// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include #include #include "src/ast/alias.h" #include "src/ast/array.h" #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/depth_texture.h" #include "src/ast/disable_validation_decoration.h" #include "src/ast/discard_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/if_statement.h" #include "src/ast/internal_decoration.h" #include "src/ast/interpolate_decoration.h" #include "src/ast/loop_statement.h" #include "src/ast/matrix.h" #include "src/ast/override_decoration.h" #include "src/ast/pointer.h" #include "src/ast/return_statement.h" #include "src/ast/sampled_texture.h" #include "src/ast/sampler.h" #include "src/ast/storage_texture.h" #include "src/ast/struct_block_decoration.h" #include "src/ast/switch_statement.h" #include "src/ast/type_name.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/ast/vector.h" #include "src/ast/workgroup_decoration.h" #include "src/sem/array.h" #include "src/sem/atomic_type.h" #include "src/sem/call.h" #include "src/sem/depth_texture_type.h" #include "src/sem/function.h" #include "src/sem/member_accessor_expression.h" #include "src/sem/multisampled_texture_type.h" #include "src/sem/pointer_type.h" #include "src/sem/reference_type.h" #include "src/sem/sampled_texture_type.h" #include "src/sem/sampler_type.h" #include "src/sem/statement.h" #include "src/sem/storage_texture_type.h" #include "src/sem/struct.h" #include "src/sem/variable.h" #include "src/utils/get_or_create.h" #include "src/utils/math.h" #include "src/utils/scoped_assignment.h" namespace tint { namespace resolver { namespace { using IntrinsicType = tint::sem::IntrinsicType; bool IsValidStorageTextureDimension(ast::TextureDimension dim) { switch (dim) { case ast::TextureDimension::k1d: case ast::TextureDimension::k2d: case ast::TextureDimension::k2dArray: case ast::TextureDimension::k3d: return true; default: return false; } } bool IsValidStorageTextureImageFormat(ast::ImageFormat format) { switch (format) { case ast::ImageFormat::kR32Uint: case ast::ImageFormat::kR32Sint: case ast::ImageFormat::kR32Float: case ast::ImageFormat::kRg32Uint: case ast::ImageFormat::kRg32Sint: case ast::ImageFormat::kRg32Float: case ast::ImageFormat::kRgba8Unorm: case ast::ImageFormat::kRgba8Snorm: case ast::ImageFormat::kRgba8Uint: case ast::ImageFormat::kRgba8Sint: case ast::ImageFormat::kRgba16Uint: case ast::ImageFormat::kRgba16Sint: case ast::ImageFormat::kRgba16Float: case ast::ImageFormat::kRgba32Uint: case ast::ImageFormat::kRgba32Sint: case ast::ImageFormat::kRgba32Float: return true; default: return false; } } /// @returns true if the decoration list contains a /// ast::DisableValidationDecoration with the validation mode equal to /// `validation` bool IsValidationDisabled(const ast::DecorationList& decorations, ast::DisabledValidation validation) { for (auto* decoration : decorations) { if (auto* dv = decoration->As()) { if (dv->Validation() == validation) { return true; } } } return false; } /// @returns true if the decoration list does not contains a /// ast::DisableValidationDecoration with the validation mode equal to /// `validation` bool IsValidationEnabled(const ast::DecorationList& decorations, ast::DisabledValidation validation) { return !IsValidationDisabled(decorations, validation); } // Helper to stringify a pipeline IO decoration. std::string deco_to_str(const ast::Decoration* deco) { std::stringstream str; if (auto* builtin = deco->As()) { str << "builtin(" << builtin->value() << ")"; } else if (auto* location = deco->As()) { str << "location(" << location->value() << ")"; } return str.str(); } } // namespace Resolver::Resolver(ProgramBuilder* builder) : builder_(builder), diagnostics_(builder->Diagnostics()), intrinsic_table_(IntrinsicTable::Create(*builder)) {} Resolver::~Resolver() = default; void Resolver::set_referenced_from_function_if_needed(VariableInfo* var, bool local) { if (current_function_ == nullptr) { return; } if (var->kind != VariableKind::kGlobal) { return; } current_function_->referenced_module_vars.add(var); if (local) { current_function_->local_referenced_module_vars.add(var); } } bool Resolver::Resolve() { if (builder_->Diagnostics().contains_errors()) { return false; } bool result = ResolveInternal(); if (!result && !diagnostics_.contains_errors()) { TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised"; return false; } // Even if resolving failed, create all the semantic nodes for information we // did generate. CreateSemanticNodes(); return result; } // https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section bool Resolver::IsPlain(const sem::Type* type) const { return type->is_scalar() || type->Is() || type->Is() || type->Is() || type->Is() || type->Is(); } // https://gpuweb.github.io/gpuweb/wgsl/#atomic-free bool Resolver::IsAtomicFreePlain(const sem::Type* type) const { if (type->Is()) { return false; } if (type->is_scalar() || type->Is() || type->Is()) { return true; } if (auto* arr = type->As()) { return IsAtomicFreePlain(arr->ElemType()); } if (auto* str = type->As()) { for (auto* m : str->Members()) { if (!IsAtomicFreePlain(m->Type())) { return false; } } return true; } return false; } // https://gpuweb.github.io/gpuweb/wgsl.html#storable-types bool Resolver::IsStorable(const sem::Type* type) const { return IsPlain(type) || type->Is() || type->Is(); } // https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types bool Resolver::IsHostShareable(const sem::Type* type) const { if (type->IsAnyOf()) { return true; } if (auto* vec = type->As()) { return IsHostShareable(vec->type()); } if (auto* mat = type->As()) { return IsHostShareable(mat->type()); } if (auto* arr = type->As()) { return IsHostShareable(arr->ElemType()); } if (auto* str = type->As()) { for (auto* member : str->Members()) { if (!IsHostShareable(member->Type())) { return false; } } return true; } if (auto* atomic = type->As()) { return IsHostShareable(atomic->Type()); } return false; } bool Resolver::ResolveInternal() { Mark(&builder_->AST()); // Process everything else in the order they appear in the module. This is // necessary for validation of use-before-declaration. for (auto* decl : builder_->AST().GlobalDeclarations()) { if (auto* td = decl->As()) { Mark(td); if (!TypeDecl(td)) { return false; } } else if (auto* func = decl->As()) { Mark(func); if (!Function(func)) { return false; } } else if (auto* var = decl->As()) { Mark(var); if (!GlobalVariable(var)) { return false; } } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled global declaration: " << decl->TypeInfo().name; return false; } } if (!ValidatePipelineStages()) { return false; } if (!ValidateAtomicUses()) { return false; } bool result = true; for (auto* node : builder_->ASTNodes().Objects()) { if (marked_.count(node) == 0) { TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" << "At: " << node->source() << "\n" << "Content: " << builder_->str(node) << "\n" << "Pointer: " << node; result = false; } } return result; } sem::Type* Resolver::Type(const ast::Type* ty) { Mark(ty); auto* s = [&]() -> sem::Type* { if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (auto* t = ty->As()) { if (auto* el = Type(t->type())) { return builder_->create(const_cast(el), t->size()); } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type())) { if (auto* column_type = builder_->create( const_cast(el), t->rows())) { if (auto* matrix_type = builder_->create(column_type, t->columns())) { if (ValidateMatrix(matrix_type, t->source())) { return matrix_type; } } } } return nullptr; } if (auto* t = ty->As()) { return Array(t); } if (auto* t = ty->As()) { if (auto* el = Type(t->type())) { auto* a = builder_->create(const_cast(el)); if (!ValidateAtomic(t, a)) { return nullptr; } return a; } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type())) { auto access = t->access(); if (access == ast::kUndefined) { access = DefaultAccessForStorageClass(t->storage_class()); } return builder_->create(const_cast(el), t->storage_class(), access); } return nullptr; } if (auto* t = ty->As()) { return builder_->create(t->kind()); } if (auto* t = ty->As()) { if (auto* el = Type(t->type())) { return builder_->create( t->dim(), const_cast(el)); } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type())) { return builder_->create( t->dim(), const_cast(el)); } return nullptr; } if (auto* t = ty->As()) { return builder_->create(t->dim()); } if (auto* t = ty->As()) { if (auto* el = Type(t->type())) { if (!ValidateStorageTexture(t)) { return nullptr; } return builder_->create( t->dim(), t->image_format(), t->access(), const_cast(el)); } return nullptr; } if (ty->As()) { return builder_->create(); } if (auto* t = ty->As()) { auto it = named_type_info_.find(t->name()); if (it == named_type_info_.end()) { AddError( "unknown type '" + builder_->Symbols().NameFor(t->name()) + "'", t->source()); return nullptr; } return it->second.sem; } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled ast::Type: " << ty->TypeInfo().name; return nullptr; }(); if (s) { builder_->Sem().Add(ty, s); } return s; } bool Resolver::ValidateAtomic(const ast::Atomic* a, const sem::Atomic* s) { // https://gpuweb.github.io/gpuweb/wgsl/#atomic-types // T must be either u32 or i32. if (!s->Type()->IsAnyOf()) { AddError("atomic only supports i32 or u32 types", a->type()->source()); return false; } return true; } bool Resolver::ValidateAtomicUses() { // https://gpuweb.github.io/gpuweb/wgsl/#atomic-types // Atomic types may only be instantiated by variables in the workgroup storage // class or by storage buffer variables with a read_write access mode. for (auto sm : atomic_members_) { auto* structure = sm.structure; for (auto usage : structure->StorageClassUsage()) { if (usage == ast::StorageClass::kWorkgroup) { continue; } if (usage != ast::StorageClass::kStorage) { // TODO(crbug.com/tint/901): Validate that the access mode is // read_write. auto* member = structure->Members()[sm.index]; AddError( "atomic types can only be used in storage classes workgroup or " "storage, but was used by storage class " + std::string(ast::str(usage)), member->Declaration()->type()->source()); // TODO(crbug.com/tint/901): Add note pointing at where the usage came // from. return false; } } } return true; } bool Resolver::ValidateStorageTexture(const ast::StorageTexture* t) { switch (t->access()) { case ast::Access::kUndefined: AddError("storage textures must have access control", t->source()); return false; case ast::Access::kReadWrite: AddError("storage textures only support read-only and write-only access", t->source()); return false; case ast::Access::kRead: case ast::Access::kWrite: break; } if (!IsValidStorageTextureDimension(t->dim())) { AddError("cube dimensions for storage textures are not supported", t->source()); return false; } if (!IsValidStorageTextureImageFormat(t->image_format())) { AddError( "image format must be one of the texel