#include using namespace metal; template inline auto operator*(matrix lhs, packed_vec rhs) { return lhs * vec(rhs); } template inline auto operator*(packed_vec lhs, matrix rhs) { return vec(lhs) * rhs; } struct Uniforms { /* 0x0000 */ uint numTriangles; /* 0x0004 */ uint gridSize; /* 0x0008 */ uint pad1; /* 0x000c */ uint pad2; /* 0x0010 */ packed_float3 bbMin; /* 0x001c */ int8_t tint_pad[4]; /* 0x0020 */ packed_float3 bbMax; /* 0x002c */ int8_t tint_pad_1[4]; }; struct Dbg { /* 0x0000 */ atomic_uint offsetCounter; /* 0x0004 */ uint pad0; /* 0x0008 */ uint pad1; /* 0x000c */ uint pad2; /* 0x0010 */ uint value0; /* 0x0014 */ uint value1; /* 0x0018 */ uint value2; /* 0x001c */ uint value3; /* 0x0020 */ float value_f32_0; /* 0x0024 */ float value_f32_1; /* 0x0028 */ float value_f32_2; /* 0x002c */ float value_f32_3; }; struct F32s { /* 0x0000 */ float values[1]; }; struct U32s { /* 0x0000 */ uint values[1]; }; struct I32s { int values[1]; }; struct AU32s { /* 0x0000 */ atomic_uint values[1]; }; struct AI32s { /* 0x0000 */ atomic_int values[1]; }; float3 toVoxelPos(float3 position, const constant Uniforms* const tint_symbol) { float3 bbMin = float3((*(tint_symbol)).bbMin[0], (*(tint_symbol)).bbMin[1], (*(tint_symbol)).bbMin[2]); float3 bbMax = float3((*(tint_symbol)).bbMax[0], (*(tint_symbol)).bbMax[1], (*(tint_symbol)).bbMax[2]); float3 bbSize = (bbMax - bbMin); float cubeSize = fmax(fmax(bbSize[0], bbSize[1]), bbSize[2]); float gridSize = float((*(tint_symbol)).gridSize); float gx = ((gridSize * (position[0] - (*(tint_symbol)).bbMin[0])) / cubeSize); float gy = ((gridSize * (position[1] - (*(tint_symbol)).bbMin[1])) / cubeSize); float gz = ((gridSize * (position[2] - (*(tint_symbol)).bbMin[2])) / cubeSize); return float3(gx, gy, gz); } uint toIndex1D(uint gridSize, float3 voxelPos) { uint3 icoord = uint3(voxelPos); return ((icoord[0] + (gridSize * icoord[1])) + ((gridSize * gridSize) * icoord[2])); } uint3 toIndex3D(uint gridSize, uint index) { uint z_1 = (index / (gridSize * gridSize)); uint y_1 = ((index - ((gridSize * gridSize) * z_1)) / gridSize); uint x_1 = (index % gridSize); return uint3(x_1, y_1, z_1); } float3 loadPosition(uint vertexIndex, device F32s* const tint_symbol_1) { float3 position = float3((*(tint_symbol_1)).values[((3u * vertexIndex) + 0u)], (*(tint_symbol_1)).values[((3u * vertexIndex) + 1u)], (*(tint_symbol_1)).values[((3u * vertexIndex) + 2u)]); return position; } void doIgnore(const constant Uniforms* const tint_symbol_2, device Dbg* const tint_symbol_3, device AU32s* const tint_symbol_4, device U32s* const tint_symbol_5, device F32s* const tint_symbol_6, device AI32s* const tint_symbol_7) { uint g42 = (*(tint_symbol_2)).numTriangles; uint kj6 = (*(tint_symbol_3)).value1; uint b53 = atomic_load_explicit(&((*(tint_symbol_4)).values[0]), memory_order_relaxed); uint rwg = (*(tint_symbol_5)).values[0]; float rb5 = (*(tint_symbol_6)).values[0]; int g55 = atomic_load_explicit(&((*(tint_symbol_7)).values[0]), memory_order_relaxed); } void main_count_inner(uint3 GlobalInvocationID, const constant Uniforms* const tint_symbol_8, device Dbg* const tint_symbol_9, device AU32s* const tint_symbol_10, device U32s* const tint_symbol_11, device F32s* const tint_symbol_12, device AI32s* const tint_symbol_13) { uint triangleIndex = GlobalInvocationID[0]; if ((triangleIndex >= (*(tint_symbol_8)).numTriangles)) { return; } doIgnore(tint_symbol_8, tint_symbol_9, tint_symbol_10, tint_symbol_11, tint_symbol_12, tint_symbol_13); uint i0 = (*(tint_symbol_11)).values[((3u * triangleIndex) + 0u)]; uint i1 = (*(tint_symbol_11)).values[((3u * triangleIndex) + 1u)]; uint i2 = (*(tint_symbol_11)).values[((3u * triangleIndex) + 2u)]; float3 p0 = loadPosition(i0, tint_symbol_12); float3 p1 = loadPosition(i1, tint_symbol_12); float3 p2 = loadPosition(i2, tint_symbol_12); float3 center = (((p0 + p1) + p2) / 3.0f); float3 voxelPos = toVoxelPos(center, tint_symbol_8); uint voxelIndex = toIndex1D((*(tint_symbol_8)).gridSize, voxelPos); uint acefg = atomic_fetch_add_explicit(&((*(tint_symbol_10)).values[voxelIndex]), 1u, memory_order_relaxed); if ((triangleIndex == 0u)) { (*(tint_symbol_9)).value0 = (*(tint_symbol_8)).gridSize; (*(tint_symbol_9)).value_f32_0 = center[0]; (*(tint_symbol_9)).value_f32_1 = center[1]; (*(tint_symbol_9)).value_f32_2 = center[2]; } } kernel void main_count(const constant Uniforms* tint_symbol_14 [[buffer(0)]], device Dbg* tint_symbol_15 [[buffer(1)]], device AU32s* tint_symbol_16 [[buffer(2)]], device U32s* tint_symbol_17 [[buffer(3)]], device F32s* tint_symbol_18 [[buffer(4)]], device AI32s* tint_symbol_19 [[buffer(5)]], uint3 GlobalInvocationID [[thread_position_in_grid]]) { main_count_inner(GlobalInvocationID, tint_symbol_14, tint_symbol_15, tint_symbol_16, tint_symbol_17, tint_symbol_18, tint_symbol_19); return; } void main_create_lut_inner(uint3 GlobalInvocationID, const constant Uniforms* const tint_symbol_20, device Dbg* const tint_symbol_21, device AU32s* const tint_symbol_22, device U32s* const tint_symbol_23, device F32s* const tint_symbol_24, device AI32s* const tint_symbol_25) { uint voxelIndex = GlobalInvocationID[0]; doIgnore(tint_symbol_20, tint_symbol_21, tint_symbol_22, tint_symbol_23, tint_symbol_24, tint_symbol_25); uint maxVoxels = (((*(tint_symbol_20)).gridSize * (*(tint_symbol_20)).gridSize) * (*(tint_symbol_20)).gridSize); if ((voxelIndex >= maxVoxels)) { return; } uint numTriangles = atomic_load_explicit(&((*(tint_symbol_22)).values[voxelIndex]), memory_order_relaxed); int offset = -1; if ((numTriangles > 0u)) { offset = int(atomic_fetch_add_explicit(&((*(tint_symbol_21)).offsetCounter), numTriangles, memory_order_relaxed)); } atomic_store_explicit(&((*(tint_symbol_25)).values[voxelIndex]), offset, memory_order_relaxed); } kernel void main_create_lut(const constant Uniforms* tint_symbol_26 [[buffer(0)]], device Dbg* tint_symbol_27 [[buffer(1)]], device AU32s* tint_symbol_28 [[buffer(2)]], device U32s* tint_symbol_29 [[buffer(3)]], device F32s* tint_symbol_30 [[buffer(4)]], device AI32s* tint_symbol_31 [[buffer(5)]], uint3 GlobalInvocationID [[thread_position_in_grid]]) { main_create_lut_inner(GlobalInvocationID, tint_symbol_26, tint_symbol_27, tint_symbol_28, tint_symbol_29, tint_symbol_30, tint_symbol_31); return; } void main_sort_triangles_inner(uint3 GlobalInvocationID, const constant Uniforms* const tint_symbol_32, device Dbg* const tint_symbol_33, device AU32s* const tint_symbol_34, device U32s* const tint_symbol_35, device F32s* const tint_symbol_36, device AI32s* const tint_symbol_37) { uint triangleIndex = GlobalInvocationID[0]; doIgnore(tint_symbol_32, tint_symbol_33, tint_symbol_34, tint_symbol_35, tint_symbol_36, tint_symbol_37); if ((triangleIndex >= (*(tint_symbol_32)).numTriangles)) { return; } uint i0 = (*(tint_symbol_35)).values[((3u * triangleIndex) + 0u)]; uint i1 = (*(tint_symbol_35)).values[((3u * triangleIndex) + 1u)]; uint i2 = (*(tint_symbol_35)).values[((3u * triangleIndex) + 2u)]; float3 p0 = loadPosition(i0, tint_symbol_36); float3 p1 = loadPosition(i1, tint_symbol_36); float3 p2 = loadPosition(i2, tint_symbol_36); float3 center = (((p0 + p1) + p2) / 3.0f); float3 voxelPos = toVoxelPos(center, tint_symbol_32); uint voxelIndex = toIndex1D((*(tint_symbol_32)).gridSize, voxelPos); int triangleOffset = atomic_fetch_add_explicit(&((*(tint_symbol_37)).values[voxelIndex]), 1, memory_order_relaxed); } kernel void main_sort_triangles(const constant Uniforms* tint_symbol_38 [[buffer(0)]], device Dbg* tint_symbol_39 [[buffer(1)]], device AU32s* tint_symbol_40 [[buffer(2)]], device U32s* tint_symbol_41 [[buffer(3)]], device F32s* tint_symbol_42 [[buffer(4)]], device AI32s* tint_symbol_43 [[buffer(5)]], uint3 GlobalInvocationID [[thread_position_in_grid]]) { main_sort_triangles_inner(GlobalInvocationID, tint_symbol_38, tint_symbol_39, tint_symbol_40, tint_symbol_41, tint_symbol_42, tint_symbol_43); return; }