#include using namespace metal; struct Uniforms { /* 0x0000 */ uint dimAOuter; /* 0x0004 */ uint dimInner; /* 0x0008 */ uint dimBOuter; }; struct Matrix { /* 0x0000 */ float numbers[1]; }; struct tint_array_wrapper_1 { float arr[64]; }; struct tint_array_wrapper { tint_array_wrapper_1 arr[64]; }; struct tint_array_wrapper_2 { float arr[16]; }; struct tint_array_wrapper_3 { float arr[4]; }; constant uint RowPerThread = 4u; constant uint ColPerThread = 4u; constant uint TileAOuter = 64u; constant uint TileBOuter = 64u; constant uint TileInner = 64u; float mm_readA(uint row, uint col, const constant Uniforms* const tint_symbol_1, const device Matrix* const tint_symbol_2) { if (((row < (*(tint_symbol_1)).dimAOuter) && (col < (*(tint_symbol_1)).dimInner))) { float const result = (*(tint_symbol_2)).numbers[((row * (*(tint_symbol_1)).dimInner) + col)]; return result; } return 0.0f; } float mm_readB(uint row, uint col, const constant Uniforms* const tint_symbol_3, const device Matrix* const tint_symbol_4) { if (((row < (*(tint_symbol_3)).dimInner) && (col < (*(tint_symbol_3)).dimBOuter))) { float const result = (*(tint_symbol_4)).numbers[((row * (*(tint_symbol_3)).dimBOuter) + col)]; return result; } return 0.0f; } void mm_write(uint row, uint col, float value, const constant Uniforms* const tint_symbol_5, device Matrix* const tint_symbol_6) { if (((row < (*(tint_symbol_5)).dimAOuter) && (col < (*(tint_symbol_5)).dimBOuter))) { uint const index = (col + (row * (*(tint_symbol_5)).dimBOuter)); (*(tint_symbol_6)).numbers[index] = value; } } void tint_symbol_inner(uint3 local_id, uint3 global_id, uint local_invocation_index, threadgroup tint_array_wrapper* const tint_symbol_7, threadgroup tint_array_wrapper* const tint_symbol_8, const constant Uniforms* const tint_symbol_9, const device Matrix* const tint_symbol_10, const device Matrix* const tint_symbol_11, device Matrix* const tint_symbol_12) { for(uint idx = local_invocation_index; (idx < 4096u); idx = (idx + 256u)) { uint const i = (idx / 64u); uint const i_1 = (idx % 64u); (*(tint_symbol_7)).arr[i].arr[i_1] = float(); (*(tint_symbol_8)).arr[i].arr[i_1] = float(); } threadgroup_barrier(mem_flags::mem_threadgroup); uint const tileRow = (local_id[1] * RowPerThread); uint const tileCol = (local_id[0] * ColPerThread); uint const globalRow = (global_id[1] * RowPerThread); uint const globalCol = (global_id[0] * ColPerThread); uint const numTiles = ((((*(tint_symbol_9)).dimInner - 1u) / TileInner) + 1u); tint_array_wrapper_2 acc = {}; float ACached = 0.0f; tint_array_wrapper_3 BCached = {}; for(uint index = 0u; (index < (RowPerThread * ColPerThread)); index = (index + 1u)) { acc.arr[index] = 0.0f; } uint const ColPerThreadA = (TileInner / 16u); uint const tileColA = (local_id[0] * ColPerThreadA); uint const RowPerThreadB = (TileInner / 16u); uint const tileRowB = (local_id[1] * RowPerThreadB); for(uint t = 0u; (t < numTiles); t = (t + 1u)) { for(uint innerRow = 0u; (innerRow < RowPerThread); innerRow = (innerRow + 1u)) { for(uint innerCol = 0u; (innerCol < ColPerThreadA); innerCol = (innerCol + 1u)) { uint const inputRow = (tileRow + innerRow); uint const inputCol = (tileColA + innerCol); (*(tint_symbol_7)).arr[inputRow].arr[inputCol] = mm_readA((globalRow + innerRow), ((t * TileInner) + inputCol), tint_symbol_9, tint_symbol_10); } } for(uint innerRow = 0u; (innerRow < RowPerThreadB); innerRow = (innerRow + 1u)) { for(uint innerCol = 0u; (innerCol < ColPerThread); innerCol = (innerCol + 1u)) { uint const inputRow = (tileRowB + innerRow); uint const inputCol = (tileCol + innerCol); (*(tint_symbol_8)).arr[innerCol].arr[inputCol] = mm_readB(((t * TileInner) + inputRow), (globalCol + innerCol), tint_symbol_9, tint_symbol_11); } } threadgroup_barrier(mem_flags::mem_threadgroup); for(uint k = 0u; (k < TileInner); k = (k + 1u)) { for(uint inner = 0u; (inner < ColPerThread); inner = (inner + 1u)) { BCached.arr[inner] = (*(tint_symbol_8)).arr[k].arr[(tileCol + inner)]; } for(uint innerRow = 0u; (innerRow < RowPerThread); innerRow = (innerRow + 1u)) { ACached = (*(tint_symbol_7)).arr[(tileRow + innerRow)].arr[k]; for(uint innerCol = 0u; (innerCol < ColPerThread); innerCol = (innerCol + 1u)) { uint const index = ((innerRow * ColPerThread) + innerCol); acc.arr[index] = (acc.arr[index] + (ACached * BCached.arr[innerCol])); } } } threadgroup_barrier(mem_flags::mem_threadgroup); } for(uint innerRow = 0u; (innerRow < RowPerThread); innerRow = (innerRow + 1u)) { for(uint innerCol = 0u; (innerCol < ColPerThread); innerCol = (innerCol + 1u)) { uint const index = ((innerRow * ColPerThread) + innerCol); mm_write((globalRow + innerRow), (globalCol + innerCol), acc.arr[index], tint_symbol_9, tint_symbol_12); } } } kernel void tint_symbol(const constant Uniforms* tint_symbol_15 [[buffer(0)]], const device Matrix* tint_symbol_16 [[buffer(2)]], const device Matrix* tint_symbol_17 [[buffer(3)]], device Matrix* tint_symbol_18 [[buffer(1)]], uint3 local_id [[thread_position_in_threadgroup]], uint3 global_id [[thread_position_in_grid]], uint local_invocation_index [[thread_index_in_threadgroup]]) { threadgroup tint_array_wrapper tint_symbol_13; threadgroup tint_array_wrapper tint_symbol_14; tint_symbol_inner(local_id, global_id, local_invocation_index, &(tint_symbol_13), &(tint_symbol_14), tint_symbol_15, tint_symbol_16, tint_symbol_17, tint_symbol_18); return; }