formats specified for storage " "textues in https://gpuweb.github.io/gpuweb/wgsl/#texel-formats", t->source()); return false; } return true; } Resolver::VariableInfo* Resolver::Variable(ast::Variable* var, VariableKind kind) { if (variable_to_info_.count(var)) { TINT_ICE(Resolver, diagnostics_) << "Variable " << builder_->Symbols().NameFor(var->symbol()) << " already resolved"; return nullptr; } std::string type_name; const sem::Type* storage_type = nullptr; // If the variable has a declared type, resolve it. if (auto* ty = var->type()) { type_name = ty->FriendlyName(builder_->Symbols()); storage_type = Type(ty); if (!storage_type) { return nullptr; } } std::string rhs_type_name; const sem::Type* rhs_type = nullptr; // Does the variable have a constructor? if (auto* ctor = var->constructor()) { Mark(var->constructor()); if (!Expression(var->constructor())) { return nullptr; } // Fetch the constructor's type rhs_type_name = TypeNameOf(ctor); rhs_type = TypeOf(ctor); if (!rhs_type) { return nullptr; } // If the variable has no declared type, infer it from the RHS if (!storage_type) { if (!var->is_const() && kind == VariableKind::kGlobal) { AddError("global var declaration must specify a type", var->source()); return nullptr; } type_name = rhs_type_name; storage_type = rhs_type->UnwrapRef(); // Implicit load of RHS } } else if (var->is_const() && kind != VariableKind::kParameter && !ast::HasDecoration(var->decorations())) { AddError("let declarations must have initializers", var->source()); return nullptr; } if (!storage_type) { TINT_ICE(Resolver, diagnostics_) << "failed to determine storage type for variable '" + builder_->Symbols().NameFor(var->symbol()) + "'\n" << "Source: " << var->source(); return nullptr; } auto storage_class = var->declared_storage_class(); if (storage_class == ast::StorageClass::kNone) { if (storage_type->UnwrapRef()->is_handle()) { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // If the store type is a texture type or a sampler type, then the // variable declaration must not have a storage class decoration. The // storage class will always be handle. storage_class = ast::StorageClass::kUniformConstant; } else if (kind == VariableKind::kLocal && !var->is_const()) { storage_class = ast::StorageClass::kFunction; } } auto access = var->declared_access(); if (access == ast::Access::kUndefined) { access = DefaultAccessForStorageClass(storage_class); } auto* type = storage_type; if (!var->is_const()) { // Variable declaration. Unlike `let`, `var` has storage. // Variables are always of a reference type to the declared storage type. type = builder_->create(storage_type, storage_class, access); } if (rhs_type && !ValidateVariableConstructor(var, storage_type, type_name, rhs_type, rhs_type_name)) { return nullptr; } auto* info = variable_infos_.Create(var, const_cast(type), type_name, storage_class, access, kind); variable_to_info_.emplace(var, info); return info; } ast::AccessControl Resolver::DefaultAccessForStorageClass( ast::StorageClass storage_class) { // https://gpuweb.github.io/gpuweb/wgsl/#storage-class switch (storage_class) { case ast::StorageClass::kStorage: case ast::StorageClass::kUniform: case ast::StorageClass::kUniformConstant: return ast::Access::kRead; default: break; } return ast::Access::kReadWrite; } bool Resolver::ValidateVariableConstructor(const ast::Variable* var, const sem::Type* storage_type, const std::string& type_name, const sem::Type* rhs_type, const std::string& rhs_type_name) { auto* value_type = rhs_type->UnwrapRef(); // Implicit load of RHS // Value type has to match storage type if (storage_type != value_type) { std::string decl = var->is_const() ? "let" : "var"; AddError("cannot initialize " + decl + " of type '" + type_name + "' with value of type '" + rhs_type_name + "'", var->source()); return false; } return true; } bool Resolver::GlobalVariable(ast::Variable* var) { if (!ValidateNoDuplicateDefinition(var->symbol(), var->source(), /* check_global_scope_only */ true)) { return false; } auto* info = Variable(var, VariableKind::kGlobal); if (!info) { return false; } variable_stack_.set_global(var->symbol(), info); if (!var->is_const() && info->storage_class == ast::StorageClass::kNone) { AddError("global variables must have a storage class", var->source()); return false; } if (var->is_const() && !(info->storage_class == ast::StorageClass::kNone)) { AddError("global constants shouldn't have a storage class", var->source()); return false; } for (auto* deco : var->decorations()) { Mark(deco); if (auto* override_deco = deco->As()) { // Track the constant IDs that are specified in the shader. if (override_deco->HasValue()) { constant_ids_.emplace(override_deco->value(), info); } } } if (!ValidateNoDuplicateDecorations(var->decorations())) { return false; } if (auto bp = var->binding_point()) { info->binding_point = {bp.group->value(), bp.binding->value()}; } if (!ValidateGlobalVariable(info)) { return false; } if (!ApplyStorageClassUsageToType( info->storage_class, const_cast(info->type->UnwrapRef()), var->source())) { AddNote("while instantiating variable " + builder_->Symbols().NameFor(var->symbol()), var->source()); return false; } return true; } bool Resolver::ValidateGlobalVariable(const VariableInfo* info) { if (!ValidateNoDuplicateDecorations(info->declaration->decorations())) { return false; } for (auto* deco : info->declaration->decorations()) { if (info->declaration->is_const()) { if (auto* override_deco = deco->As()) { if (override_deco->HasValue()) { uint32_t id = override_deco->value(); auto itr = constant_ids_.find(id); if (itr != constant_ids_.end() && itr->second != info) { AddError("pipeline constant IDs must be unique", deco->source()); AddNote("a pipeline constant with an ID of " + std::to_string(id) + " was previously declared " "here:", ast::GetDecoration( itr->second->declaration->decorations()) ->source()); return false; } if (id > 65535) { AddError("pipeline constant IDs must be between 0 and 65535", deco->source()); return false; } } } else { AddError("decoration is not valid for constants", deco->source()); return false; } } else { bool is_shader_io_decoration = deco->IsAnyOf(); bool has_io_storage_class = info->storage_class == ast::StorageClass::kInput || info->storage_class == ast::StorageClass::kOutput; if (!(deco->IsAnyOf()) && (!is_shader_io_decoration || !has_io_storage_class)) { AddError("decoration is not valid for variables", deco->source()); return false; } } } auto binding_point = info->declaration->binding_point(); switch (info->storage_class) { case ast::StorageClass::kUniform: case ast::StorageClass::kStorage: case ast::StorageClass::kUniformConstant: { // https://gpuweb.github.io/gpuweb/wgsl/#resource-interface // Each resource variable must be declared with both group and binding // attributes. if (!binding_point) { AddError( "resource variables require [[group]] and [[binding]] " "decorations", info->declaration->source()); return false; } break; } default: if (binding_point.binding || binding_point.group) { // https://gpuweb.github.io/gpuweb/wgsl/#attribute-binding // Must only be applied to a resource variable AddError( "non-resource variables must not have [[group]] or [[binding]] " "decorations", info->declaration->source()); return false; } } // https://gpuweb.github.io/gpuweb/wgsl/#variable-declaration // The access mode always has a default, and except for variables in the // storage storage class, must not be written. if (info->storage_class != ast::StorageClass::kStorage && info->declaration->declared_access() != ast::Access::kUndefined) { AddError( "variables declared not declared in the storage class must " "not declare an access control", info->declaration->source()); return false; } switch (info->storage_class) { case ast::StorageClass::kStorage: { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // A variable in the storage storage class is a storage buffer variable. // Its store type must be a host-shareable structure type with block // attribute, satisfying the storage class constraints. auto* str = info->type->UnwrapRef()->As(); if (!str) { AddError( "variables declared in the storage class must be of a " "structure type", info->declaration->source()); return false; } if (!str->IsBlockDecorated()) { AddError( "structure used as a storage buffer must be declared with the " "[[block]] decoration", str->Declaration()->source()); if (info->declaration->source().range.begin.line) { AddNote("structure used as storage buffer here", info->declaration->source()); } return false; } break; } case ast::StorageClass::kUniform: { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // A variable in the uniform storage class is a uniform buffer variable. // Its store type must be a host-shareable structure type with block // attribute, satisfying the storage class constraints. auto* str = info->type->UnwrapRef()->As(); if (!str) { AddError( "variables declared in the storage class must be of a " "structure type", info->declaration->source()); return false; } if (!str->IsBlockDecorated()) { AddError( "structure used as a uniform buffer must be declared with the " "[[block]] decoration", str->Declaration()->source()); if (info->declaration->source().range.begin.line) { AddNote("structure used as uniform buffer here", info->declaration->source()); } return false; } for (auto* member : str->Members()) { if (auto* arr = member->Type()->As()) { if (arr->IsRuntimeSized()) { AddError( "structure containing a runtime sized array " "cannot be used as a uniform buffer", info->declaration->source()); AddNote("structure is declared here", str->Declaration()->source()); return false; } } } break; } default: break; } return ValidateVariable(info); } bool Resolver::ValidateVariable(const VariableInfo* info) { auto* var = info->declaration; auto* storage_type = info->type->UnwrapRef(); if (!var->is_const() && !IsStorable(storage_type)) { AddError(storage_type->FriendlyName(builder_->Symbols()) + " cannot be used as the type of a var", var->source()); return false; } if (auto* r = storage_type->As()) { if (r->IsRuntimeSized()) { AddError("runtime arrays may only appear as the last member of a struct", var->source()); return false; } } if (auto* r = storage_type->As()) { if (r->dim() != ast::TextureDimension::k2d) { AddError("only 2d multisampled textures are supported", var->source()); return false; } if (!r->type()->UnwrapRef()->is_numeric_scalar()) { AddError("texture_multisampled_2d: type must be f32, i32 or u32", var->source()); return false; } } if (storage_type->is_handle() && var->declared_storage_class() != ast::StorageClass::kNone) { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // If the store type is a texture type or a sampler type, then the // variable declaration must not have a storage class decoration. The // storage class will always be handle. AddError("variables of type '" + info->type_name + "' must not have a storage class", var->source()); return false; } if (IsValidationEnabled(var->decorations(), ast::DisabledValidation::kIgnoreStorageClass) && (var->declared_storage_class() == ast::StorageClass::kInput || var->declared_storage_class() == ast::StorageClass::kOutput)) { AddError("invalid use of input/output storage class", var->source()); return false; } // https://gpuweb.github.io/gpuweb/wgsl/#atomic-types // Atomic types may only be instantiated by variables in the workgroup storage // class or by storage buffer variables with a read_write access mode. if (info->type->UnwrapRef()->Is() && info->storage_class != ast::StorageClass::kWorkgroup) { // Storage buffers require a structure, so just check for workgroup // storage here. AddError("atomic var requires workgroup storage", info->declaration->type()->source()); return false; } return true; } bool Resolver::ValidateFunctionParameter(const ast::Function* func, const VariableInfo* info) { if (!ValidateVariable(info)) { return false; } for (auto* deco : info->declaration->decorations()) { if (!func->IsEntryPoint() && !deco->Is()) { AddError("decoration is not valid for function parameters", deco->source()); return false; } if (auto* builtin = deco->As()) { if (!ValidateBuiltinDecoration(builtin, info->type)) { return false; } } else if (auto* interpolate = deco->As()) { if (!ValidateInterpolateDecoration(interpolate, info->type)) { return false; } } else if (!deco->IsAnyOf() && (IsValidationEnabled( info->declaration->decorations(), ast::DisabledValidation::kEntryPointParameter) && IsValidationEnabled( info->declaration->decorations(), ast::DisabledValidation::kIgnoreAtomicFunctionParameter))) { AddError("decoration is not valid for function parameters", deco->source()); return false; } } if (auto* ref = info->type->As()) { auto sc = ref->StorageClass(); if (!(sc == ast::StorageClass::kFunction || sc == ast::StorageClass::kPrivate || sc == ast::StorageClass::kWorkgroup)) { std::stringstream ss; ss << "function parameter of pointer type cannot be in '" << sc << "' storage class"; AddError(ss.str(), info->declaration->source()); return false; } } if (IsPlain(info->type)) { if (!IsAtomicFreePlain(info->type) && IsValidationEnabled( info->declaration->decorations(), ast::DisabledValidation::kIgnoreAtomicFunctionParameter)) { AddError("store type of function parameter must be an atomic-free type", info->declaration->source()); return false; } } else if (!info->type->IsAnyOf()) { AddError("store type of function parameter cannot be " + info->type->FriendlyName(builder_->Symbols()), info->declaration->source()); return false; } return true; } bool Resolver::ValidateBuiltinDecoration(const ast::BuiltinDecoration* deco, const sem::Type* storage_type) { auto* type = storage_type->UnwrapRef(); switch (deco->value()) { case ast::Builtin::kPosition: if (!(type->is_float_vector() && type->As()->size() == 4)) { AddError("store type of " + deco_to_str(deco) + " must be 'vec4'", deco->source()); return false; } break; case ast::Builtin::kGlobalInvocationId: case ast::Builtin::kLocalInvocationId: case ast::Builtin::kWorkgroupId: if (!(type->is_unsigned_integer_vector() && type->As()->size() == 3)) { AddError("store type of " + deco_to_str(deco) + " must be 'vec3'", deco->source()); return false; } break; case ast::Builtin::kFragDepth: if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'f32'", deco->source()); return false; } break; case ast::Builtin::kFrontFacing: if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'bool'", deco->source()); return false; } break; case ast::Builtin::kLocalInvocationIndex: case ast::Builtin::kVertexIndex: case ast::Builtin::kInstanceIndex: case ast::Builtin::kSampleMask: case ast::Builtin::kSampleIndex: if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'u32'", deco->source()); return false; } break; default: break; } return true; } bool Resolver::ValidateInterpolateDecoration( const ast::InterpolateDecoration* deco, const sem::Type* storage_type) { auto* type = storage_type->UnwrapRef(); if (!type->is_float_scalar_or_vector()) { AddError( "store type of interpolate attribute must be floating point scalar or " "vector", deco->source()); return false; } if (deco->type() == ast::InterpolationType::kFlat && deco->sampling() != ast::InterpolationSampling::kNone) { AddError("flat interpolation attribute must not have a sampling parameter", deco->source()); return false; } return true; } bool Resolver::ValidateFunction(const ast::Function* func, const FunctionInfo* info) { if (!ValidateNoDuplicateDefinition(func->symbol(), func->source(), /* check_global_scope_only */ true)) { return false; } auto stage_deco_count = 0; auto workgroup_deco_count = 0; for (auto* deco : func->decorations()) { if (deco->Is()) { stage_deco_count++; } else if (deco->Is()) { workgroup_deco_count++; if (func->pipeline_stage() != ast::PipelineStage::kCompute) { AddError( "the workgroup_size attribute is only valid for compute stages", deco->source()); return false; } } else if (!deco->Is()) { AddError("decoration is not valid for functions", deco->source()); return false; } } for (auto* param : func->params()) { if (!ValidateFunctionParameter(func, variable_to_info_.at(param))) { return false; } } if (!info->return_type->Is()) { if (!IsAtomicFreePlain(info->return_type)) { AddError("function return type must be an atomic-free plain type", func->return_type()->source()); return false; } if (func->body()) { if (!func->get_last_statement() || !func->get_last_statement()->Is()) { AddError("non-void function must end with a return statement", func->source()); return false; } } else if (IsValidationEnabled( func->decorations(), ast::DisabledValidation::kFunctionHasNoBody)) { TINT_ICE(Resolver, diagnostics_) << "Function " << builder_->Symbols().NameFor(func->symbol()) << " has no body"; } for (auto* deco : func->return_type_decorations()) { if (!func->IsEntryPoint()) { AddError("decoration is not valid for function return types", deco->source()); return false; } if (auto* builtin = deco->As()) { if (!ValidateBuiltinDecoration(builtin, info->return_type)) { return false; } } else if (auto* interpolate = deco->As()) { if (!ValidateInterpolateDecoration(interpolate, info->return_type)) { return false; } } else if (!deco->Is()) { AddError("decoration is not valid for entry point return types", deco->source()); return false; } } } if (func->IsEntryPoint()) { if (!ValidateEntryPoint(func, info)) { return false; } } return true; } bool Resolver::ValidateEntryPoint(const ast::Function* func, const FunctionInfo* info) { // Use a lambda to validate the entry point decorations for a type. // Persistent state is used to track which builtins and locations have // already been seen, in order to catch conflicts. // TODO(jrprice): This state could be stored in FunctionInfo instead, and // then passed to sem::Function since it would be useful there too. std::unordered_set builtins; std::unordered_set locations; enum class ParamOrRetType { kParameter, kReturnType, }; // Inner lambda that is applied to a type and all of its members. auto validate_entry_point_decorations_inner = [&](const ast::DecorationList& decos, sem::Type* ty, Source source, ParamOrRetType param_or_ret, bool is_struct_member) { // Scan decorations for pipeline IO attributes. // Check for overlap with attributes that have been seen previously. ast::Decoration* pipeline_io_attribute = nullptr; for (auto* deco : decos) { if (auto* builtin = deco->As()) { if (pipeline_io_attribute) { AddError("multiple entry point IO attributes", deco->source()); AddNote( "previously consumed " + deco_to_str(pipeline_io_attribute), pipeline_io_attribute->source()); return false; } pipeline_io_attribute = deco; if (builtins.count(builtin->value())) { AddError( deco_to_str(builtin) + " attribute appears multiple times as pipeline " + (param_or_ret == ParamOrRetType::kParameter ? "input" : "output"), func->source()); return false; } builtins.emplace(builtin->value()); } else if (auto* location = deco->As()) { if (pipeline_io_attribute) { AddError("multiple entry point IO attributes", deco->source()); AddNote( "previously consumed " + deco_to_str(pipeline_io_attribute), pipeline_io_attribute->source()); return false; } pipeline_io_attribute = deco; if (locations.count(location->value())) { AddError( deco_to_str(location) + " attribute appears multiple times as pipeline " + (param_or_ret == ParamOrRetType::kParameter ? "input" : "output"), func->source()); return false; } locations.emplace(location->value()); } } // Check that we saw a pipeline IO attribute iff we need one. if (ty->Is()) { if (pipeline_io_attribute) { AddError( "entry point IO attributes must not be used on structure " + std::string(param_or_ret == ParamOrRetType::kParameter ? "parameters" : "return types"), pipeline_io_attribute->source()); return false; } } else if (IsValidationEnabled( decos, ast::DisabledValidation::kEntryPointParameter)) { if (!pipeline_io_attribute) { std::string err = "missing entry point IO attribute"; if (!is_struct_member) { err += (param_or_ret == ParamOrRetType::kParameter ? " on parameter" : " on return type"); } AddError(err, source); return false; } // Check that all user defined attributes are numeric scalars, vectors // of numeric scalars. // Testing for being a struct is handled by the if portion above. if (!pipeline_io_attribute->Is()) { if (!ty->is_numeric_scalar_or_vector()) { AddError( "User defined entry point IO types must be a numeric scalar, " "a numeric vector, or a structure", source); return false; } } } return true; }; // Outer lambda for validating the entry point decorations for a type. auto validate_entry_point_decorations = [&](const ast::DecorationList& decos, sem::Type* ty, Source source, ParamOrRetType param_or_ret) { // Validate the decorations for the type. if (!validate_entry_point_decorations_inner(decos, ty, source, param_or_ret, false)) { return false; } if (auto* str = ty->As()) { // Validate the decorations for each struct members, and also check for // invalid member types. for (auto* member : str->Members()) { if (member->Type()->Is()) { AddError("entry point IO types cannot contain nested structures", member->Declaration()->source()); AddNote("while analysing entry point " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } if (auto* arr = member->Type()->As()) { if (arr->IsRuntimeSized()) { AddError("entry point IO types cannot contain runtime sized arrays", member->Declaration()->source()); AddNote("while analysing entry point " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } } if (!validate_entry_point_decorations_inner( member->Declaration()->decorations(), member->Type(), member->Declaration()->source(), param_or_ret, true)) { AddNote("while analysing entry point " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } } } return true; }; for (auto* param : info->parameters) { if (!validate_entry_point_decorations( param->declaration->decorations(), param->type, param->declaration->source(), ParamOrRetType::kParameter)) { return false; } } // Clear IO sets after parameter validation. Builtin and location attributes // in return types should be validated independently from those used in // parameters. builtins.clear(); locations.clear(); if (!info->return_type->Is()) { if (!validate_entry_point_decorations(func->return_type_decorations(), info->return_type, func->source(), ParamOrRetType::kReturnType)) { return false; } } if (func->pipeline_stage() == ast::PipelineStage::kVertex && builtins.count(ast::Builtin::kPosition) == 0) { // Check module-scope variables, as the SPIR-V sanitizer generates these. bool found = false; for (auto* var : info->referenced_module_vars) { if (auto* builtin = ast::GetDecoration( var->declaration->decorations())) { if (builtin->value() == ast::Builtin::kPosition) { found = true; break; } } } if (!found) { AddError( "a vertex shader must include the 'position' builtin in its return " "type", func->source()); return false; } } if (func->pipeline_stage() == ast::PipelineStage::kCompute) { if (!ast::HasDecoration(func->decorations())) { AddError( "a compute shader must include 'workgroup_size' in its " "attributes", func->source()); return false; } } // Validate there are no resource variable binding collisions std::unordered_map binding_points; for (auto* var_info : info->referenced_module_vars) { if (!var_info->declaration->binding_point()) { continue; } auto bp = var_info->binding_point; auto res = binding_points.emplace(bp, var_info->declaration); if (!res.second && IsValidationEnabled(var_info->declaration->decorations(), ast::DisabledValidation::kBindingPointCollision) && IsValidationEnabled(res.first->second->decorations(), ast::DisabledValidation::kBindingPointCollision)) { // https://gpuweb.github.io/gpuweb/wgsl/#resource-interface // Bindings must not alias within a shader stage: two different // variables in the resource interface of a given shader must not have // the same group and binding values, when considered as a pair of // values. auto func_name = builder_->Symbols().NameFor(info->declaration->symbol()); AddError("entry point '" + func_name + "' references multiple variables that use the " "same resource binding [[group(" + std::to_string(bp.group) + "), binding(" + std::to_string(bp.binding) + ")]]", var_info->declaration->source()); AddNote("first resource binding usage declared here", res.first->second->source()); return false; } } return true; } bool Resolver::Function(ast::Function* func) { auto* info = function_infos_.Create(func); if (func->IsEntryPoint()) { entry_points_.emplace_back(info); } TINT_SCOPED_ASSIGNMENT(current_function_, info); variable_stack_.push_scope(); for (auto* param : func->params()) { Mark(param); auto* param_info = Variable(param, VariableKind::kParameter); if (!param_info) { return false; } // TODO(amaiorano): Validate parameter decorations for (auto* deco : param->decorations()) { Mark(deco); } if (!ValidateNoDuplicateDecorations(param->decorations())) { return false; } variable_stack_.set(param->symbol(), param_info); info->parameters.emplace_back(param_info); if (!ApplyStorageClassUsageToType(param->declared_storage_class(), param_info->type, param->source())) { AddNote("while instantiating parameter " + builder_->Symbols().NameFor(param->symbol()), param->source()); return false; } if (auto* str = param_info->type->As()) { switch (func->pipeline_stage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexInput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentInput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeInput); break; case ast::PipelineStage::kNone: break; } } } if (auto* ty = func->return_type()) { info->return_type = Type(ty); info->return_type_name = ty->FriendlyName(builder_->Symbols()); if (!info->return_type) { return false; } } else { info->return_type = builder_->create(); info->return_type_name = info->return_type->FriendlyName(builder_->Symbols()); } if (auto* str = info->return_type->As()) { if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, func->source())) { AddNote("while instantiating return type for " + builder_->Symbols().NameFor(func->symbol()), func->source()); return false; } switch (func->pipeline_stage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexOutput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentOutput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeOutput); break; case ast::PipelineStage::kNone: break; } } if (func->body()) { Mark(func->body()); if (current_statement_) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Function() called with a current statement"; return false; } auto* sem_block = builder_->create(func); builder_->Sem().Add(func->body(), sem_block); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_block); if (!BlockScope(func->body(), [&] { return Statements(func->body()->list()); })) { return false; } } variable_stack_.pop_scope(); for (auto* deco : func->decorations()) { Mark(deco); } if (!ValidateNoDuplicateDecorations(func->decorations())) { return false; } for (auto* deco : func->return_type_decorations()) { Mark(deco); } if (!ValidateNoDuplicateDecorations(func->return_type_decorations())) { return false; } // Set work-group size defaults. for (int i = 0; i < 3; i++) { info->workgroup_size[i].value = 1; info->workgroup_size[i].overridable_const = nullptr; } if (auto* workgroup = ast::GetDecoration(func->decorations())) { auto values = workgroup->values(); for (int i = 0; i < 3; i++) { // Each argument to this decoration can either be a literal, an // identifier for a module-scope constants, or nullptr if not specified. if (!values[i]) { // Not specified, just use the default. continue; } Mark(values[i]); int32_t value = 0; if (auto* ident = values[i]->As()) { // We have an identifier of a module-scope constant. if (!Identifier(ident)) { return false; } VariableInfo* var; if (!variable_stack_.get(ident->symbol(), &var) || !(var->declaration->is_const() && var->type->Is())) { AddError( "workgroup_size parameter must be a literal i32 or an i32 " "module-scope constant", values[i]->source()); return false; } // Capture the constant if an [[override]] attribute is present. if (ast::HasDecoration( var->declaration->decorations())) { info->workgroup_size[i].overridable_const = var->declaration; } auto* constructor = var->declaration->constructor(); if (constructor) { // Resolve the constructor expression to use as the default value. if (!GetScalarConstExprValue(constructor, &value)) { return false; } } else { // No constructor means this value must be overriden by the user. info->workgroup_size[i].value = 0; continue; } } else if (auto* scalar = values[i]->As()) { // We have a literal. Mark(scalar->literal()); if (!scalar->literal()->Is()) { AddError( "workgroup_size parameter must be a literal i32 or an i32 " "module-scope constant", values[i]->source()); return false; } if (!GetScalarConstExprValue(scalar, &value)) { return false; } } // Validate and set the default value for this dimension. if (value < 1) { AddError("workgroup_size parameter must be a positive i32 value", values[i]->source()); return false; } info->workgroup_size[i].value = value; } } if (!ValidateFunction(func, info)) { return false; } // Register the function information _after_ processing the statements. This // allows us to catch a function calling itself when determining the call // information as this function doesn't exist until it's finished. symbol_to_function_[func->symbol()] = info; function_to_info_.emplace(func, info); return true; } bool Resolver::Statements(const ast::StatementList& stmts) { for (auto* stmt : stmts) { Mark(stmt); if (!Statement(stmt)) { return false; } } if (!ValidateStatements(stmts)) { return false; } return true; } bool Resolver::ValidateStatements(const ast::StatementList& stmts) { auto next_stmt = stmts.begin(); for (auto* stmt : stmts) { next_stmt++; if (stmt->IsAnyOf()) { if (stmt != stmts.back()) { AddError("code is unreachable", (*next_stmt)->source()); return false; } } } return true; } bool Resolver::Statement(ast::Statement* stmt) { sem::Statement* sem_statement; if (stmt->As()) { sem_statement = builder_->create( stmt->As(), current_statement_); } else { sem_statement = builder_->create(stmt, current_statement_); } builder_->Sem().Add(stmt, sem_statement); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_statement); if (stmt->Is()) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Statement() encountered an Else statement. Else " "statements are embedded in If statements, so should never be " "encountered as top-level statements"; return false; } if (auto* a = stmt->As()) { return Assignment(a); } if (auto* b = stmt->As()) { return BlockScope(b, [&] { return Statements(b->list()); }); } if (stmt->Is()) { if (!current_block_->FindFirstParent() && !current_block_->FindFirstParent()) { AddError("break statement must be in a loop or switch case", stmt->source()); return false; } return true; } if (auto* c = stmt->As()) { Mark(c->expr()); if (!Expression(c->expr())) { return false; } if (!ValidateCallStatement(c)) { return false; } return true; } if (auto* c = stmt->As()) { return CaseStatement(c); } if (stmt->Is()) { // Set if we've hit the first continue statement in our parent loop if (auto* loop_block = current_block_->FindFirstParent()) { if (loop_block->FirstContinue() == size_t(~0)) { const_cast(loop_block) ->SetFirstContinue(loop_block->Decls().size()); } } else { AddError("continue statement must be in a loop", stmt->source()); return false; } return true; } if (stmt->Is()) { return true; } if (stmt->Is()) { return true; } if (auto* i = stmt->As()) { return IfStatement(i); } if (auto* l = stmt->As()) { return LoopStatement(l); } if (auto* r = stmt->As()) { return Return(r); } if (auto* s = stmt->As()) { return Switch(s); } if (auto* v = stmt->As()) { return VariableDeclStatement(v); } AddError( "unknown statement type for type determination: " + builder_->str(stmt), stmt->source()); return false; } bool Resolver::CaseStatement(ast::CaseStatement* stmt) { Mark(stmt->body()); for (auto* sel : stmt->selectors()) { Mark(sel); } auto* sem_block = builder_->create( stmt->body(), current_statement_); builder_->Sem().Add(stmt->body(), sem_block); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_block); return BlockScope(stmt->body(), [&] { return Statements(stmt->body()->list()); }); } bool Resolver::IfStatement(ast::IfStatement* stmt) { Mark(stmt->condition()); if (!Expression(stmt->condition())) { return false; } auto* cond_type = TypeOf(stmt->condition())->UnwrapRef(); if (!cond_type->Is()) { AddError("if statement condition must be bool, got " + cond_type->FriendlyName(builder_->Symbols()), stmt->condition()->source()); return false; } Mark(stmt->body()); { auto* sem_block = builder_->create(stmt->body(), current_statement_); builder_->Sem().Add(stmt->body(), sem_block); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_block); if (!BlockScope(stmt->body(), [&] { return Statements(stmt->body()->list()); })) { return false; } } for (auto* else_stmt : stmt->else_statements()) { Mark(else_stmt); auto* sem_else_stmt = builder_->create(else_stmt, current_statement_); builder_->Sem().Add(else_stmt, sem_else_stmt); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_else_stmt); if (auto* cond = else_stmt->condition()) { Mark(cond); if (!Expression(cond)) { return false; } auto* else_cond_type = TypeOf(cond)->UnwrapRef(); if (!else_cond_type->Is()) { AddError("else statement condition must be bool, got " + else_cond_type->FriendlyName(builder_->Symbols()), cond->source()); return false; } } Mark(else_stmt->body()); { auto* sem_block = builder_->create( else_stmt->body(), current_statement_); builder_->Sem().Add(else_stmt->body(), sem_block); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_block); if (!BlockScope(else_stmt->body(), [&] { return Statements(else_stmt->body()->list()); })) { return false; } } } return true; } bool Resolver::LoopStatement(ast::LoopStatement* stmt) { // We don't call DetermineBlockStatement on the body and continuing block as // these would make their BlockInfo siblings as in the AST, but we want the // body BlockInfo to parent the continuing BlockInfo for semantics and // validation. Also, we need to set their types differently. Mark(stmt->body()); auto* sem_block_body = builder_->create( stmt->body(), current_statement_); builder_->Sem().Add(stmt->body(), sem_block_body); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_block_body); return BlockScope(stmt->body(), [&] { if (!Statements(stmt->body()->list())) { return false; } if (stmt->continuing()) { // has_continuing() also checks for empty() Mark(stmt->continuing()); } if (stmt->has_continuing()) { auto* sem_block_continuing = builder_->create( stmt->continuing(), current_statement_); builder_->Sem().Add(stmt->continuing(), sem_block_continuing); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_block_continuing); if (!BlockScope(stmt->continuing(), [&] { return Statements(stmt->continuing()->list()); })) { return false; } } return true; }); } bool Resolver::Expressions(const ast::ExpressionList& list) { for (auto* expr : list) { Mark(expr); if (!Expression(expr)) { return false; } } return true; } bool Resolver::Expression(ast::Expression* expr) { if (TypeOf(expr)) { return true; // Already resolved } bool ok = false; if (auto* array = expr->As()) { ok = ArrayAccessor(array); } else if (auto* bin_op = expr->As()) { ok = Binary(bin_op); } else if (auto* bitcast = expr->As()) { ok = Bitcast(bitcast); } else if (auto* call = expr->As()) { ok = Call(call); } else if (auto* ctor = expr->As()) { ok = Constructor(ctor); } else if (auto* ident = expr->As()) { ok = Identifier(ident); } else if (auto* member = expr->As()) { ok = MemberAccessor(member); } else if (auto* unary = expr->As()) { ok = UnaryOp(unary); } else { AddError("unknown expression for type determination", expr->source()); } if (!ok) { return false; } auto* ty = TypeOf(expr); if (ty->Is()) { AddError("an expression must not evaluate to an atomic type", expr->source()); return false; } return true; } bool Resolver::ArrayAccessor(ast::ArrayAccessorExpression* expr) { Mark(expr->array()); if (!Expression(expr->array())) { return false; } auto* idx = expr->idx_expr(); Mark(idx); if (!Expression(idx)) { return false; } auto* res = TypeOf(expr->array()); auto* parent_type = res->UnwrapRef(); const sem::Type* ret = nullptr; if (auto* arr = parent_type->As()) { ret = arr->ElemType(); } else if (auto* vec = parent_type->As()) { ret = vec->type(); } else if (auto* mat = parent_type->As()) { ret = builder_->create(mat->type(), mat->rows()); } else { AddError("invalid parent type (" + parent_type->type_name() + ") in array accessor", expr->source()); return false; } if (!TypeOf(idx)->UnwrapRef()->IsAnyOf()) { AddError("index must be of type 'i32' or 'u32', found: '" + TypeNameOf(idx) + "'", idx->source()); return false; } if (parent_type->Is() || parent_type->Is()) { if (!res->Is()) { // TODO(bclayton): expand this to allow any const_expr expression // https://github.com/gpuweb/gpuweb/issues/1272 auto* scalar = idx->As(); if (!scalar || !scalar->literal()->As()) { AddError("index must be signed or unsigned integer literal", idx->source()); return false; } } } // If we're extracting from a reference, we return a reference. if (auto* ref = res->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } SetType(expr, ret); return true; } bool Resolver::Bitcast(ast::BitcastExpression* expr) { Mark(expr->expr()); if (!Expression(expr->expr())) { return false; } auto* ty = Type(expr->type()); if (!ty) { return false; } if (ty->Is()) { AddError("cannot cast to a pointer", expr->source()); return false; } SetType(expr, ty, expr->type()->FriendlyName(builder_->Symbols())); return true; } bool Resolver::Call(ast::CallExpression* call) { if (!Expressions(call->params())) { return false; } Mark(call->func()); auto* ident = call->func(); auto name = builder_->Symbols().NameFor(ident->symbol()); auto intrinsic_type = sem::ParseIntrinsicType(name); if (intrinsic_type != IntrinsicType::kNone) { if (!IntrinsicCall(call, intrinsic_type)) { return false; } } else { if (!FunctionCall(call)) { return false; } } return true; } bool Resolver::ValidateCallStatement(ast::CallStatement* stmt) { const sem::Type* return_type = nullptr; // A function call is made to either a user declared function or an intrinsic. // function_calls_ only maps CallExpression to user declared functions auto it = function_calls_.find(stmt->expr()); if (it != function_calls_.end()) { return_type = it->second.function->return_type; } else { // Must be an intrinsic call auto* target = builder_->Sem().Get(stmt->expr())->Target(); if (auto* intrinsic = target->As()) { return_type = intrinsic->ReturnType(); } else { TINT_ICE(Resolver, diagnostics_) << "call target was not an intrinsic, but a " << intrinsic->TypeInfo().name; } } if (!return_type->Is()) { // https://gpuweb.github.io/gpuweb/wgsl/#function-call-statement // A function call statement executes a function call where the called // function does not return a value. If the called function returns a value, // that value must be consumed either through assignment, evaluation in // another expression or through use of the ignore built-in function (see // § 16.13 Value-steering functions). AddError( "result of called function was not used. If this was intentional wrap " "the function call in ignore()", stmt->source()); return false; } return true; } bool Resolver::IntrinsicCall(ast::CallExpression* call, sem::IntrinsicType intrinsic_type) { std::vector arg_tys; arg_tys.reserve(call->params().size()); for (auto* expr : call->params()) { arg_tys.emplace_back(TypeOf(expr)); } auto* result = intrinsic_table_->Lookup(intrinsic_type, arg_tys, call->source()); if (!result) { return false; } if (result->IsDeprecated()) { AddWarning("use of deprecated intrinsic", call->source()); } builder_->Sem().Add( call, builder_->create(call, result, current_statement_)); SetType(call, result->ReturnType()); current_function_->intrinsic_calls.emplace_back( IntrinsicCallInfo{call, result}); return true; } bool Resolver::FunctionCall(const ast::CallExpression* call) { auto* ident = call->func(); auto name = builder_->Symbols().NameFor(ident->symbol()); auto callee_func_it = symbol_to_function_.find(ident->symbol()); if (callee_func_it == symbol_to_function_.end()) { if (current_function_ && current_function_->declaration->symbol() == ident->symbol()) { AddError("recursion is not permitted. '" + name + "' attempted to call itself.", call->source()); } else { AddError("unable to find called function: " + name, call->source()); } return false; } auto* callee_func = callee_func_it->second; if (current_function_) { callee_func->callsites.push_back(call); // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before // use. current_function_->transitive_calls.add(callee_func); for (auto* transitive_call : callee_func->transitive_calls) { current_function_->transitive_calls.add(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_vars) { set_referenced_from_function_if_needed(var, false); } } // Validate number of arguments match number of parameters if (call->params().size() != callee_func->parameters.size()) { bool more = call->params().size() > callee_func->parameters.size(); AddError("too " + (more ? std::string("many") : std::string("few")) + " arguments in call to '" + name + "', expected " + std::to_string(callee_func->parameters.size()) + ", got " + std::to_string(call->params().size()), call->source()); return false; } // Validate arguments match parameter types for (size_t i = 0; i < call->params().size(); ++i) { const VariableInfo* param = callee_func->parameters[i]; const ast::Expression* arg_expr = call->params()[i]; auto* arg_type = TypeOf(arg_expr)->UnwrapRef(); if (param->type != arg_type) { AddError("type mismatch for argument " + std::to_string(i + 1) + " in call to '" + name + "', expected '" + param->type->FriendlyName(builder_->Symbols()) + "', got '" + arg_type->FriendlyName(builder_->Symbols()) + "'", arg_expr->source()); return false; } } function_calls_.emplace(call, FunctionCallInfo{callee_func, current_statement_}); SetType(call, callee_func->return_type, callee_func->return_type_name); return true; } bool Resolver::Constructor(ast::ConstructorExpression* expr) { if (auto* type_ctor = expr->As()) { for (auto* value : type_ctor->values()) { Mark(value); if (!Expression(value)) { return false; } } auto* type = Type(type_ctor->type()); if (!type) { return false; } SetType(expr, type, type_ctor->type()->FriendlyName(builder_->Symbols())); // Now that the argument types have been determined, make sure that they // obey the constructor type rules laid out in // https://gpuweb.github.io/gpuweb/wgsl.html#type-constructor-expr. if (type->Is()) { AddError("cannot cast to a pointer", expr->source()); return false; } if (auto* vec_type = type->As()) { return ValidateVectorConstructor(type_ctor, vec_type); } if (auto* mat_type = type->As()) { return ValidateMatrixConstructor(type_ctor, mat_type); } if (type->is_scalar()) { return ValidateScalarConstructor(type_ctor, type); } if (auto* arr_type = type->As()) { return ValidateArrayConstructor(type_ctor, arr_type); } } else if (auto* scalar_ctor = expr->As()) { Mark(scalar_ctor->literal()); auto* type = TypeOf(scalar_ctor->literal()); if (!type) { return false; } SetType(expr, type); } else { TINT_ICE(Resolver, diagnostics_) << "unexpected constructor expression type"; } return true; } bool Resolver::ValidateArrayConstructor( const ast::TypeConstructorExpression* ctor, const sem::Array* array_type) { auto& values = ctor->values(); auto* elem_type = array_type->ElemType(); for (auto* value : values) { auto* value_type = TypeOf(value)->UnwrapRef(); if (value_type != elem_type) { AddError( "type in array constructor does not match array type: " "expected '" + elem_type->FriendlyName(builder_->Symbols()) + "', found '" + TypeNameOf(value) + "'", value->source()); return false; } } if (array_type->IsRuntimeSized()) { AddError("cannot init a runtime-sized array", ctor->source()); return false; } else if (!values.empty() && (values.size() != array_type->Count())) { std::string fm = values.size() < array_type->Count() ? "few" : "many"; AddError("array constructor has too " + fm + " elements: expected " + std::to_string(array_type->Count()) + ", found " + std::to_string(values.size()), ctor->source()); return false; } else if (values.size() > array_type->Count()) { AddError("array constructor has too many elements: expected " + std::to_string(array_type->Count()) + ", found " + std::to_string(values.size()), ctor->source()); return false; } return true; } bool Resolver::ValidateVectorConstructor( const ast::TypeConstructorExpression* ctor, const sem::Vector* vec_type) { auto& values = ctor->values(); auto* elem_type = vec_type->type(); size_t value_cardinality_sum = 0; for (auto* value : values) { auto* value_type = TypeOf(value)->UnwrapRef(); if (value_type->is_scalar()) { if (elem_type != value_type) { AddError( "type in vector constructor does not match vector type: " "expected '" + elem_type->FriendlyName(builder_->Symbols()) + "', found '" + TypeNameOf(value) + "'", value->source()); return false; } value_cardinality_sum++; } else if (auto* value_vec = value_type->As()) { auto* value_elem_type = value_vec->type(); // A mismatch of vector type parameter T is only an error if multiple // arguments are present. A single argument constructor constitutes a // type conversion expression. // NOTE: A conversion expression from a vec to any other vecN // is disallowed (see // https://gpuweb.github.io/gpuweb/wgsl.html#conversion-expr). if (elem_type != value_elem_type && (values.size() > 1u || value_vec->is_bool_vector())) { AddError( "type in vector constructor does not match vector type: " "expected '" + elem_type->FriendlyName(builder_->Symbols()) + "', found '" + value_elem_type->FriendlyName(builder_->Symbols()) + "'", value->source()); return false; } value_cardinality_sum += value_vec->size(); } else { // A vector constructor can only accept vectors and scalars. AddError("expected vector or scalar type in vector constructor; found: " + value_type->FriendlyName(builder_->Symbols()), value->source()); return false; } } // A correct vector constructor must either be a zero-value expression, // a single-value initializer (splat) expression, or the number of components // of all constructor arguments must add up to the vector cardinality. if (value_cardinality_sum > 1 && value_cardinality_sum != vec_type->size()) { if (values.empty()) { TINT_ICE(Resolver, diagnostics_) << "constructor arguments expected to be non-empty!"; } const Source& values_start = values[0]->source(); const Source& values_end = values[values.size() - 1]->source(); AddError("attempted to construct '" + TypeNameOf(ctor) + "' with " + std::to_string(value_cardinality_sum) + " component(s)", Source::Combine(values_start, values_end)); return false; } return true; } bool Resolver::ValidateMatrix(const sem::Matrix* matrix_type, const Source& source) { if (!matrix_type->is_float_matrix()) { AddError("matrix element type must be 'f32'", source); return false; } return true; } // namespace resolver bool Resolver::ValidateMatrixConstructor( const ast::TypeConstructorExpression* ctor, const sem::Matrix* matrix_type) { auto& values = ctor->values(); // Zero Value expression if (values.empty()) { return true; } if (!ValidateMatrix(matrix_type, ctor->source())) { return false; } auto* elem_type = matrix_type->type(); if (matrix_type->columns() != values.size()) { const Source& values_start = values[0]->source(); const Source& values_end = values[values.size() - 1]->source(); AddError("expected " + std::to_string(matrix_type->columns()) + " '" + VectorPretty(matrix_type->rows(), elem_type) + "' arguments in '" + TypeNameOf(ctor) + "' constructor, found " + std::to_string(values.size()), Source::Combine(values_start, values_end)); return false; } for (auto* value : values) { auto* value_type = TypeOf(value)->UnwrapRef(); auto* value_vec = value_type->As(); if (!value_vec || value_vec->size() != matrix_type->rows() || elem_type != value_vec->type()) { AddError("expected argument type '" + VectorPretty(matrix_type->rows(), elem_type) + "' in '" + TypeNameOf(ctor) + "' constructor, found '" + TypeNameOf(value) + "'", value->source()); return false; } } return true; } bool Resolver::ValidateScalarConstructor( const ast::TypeConstructorExpression* ctor, const sem::Type* type) { if (ctor->values().size() == 0) { return true; } if (ctor->values().size() > 1) { AddError("expected zero or one value in constructor, got " + std::to_string(ctor->values().size()), ctor->source()); return false; } // Validate constructor auto* value = ctor->values()[0]; auto* value_type = TypeOf(value)->UnwrapRef(); using Bool = sem::Bool; using I32 = sem::I32; using U32 = sem::U32; using F32 = sem::F32; const bool is_valid = (type->Is() && value_type->IsAnyOf()) || (type->Is() && value_type->IsAnyOf()) || (type->Is() && value_type->IsAnyOf()) || (type->Is() && value_type->IsAnyOf()); if (!is_valid) { AddError("cannot construct '" + TypeNameOf(ctor) + "' with a value of type '" + TypeNameOf(value) + "'", ctor->source()); return false; } return true; } bool Resolver::Identifier(ast::IdentifierExpression* expr) { auto symbol = expr->symbol(); VariableInfo* var; if (variable_stack_.get(symbol, &var)) { SetType(expr, var->type, var->type_name); var->users.push_back(expr); set_referenced_from_function_if_needed(var, true); if (current_block_) { // If identifier is part of a loop continuing block, make sure it // doesn't refer to a variable that is bypassed by a continue statement // in the loop's body block. if (auto* continuing_block = current_block_ ->FindFirstParent()) { auto* loop_block = continuing_block->FindFirstParent(); if (loop_block->FirstContinue() != size_t(~0)) { auto& decls = loop_block->Decls(); // If our identifier is in loop_block->decls, make sure its index is // less than first_continue auto iter = std::find_if( decls.begin(), decls.end(), [&symbol](auto* v) { return v->symbol() == symbol; }); if (iter != decls.end()) { auto var_decl_index = static_cast(std::distance(decls.begin(), iter)); if (var_decl_index >= loop_block->FirstContinue()) { AddError("continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "' in continuing block", expr->source()); return false; } } } } } return true; } auto iter = symbol_to_function_.find(symbol); if (iter != symbol_to_function_.end()) { AddError("missing '(' for function call", expr->source().End()); return false; } std::string name = builder_->Symbols().NameFor(symbol); if (sem::ParseIntrinsicType(name) != IntrinsicType::kNone) { AddError("missing '(' for intrinsic call", expr->source().End()); return false; } AddError("identifier must be declared before use: " + name, expr->source()); return false; } bool Resolver::MemberAccessor(ast::MemberAccessorExpression* expr) { Mark(expr->structure()); if (!Expression(expr->structure())) { return false; } auto* structure = TypeOf(expr->structure()); auto* storage_type = structure->UnwrapRef(); sem::Type* ret = nullptr; std::vector swizzle; if (auto* str = storage_type->As()) { Mark(expr->member()); auto symbol = expr->member()->symbol(); const sem::StructMember* member = nullptr; for (auto* m : str->Members()) { if (m->Declaration()->symbol() == symbol) { ret = m->Type(); member = m; break; } } if (ret == nullptr) { AddError( "struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source()); return false; } // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } builder_->Sem().Add(expr, builder_->create( expr, ret, current_statement_, member)); } else if (auto* vec = storage_type->As()) { Mark(expr->member()); std::string s = builder_->Symbols().NameFor(expr->member()->symbol()); auto size = s.size(); swizzle.reserve(s.size()); for (auto c : s) { switch (c) { case 'x': case 'r': swizzle.emplace_back(0); break; case 'y': case 'g': swizzle.emplace_back(1); break; case 'z': case 'b': swizzle.emplace_back(2); break; case 'w': case 'a': swizzle.emplace_back(3); break; default: AddError("invalid vector swizzle character", expr->member()->source().Begin() + swizzle.size()); return false; } if (swizzle.back() >= vec->size()) { AddError("invalid vector swizzle member", expr->member()->source()); return false; } } if (size < 1 || size > 4) { AddError("invalid vector swizzle size", expr->member()->source()); return false; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(s.begin(), s.end(), is_rgba) && !std::all_of(s.begin(), s.end(), is_xyzw)) { AddError("invalid mixing of vector swizzle characters rgba with xyzw", expr->member()->source()); return false; } if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } } else { // The vector will have a number of components equal to the length of // the swizzle. ret = builder_->create(vec->type(), static_cast(size)); } builder_->Sem().Add( expr, builder_->create(expr, ret, current_statement_, std::move(swizzle))); } else { AddError("invalid use of member accessor on a non-vector/non-struct " + TypeNameOf(expr->structure()), expr->source()); return false; } SetType(expr, ret); return true; } bool Resolver::Binary(ast::BinaryExpression* expr) { Mark(expr->lhs()); Mark(expr->rhs()); if (!Expression(expr->lhs()) || !Expression(expr->rhs())) { return false; } using Bool = sem::Bool; using F32 = sem::F32; using I32 = sem::I32; using U32 = sem::U32; using Matrix = sem::Matrix; using Vector = sem::Vector; auto* lhs_type = const_cast(TypeOf(expr->lhs())->UnwrapRef()); auto* rhs_type = const_cast(TypeOf(expr->rhs())->UnwrapRef()); auto* lhs_vec = lhs_type->As(); auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr; auto* rhs_vec = rhs_type->As(); auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr; const bool matching_vec_elem_types = lhs_vec_elem_type && rhs_vec_elem_type && (lhs_vec_elem_type == rhs_vec_elem_type) && (lhs_vec->size() == rhs_vec->size()); const bool matching_types = matching_vec_elem_types || (lhs_type == rhs_type); // Binary logical expressions if (expr->IsLogicalAnd() || expr->IsLogicalOr()) { if (matching_types && lhs_type->Is()) { SetType(expr, lhs_type); return true; } } if (expr->IsOr() || expr->IsAnd()) { if (matching_types && lhs_type->Is()) { SetType(expr, lhs_type); return true; } if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is()) { SetType(expr, lhs_type); return true; } } // Arithmetic expressions if (expr->IsArithmetic()) { // Binary arithmetic expressions over scalars if (matching_types && lhs_type->is_numeric_scalar()) { SetType(expr, lhs_type); return true; } // Binary arithmetic expressions over vectors if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->is_numeric_scalar()) { SetType(expr, lhs_type); return true; } // Binary arithmetic expressions with mixed scalar and vector operands if (lhs_vec_elem_type && (lhs_vec_elem_type == rhs_type)) { if (expr->IsModulo()) { if (rhs_type->is_integer_scalar()) { SetType(expr, lhs_type); return true; } } else if (rhs_type->is_numeric_scalar()) { SetType(expr, lhs_type); return true; } } if (rhs_vec_elem_type && (rhs_vec_elem_type == lhs_type)) { if (expr->IsModulo()) { if (lhs_type->is_integer_scalar()) { SetType(expr, rhs_type); return true; } } else if (lhs_type->is_numeric_scalar()) { SetType(expr, rhs_type); return true; } } } // Matrix arithmetic auto* lhs_mat = lhs_type->As(); auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr; auto* rhs_mat = rhs_type->As(); auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr; // Addition and subtraction of float matrices if ((expr->IsAdd() || expr->IsSubtract()) && lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_mat->columns() == rhs_mat->columns()) && (lhs_mat->rows() == rhs_mat->rows())) { SetType(expr, rhs_type); return true; } if (expr->IsMultiply()) { // Multiplication of a matrix and a scalar if (lhs_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is()) { SetType(expr, rhs_type); return true; } if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_type->Is()) { SetType(expr, lhs_type); return true; } // Vector times matrix if (lhs_vec_elem_type && lhs_vec_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_vec->size() == rhs_mat->rows())) { SetType(expr, builder_->create(lhs_vec->type(), rhs_mat->columns())); return true; } // Matrix times vector if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_vec_elem_type && rhs_vec_elem_type->Is() && (lhs_mat->columns() == rhs_vec->size())) { SetType(expr, builder_->create(rhs_vec->type(), lhs_mat->rows())); return true; } // Matrix times matrix if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_mat->columns() == rhs_mat->rows())) { SetType(expr, builder_->create( builder_->create(lhs_mat_elem_type, lhs_mat->rows()), rhs_mat->columns())); return true; } } // Comparison expressions if (expr->IsComparison()) { if (matching_types) { // Special case for bools: only == and != if (lhs_type->Is() && (expr->IsEqual() || expr->IsNotEqual())) { SetType(expr, builder_->create()); return true; } // For the rest, we can compare i32, u32, and f32 if (lhs_type->IsAnyOf()) { SetType(expr, builder_->create()); return true; } } // Same for vectors if (matching_vec_elem_types) { if (lhs_vec_elem_type->Is() && (expr->IsEqual() || expr->IsNotEqual())) { SetType(expr, builder_->create( builder_->create(), lhs_vec->size())); return true; } if (lhs_vec_elem_type->is_numeric_scalar()) { SetType(expr, builder_->create( builder_->create(), lhs_vec->size())); return true; } } } // Binary bitwise operations if (expr->IsBitwise()) { if (matching_types && lhs_type->is_integer_scalar_or_vector()) { SetType(expr, lhs_type); return true; } } // Bit shift expressions if (expr->IsBitshift()) { // Type validation rules are the same for left or right shift, despite // differences in computation rules (i.e. right shift can be arithmetic or // logical depending on lhs type). if (lhs_type->IsAnyOf() && rhs_type->Is()) { SetType(expr, lhs_type); return true; } if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf() && rhs_vec_elem_type && rhs_vec_elem_type->Is()) { SetType(expr, lhs_type); return true; } } AddError("Binary expression operand types are invalid for this operation: " + lhs_type->FriendlyName(builder_->Symbols()) + " " + FriendlyName(expr->op()) + " " + rhs_type->FriendlyName(builder_->Symbols()), expr->source()); return false; } bool Resolver::UnaryOp(ast::UnaryOpExpression* unary) { Mark(unary->expr()); // Resolve the inner expression if (!Expression(unary->expr())) { return false; } auto* expr_type = TypeOf(unary->expr()); if (!expr_type) { return false; } std::string type_name; const sem::Type* type = nullptr; switch (unary->op()) { case ast::UnaryOp::kNot: // Result type matches the deref'd inner type. type_name = TypeNameOf(unary->expr()); type = expr_type->UnwrapRef(); if (!type->Is() && !type->is_bool_vector()) { AddError("cannot logical negate expression of type '" + TypeNameOf(unary->expr()), unary->expr()->source()); return false; } break; case ast::UnaryOp::kComplement: // Result type matches the deref'd inner type. type_name = TypeNameOf(unary->expr()); type = expr_type->UnwrapRef(); if (!type->is_integer_scalar_or_vector()) { AddError("cannot bitwise complement expression of type '" + TypeNameOf(unary->expr()), unary->expr()->source()); return false; } break; case ast::UnaryOp::kNegation: // Result type matches the deref'd inner type. type_name = TypeNameOf(unary->expr()); type = expr_type->UnwrapRef(); if (!(type->IsAnyOf() || type->is_signed_integer_vector() || type->is_float_vector())) { AddError( "cannot negate expression of type '" + TypeNameOf(unary->expr()), unary->expr()->source()); return false; } break; case ast::UnaryOp::kAddressOf: if (auto* ref = expr_type->As()) { type = builder_->create( ref->StoreType(), ref->StorageClass(), ref->Access()); } else { AddError("cannot take the address of expression", unary->expr()->source()); return false; } break; case ast::UnaryOp::kIndirection: if (auto* ptr = expr_type->As()) { type = builder_->create( ptr->StoreType(), ptr->StorageClass(), ptr->Access()); } else { AddError("cannot dereference expression of type '" + TypeNameOf(unary->expr()) + "'", unary->expr()->source()); return false; } break; } SetType(unary, type); return true; } bool Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { ast::Variable* var = stmt->variable(); Mark(var); if (!ValidateNoDuplicateDefinition(var->symbol(), var->source())) { return false; } auto* info = Variable(var, VariableKind::kLocal); if (!info) { return false; } for (auto* deco : var->decorations()) { // TODO(bclayton): Validate decorations Mark(deco); } variable_stack_.set(var->symbol(), info); current_block_->AddDecl(var); if (!ValidateVariable(info)) { return false; } if (!var->is_const()) { if (info->storage_class != ast::StorageClass::kFunction && IsValidationEnabled(var->decorations(), ast::DisabledValidation::kIgnoreStorageClass)) { if (info->storage_class != ast::StorageClass::kNone) { AddError("function variable has a non-function storage class", stmt->source()); return false; } info->storage_class = ast::StorageClass::kFunction; } } if (!ApplyStorageClassUsageToType(info->storage_class, info->type, var->source())) { AddNote("while instantiating variable " + builder_->Symbols().NameFor(var->symbol()), var->source()); return false; } return true; } sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { sem::Type* result = nullptr; if (auto* alias = named_type->As()) { result = Type(alias->type()); } else if (auto* str = named_type->As()) { result = Structure(str); } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; } if (!result) { return nullptr; } named_type_info_.emplace(named_type->name(), TypeDeclInfo{named_type, result}); if (!ValidateTypeDecl(named_type)) { return nullptr; } builder_->Sem().Add(named_type, result); return result; } bool Resolver::ValidateTypeDecl(const ast::TypeDecl* named_type) const { auto iter = named_type_info_.find(named_type->name()); if (iter == named_type_info_.end()) { TINT_ICE(Resolver, diagnostics_) << "ValidateTypeDecl called() before TypeDecl()"; } if (iter->second.ast != named_type) { AddError("type with the name '" + builder_->Symbols().NameFor(named_type->name()) + "' was already declared", named_type->source()); AddNote("first declared here", iter->second.ast->source()); return false; } return true; } sem::Type* Resolver::TypeOf(const ast::Expression* expr) { auto it = expr_info_.find(expr); if (it != expr_info_.end()) { return const_cast(it->second.type); } return nullptr; } std::string Resolver::TypeNameOf(const ast::Expression* expr) { auto it = expr_info_.find(expr); if (it != expr_info_.end()) { return it->second.type_name; } return ""; } sem::Type* Resolver::TypeOf(const ast::Literal* lit) { if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled literal type: " << lit->TypeInfo().name; return nullptr; } void Resolver::SetType(const ast::Expression* expr, const sem::Type* type) { SetType(expr, type, type->FriendlyName(builder_->Symbols())); } void Resolver::SetType(const ast::Expression* expr, const sem::Type* type, const std::string& type_name) { if (expr_info_.count(expr)) { TINT_ICE(Resolver, diagnostics_) << "SetType() called twice for the same expression"; } expr_info_.emplace(expr, ExpressionInfo{type, type_name, current_statement_}); } bool Resolver::ValidatePipelineStages() { auto check_workgroup_storage = [&](FunctionInfo* func, FunctionInfo* entry_point) { auto stage = entry_point->declaration->pipeline_stage(); if (stage != ast::PipelineStage::kCompute) { for (auto* var : func->local_referenced_module_vars) { if (var->storage_class == ast::StorageClass::kWorkgroup) { std::stringstream stage_name; stage_name << stage; for (auto* user : var->users) { auto it = expr_info_.find(user->As()); if (it != expr_info_.end()) { if (func->declaration->symbol() == it->second.statement->Function()->symbol()) { AddError("workgroup memory cannot be used by " + stage_name.str() + " pipeline stage", user->source()); break; } } } AddNote("variable is declared here", var->declaration->source()); if (func != entry_point) { TraverseCallChain(entry_point, func, [&](FunctionInfo* f) { AddNote( "called by function '" + builder_->Symbols().NameFor(f->declaration->symbol()) + "'", f->declaration->source()); }); AddNote("called by entry point '" + builder_->Symbols().NameFor( entry_point->declaration->symbol()) + "'", entry_point->declaration->source()); } return false; } } } return true; }; for (auto* entry_point : entry_points_) { if (!check_workgroup_storage(entry_point, entry_point)) { return false; } for (auto* func : entry_point->transitive_calls) { if (!check_workgroup_storage(func, entry_point)) { return false; } } } auto check_intrinsic_calls = [&](FunctionInfo* func, FunctionInfo* entry_point) { auto stage = entry_point->declaration->pipeline_stage(); for (auto& call : func->intrinsic_calls) { if (!call.intrinsic->SupportedStages().Contains(stage)) { std::stringstream err; err << "built-in cannot be used by " << stage << " pipeline stage"; AddError(err.str(), call.call->source()); if (func != entry_point) { TraverseCallChain(entry_point, func, [&](FunctionInfo* f) { AddNote("called by function '" + builder_->Symbols().NameFor(f->declaration->symbol()) + "'", f->declaration->source()); }); AddNote("called