer(size_t size) { std::unique_ptr stagingBuffer = std::make_unique(size, this); DAWN_TRY(stagingBuffer->Initialize()); return std::move(stagingBuffer); } MaybeError Device::CopyFromStagingToBuffer(StagingBufferBase* source, uint64_t sourceOffset, BufferBase* destination, uint64_t destinationOffset, uint64_t size) { CommandRecordingContext* recordingContext = GetPendingRecordingContext(); // Insert memory barrier to ensure host write operations are made visible before // copying from the staging buffer. However, this barrier can be removed (see note below). // // Note: Depending on the spec understanding, an explicit barrier may not be required when // used with HOST_COHERENT as vkQueueSubmit does an implicit barrier between host and // device. See "Availability, Visibility, and Domain Operations" in Vulkan spec for details. // Insert pipeline barrier to ensure correct ordering with previous memory operations on the // buffer. ToBackend(destination)->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopyDst); VkBufferCopy copy; copy.srcOffset = sourceOffset; copy.dstOffset = destinationOffset; copy.size = size; this->fn.CmdCopyBuffer(recordingContext->commandBuffer, ToBackend(source)->GetBufferHandle(), ToBackend(destination)->GetHandle(), 1, ©); return {}; } MaybeError Device::ImportExternalImage(const ExternalImageDescriptor* descriptor, ExternalMemoryHandle memoryHandle, VkImage image, const std::vector& waitHandles, VkSemaphore* outSignalSemaphore, VkDeviceMemory* outAllocation, std::vector* outWaitSemaphores) { const TextureDescriptor* textureDescriptor = reinterpret_cast(descriptor->cTextureDescriptor); // Check services support this combination of handle type / image info if (!mExternalSemaphoreService->Supported()) { return DAWN_VALIDATION_ERROR("External semaphore usage not supported"); } if (!mExternalMemoryService->SupportsImportMemory( VulkanImageFormat(this, textureDescriptor->format), VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VulkanImageUsage(textureDescriptor->usage, GetValidInternalFormat(textureDescriptor->format)), VK_IMAGE_CREATE_ALIAS_BIT_KHR)) { return DAWN_VALIDATION_ERROR("External memory usage not supported"); } // Create an external semaphore to signal when the texture is done being used DAWN_TRY_ASSIGN(*outSignalSemaphore, mExternalSemaphoreService->CreateExportableSemaphore()); // Import the external image's memory external_memory::MemoryImportParams importParams; DAWN_TRY_ASSIGN(importParams, mExternalMemoryService->GetMemoryImportParams(descriptor, image)); DAWN_TRY_ASSIGN(*outAllocation, mExternalMemoryService->ImportMemory(memoryHandle, importParams, image)); // Import semaphores we have to wait on before using the texture for (const ExternalSemaphoreHandle& handle : waitHandles) { VkSemaphore semaphore = VK_NULL_HANDLE; DAWN_TRY_ASSIGN(semaphore, mExternalSemaphoreService->ImportSemaphore(handle)); outWaitSemaphores->push_back(semaphore); } return {}; } MaybeError Device::SignalAndExportExternalTexture(Texture* texture, ExternalSemaphoreHandle* outHandle) { DAWN_TRY(ValidateObject(texture)); VkSemaphore outSignalSemaphore; DAWN_TRY(texture->SignalAndDestroy(&outSignalSemaphore)); // This has to happen right after SignalAndDestroy, since the semaphore will be // deleted when the fenced deleter runs after the queue submission DAWN_TRY_ASSIGN(*outHandle, mExternalSemaphoreService->ExportSemaphore(outSignalSemaphore)); return {}; } TextureBase* Device::CreateTextureWrappingVulkanImage( const ExternalImageDescriptor* descriptor, ExternalMemoryHandle memoryHandle, const std::vector& waitHandles) { const TextureDescriptor* textureDescriptor = reinterpret_cast(descriptor->cTextureDescriptor); // Initial validation if (ConsumedError(ValidateTextureDescriptor(this, textureDescriptor))) { return nullptr; } if (ConsumedError(ValidateVulkanImageCanBeWrapped(this, textureDescriptor))) { return nullptr; } VkSemaphore signalSemaphore = VK_NULL_HANDLE; VkDeviceMemory allocation = VK_NULL_HANDLE; std::vector waitSemaphores; waitSemaphores.reserve(waitHandles.size()); // Cleanup in case of a failure, the image creation doesn't acquire the external objects // if a failure happems. Texture* result = nullptr; // TODO(crbug.com/1026480): Consolidate this into a single CreateFromExternal call. if (ConsumedError(Texture::CreateFromExternal(this, descriptor, textureDescriptor, mExternalMemoryService.get()), &result) || ConsumedError(ImportExternalImage(descriptor, memoryHandle, result->GetHandle(), waitHandles, &signalSemaphore, &allocation, &waitSemaphores)) || ConsumedError(result->BindExternalMemory(descriptor, signalSemaphore, allocation, waitSemaphores))) { // Delete the Texture if it was created if (result != nullptr) { delete result; } // Clear the signal semaphore fn.DestroySemaphore(GetVkDevice(), signalSemaphore, nullptr); // Clear image memory fn.FreeMemory(GetVkDevice(), allocation, nullptr); // Clear any wait semaphores we were able to import for (VkSemaphore semaphore : waitSemaphores) { fn.DestroySemaphore(GetVkDevice(), semaphore, nullptr); } return nullptr; } return result; } ResultOrError Device::AllocateMemory( VkMemoryRequirements requirements, bool mappable) { return mResourceMemoryAllocator->Allocate(requirements, mappable); } void Device::DeallocateMemory(ResourceMemoryAllocation* allocation) { mResourceMemoryAllocator->Deallocate(allocation); } int Device::FindBestMemoryTypeIndex(VkMemoryRequirements requirements, bool mappable) { return mResourceMemoryAllocator->FindBestTypeIndex(requirements, mappable); } ResourceMemoryAllocator* Device::GetResourceMemoryAllocatorForTesting() const { return mResourceMemoryAllocator.get(); } MaybeError Device::WaitForIdleForDestruction() { VkResult waitIdleResult = VkResult::WrapUnsafe(fn.QueueWaitIdle(mQueue)); // Ignore the result of QueueWaitIdle: it can return OOM which we can't really do anything // about, Device lost, which means workloads running on the GPU are no longer accessible // (so they are as good as waited on) or success. DAWN_UNUSED(waitIdleResult); CheckPassedFences(); // Make sure all fences are complete by explicitly waiting on them all while (!mFencesInFlight.empty()) { VkFence fence = mFencesInFlight.front().first; Serial fenceSerial = mFencesInFlight.front().second; ASSERT(fenceSerial > mCompletedSerial); VkResult result = VkResult::WrapUnsafe(VK_TIMEOUT); do { result = VkResult::WrapUnsafe( INJECT_ERROR_OR_RUN(fn.WaitForFences(mVkDevice, 1, &*fence, true, UINT64_MAX), VK_ERROR_DEVICE_LOST)); } while (result == VK_TIMEOUT); // TODO: Handle errors ASSERT(result == VK_SUCCESS); fn.DestroyFence(mVkDevice, fence, nullptr); mFencesInFlight.pop(); mCompletedSerial = fenceSerial; } return {}; } void Device::Destroy() { ASSERT(mLossStatus != LossStatus::AlreadyLost); // Immediately tag the recording context as unused so we don't try to submit it in Tick. mRecordingContext.used = false; fn.DestroyCommandPool(mVkDevice, mRecordingContext.commandPool, nullptr); // Some operations might have been started since the last submit and waiting // on a serial that doesn't have a corresponding fence enqueued. Force all // operations to look as if they were completed (because they were). mCompletedSerial = mLastSubmittedSerial + 1; // Assert that errors are device loss so that we can continue with destruction AssertAndIgnoreDeviceLossError(TickImpl()); ASSERT(mCommandsInFlight.Empty()); for (const CommandPoolAndBuffer& commands : mUnusedCommands) { fn.DestroyCommandPool(mVkDevice, commands.pool, nullptr); } mUnusedCommands.clear(); // TODO(jiajie.hu@intel.com): In rare cases, a DAWN_TRY() failure may leave semaphores // untagged for deletion. But for most of the time when everything goes well, these // assertions can be helpful in catching bugs. ASSERT(mRecordingContext.waitSemaphores.empty()); ASSERT(mRecordingContext.signalSemaphores.empty()); for (VkFence fence : mUnusedFences) { fn.DestroyFence(mVkDevice, fence, nullptr); } mUnusedFences.clear(); // Free services explicitly so that they can free Vulkan objects before vkDestroyDevice mDynamicUploader = nullptr; // Releasing the uploader enqueues buffers to be released. // Call Tick() again to clear them before releasing the deleter. mDeleter->Tick(mCompletedSerial); mMapRequestTracker = nullptr; // The VkRenderPasses in the cache can be destroyed immediately since all commands referring // to them are guaranteed to be finished executing. mRenderPassCache = nullptr; } }} // namespace dawn_native::vulkan