by entry point '" + builder_->Symbols().NameFor( entry_point->declaration->symbol()) + "'", entry_point->declaration->source()); } return false; } } return true; }; for (auto* entry_point : entry_points_) { if (!check_intrinsic_calls(entry_point, entry_point)) { return false; } for (auto* func : entry_point->transitive_calls) { if (!check_intrinsic_calls(func, entry_point)) { return false; } } } return true; } template void Resolver::TraverseCallChain(FunctionInfo* from, FunctionInfo* to, CALLBACK&& callback) const { for (auto* f : from->transitive_calls) { if (f == to) { callback(f); return; } if (f->transitive_calls.contains(to)) { TraverseCallChain(f, to, callback); callback(f); return; } } TINT_ICE(Resolver, diagnostics_) << "TraverseCallChain() 'from' does not transitively call 'to'"; } void Resolver::CreateSemanticNodes() const { auto& sem = builder_->Sem(); // Collate all the 'ancestor_entry_points' - this is a map of function // symbol to all the entry points that transitively call the function. std::unordered_map> ancestor_entry_points; for (auto* entry_point : entry_points_) { for (auto* call : entry_point->transitive_calls) { auto& vec = ancestor_entry_points[call->declaration->symbol()]; vec.emplace_back(entry_point->declaration->symbol()); } } // The next pipeline constant ID to try to allocate. uint16_t next_constant_id = 0; // Create semantic nodes for all ast::Variables for (auto it : variable_to_info_) { auto* var = it.first; auto* info = it.second; sem::Variable* sem_var = nullptr; if (auto* override_deco = ast::GetDecoration(var->decorations())) { // Create a pipeline overridable constant. uint16_t constant_id; if (override_deco->HasValue()) { constant_id = static_cast(override_deco->value()); } else { // No ID was specified, so allocate the next available ID. constant_id = next_constant_id; while (constant_ids_.count(constant_id)) { if (constant_id == UINT16_MAX) { TINT_ICE(Resolver, builder_->Diagnostics()) << "no more pipeline constant IDs available"; return; } constant_id++; } next_constant_id = constant_id + 1; } sem_var = builder_->create(var, info->type, constant_id); } else { sem_var = builder_->create(var, info->type, info->storage_class, info->access, info->binding_point); } std::vector users; for (auto* user : info->users) { // Create semantic node for the identifier expression if necessary auto* sem_expr = sem.Get(user); if (sem_expr == nullptr) { auto* type = expr_info_.at(user).type; auto* stmt = expr_info_.at(user).statement; auto* sem_user = builder_->create(user, type, stmt, sem_var); sem_var->AddUser(sem_user); sem.Add(user, sem_user); } else { auto* sem_user = sem_expr->As(); if (!sem_user) { TINT_ICE(Resolver, diagnostics_) << "expected sem::VariableUser, got " << sem_expr->TypeInfo().name; } sem_var->AddUser(sem_user); } } sem.Add(var, sem_var); } auto remap_vars = [&sem](const std::vector& in) { std::vector out; out.reserve(in.size()); for (auto* info : in) { out.emplace_back(sem.Get(info->declaration)); } return out; }; // Create semantic nodes for all ast::Functions std::unordered_map func_info_to_sem_func; for (auto it : function_to_info_) { auto* func = it.first; auto* info = it.second; auto* sem_func = builder_->create( info->declaration, const_cast(info->return_type), remap_vars(info->parameters), remap_vars(info->referenced_module_vars), remap_vars(info->local_referenced_module_vars), info->return_statements, info->callsites, ancestor_entry_points[func->symbol()], info->workgroup_size); func_info_to_sem_func.emplace(info, sem_func); sem.Add(func, sem_func); } // Create semantic nodes for all ast::CallExpressions for (auto it : function_calls_) { auto* call = it.first; auto info = it.second; auto* sem_func = func_info_to_sem_func.at(info.function); sem.Add(call, builder_->create(call, sem_func, info.statement)); } // Create semantic nodes for all remaining expression types for (auto it : expr_info_) { auto* expr = it.first; auto& info = it.second; if (sem.Get(expr)) { // Expression has already been assigned a semantic node continue; } sem.Add(expr, builder_->create( const_cast(expr), info.type, info.statement)); } } bool Resolver::DefaultAlignAndSize(const sem::Type* ty, uint32_t& align, uint32_t& size) { static constexpr uint32_t vector_size[] = { /* padding */ 0, /* padding */ 0, /*vec2*/ 8, /*vec3*/ 12, /*vec4*/ 16, }; static constexpr uint32_t vector_align[] = { /* padding */ 0, /* padding */ 0, /*vec2*/ 8, /*vec3*/ 16, /*vec4*/ 16, }; if (ty->is_scalar()) { // Note: Also captures booleans, but these are not host-shareable. align = 4; size = 4; return true; } if (auto* vec = ty->As()) { if (vec->size() < 2 || vec->size() > 4) { TINT_UNREACHABLE(Resolver, diagnostics_) << "Invalid vector size: vec" << vec->size(); return false; } align = vector_align[vec->size()]; size = vector_size[vec->size()]; return true; } if (auto* mat = ty->As()) { if (mat->columns() < 2 || mat->columns() > 4 || mat->rows() < 2 || mat->rows() > 4) { TINT_UNREACHABLE(Resolver, diagnostics_) << "Invalid matrix size: mat" << mat->columns() << "x" << mat->rows(); return false; } align = vector_align[mat->rows()]; size = vector_align[mat->rows()] * mat->columns(); return true; } if (auto* s = ty->As()) { align = s->Align(); size = s->Size(); return true; } if (auto* a = ty->As()) { align = a->Align(); size = a->SizeInBytes(); return true; } if (auto* a = ty->As()) { return DefaultAlignAndSize(a->Type(), align, size); } TINT_UNREACHABLE(Resolver, diagnostics_) << "invalid type " << ty->TypeInfo().name; return false; } sem::Array* Resolver::Array(const ast::Array* arr) { auto source = arr->source(); auto* el_ty = Type(arr->type()); if (!el_ty) { return nullptr; } if (!IsPlain(el_ty)) { // Check must come before DefaultAlignAndSize() AddError(el_ty->FriendlyName(builder_->Symbols()) + " cannot be used as an element type of an array", source); return nullptr; } uint32_t el_align = 0; uint32_t el_size = 0; if (!DefaultAlignAndSize(el_ty, el_align, el_size)) { return nullptr; } if (!ValidateNoDuplicateDecorations(arr->decorations())) { return nullptr; } // Look for explicit stride via [[stride(n)]] decoration uint32_t explicit_stride = 0; for (auto* deco : arr->decorations()) { Mark(deco); if (auto* sd = deco->As()) { explicit_stride = sd->stride(); if (!ValidateArrayStrideDecoration(sd, el_size, el_align, source)) { return nullptr; } continue; } AddError("decoration is not valid for array types", deco->source()); return nullptr; } // Calculate implicit stride auto implicit_stride = utils::RoundUp(el_align, el_size); auto stride = explicit_stride ? explicit_stride : implicit_stride; // WebGPU requires runtime arrays have at least one element, but the AST // records an element count of 0 for it. auto size = std::max(arr->size(), 1) * stride; auto* sem = builder_->create(el_ty, arr->size(), el_align, size, stride, implicit_stride); if (!ValidateArray(sem, source)) { return nullptr; } return sem; } bool Resolver::ValidateArray(const sem::Array* arr, const Source& source) { auto* el_ty = arr->ElemType(); if (auto* el_str = el_ty->As()) { if (el_str->IsBlockDecorated()) { // https://gpuweb.github.io/gpuweb/wgsl/#attributes // A structure type with the block attribute must not be: // * the element type of an array type // * the member type in another structure AddError( "A structure type with a [[block]] decoration cannot be used as an " "element of an array", source); return false; } } return true; } bool Resolver::ValidateArrayStrideDecoration(const ast::StrideDecoration* deco, uint32_t el_size, uint32_t el_align, const Source& source) { auto stride = deco->stride(); bool is_valid_stride = (stride >= el_size) && (stride >= el_align) && (stride % el_align == 0); if (!is_valid_stride) { // https://gpuweb.github.io/gpuweb/wgsl/#array-layout-rules // Arrays decorated with the stride attribute must have a stride that is // at least the size of the element type, and be a multiple of the // element type's alignment value. AddError( "arrays decorated with the stride attribute must have a stride " "that is at least the size of the element type, and be a multiple " "of the element type's alignment value.", source); return false; } return true; } bool Resolver::ValidateStructure(const sem::Struct* str) { if (str->Members().empty()) { AddError("structures must have at least one member", str->Declaration()->source()); return false; } for (auto* member : str->Members()) { if (auto* r = member->Type()->As()) { if (r->IsRuntimeSized()) { if (member != str->Members().back()) { AddError( "runtime arrays may only appear as the last member of a struct", member->Declaration()->source()); return false; } if (!str->IsBlockDecorated()) { AddError( "a struct containing a runtime-sized array " "requires the [[block]] attribute: '" + builder_->Symbols().NameFor(str->Declaration()->name()) + "'", member->Declaration()->source()); return false; } } } for (auto* deco : member->Declaration()->decorations()) { if (!(deco->Is() || deco->Is() || deco->Is() || deco->Is() || deco->Is() || deco->Is())) { AddError("decoration is not valid for structure members", deco->source()); return false; } if (auto* builtin = deco->As()) { if (!ValidateBuiltinDecoration(builtin, member->Type())) { return false; } } else if (auto* interpolate = deco->As()) { if (!ValidateInterpolateDecoration(interpolate, member->Type())) { return false; } } } if (auto* member_struct_type = member->Type()->As()) { if (auto* member_struct_type_block_decoration = ast::GetDecoration( member_struct_type->Declaration()->decorations())) { AddError("structs must not contain [[block]] decorated struct members", member->Declaration()->source()); AddNote("see member's struct decoration here", member_struct_type_block_decoration->source()); return false; } } } for (auto* deco : str->Declaration()->decorations()) { if (!(deco->Is())) { AddError("decoration is not valid for struct declarations", deco->source()); return false; } } return true; } sem::Struct* Resolver::Structure(const ast::Struct* str) { if (!ValidateNoDuplicateDecorations(str->decorations())) { return nullptr; } for (auto* deco : str->decorations()) { Mark(deco); } sem::StructMemberList sem_members; sem_members.reserve(str->members().size()); // Calculate the effective size and alignment of each field, and the overall // size of the structure. // For size, use the size attribute if provided, otherwise use the default // size for the type. // For alignment, use the alignment attribute if provided, otherwise use the // default alignment for the member type. // Diagnostic errors are raised if a basic rule is violated. // Validation of storage-class rules requires analysing the actual variable // usage of the structure, and so is performed as part of the variable // validation. // TODO(crbug.com/tint/628): Actually implement storage-class validation. uint32_t struct_size = 0; uint32_t struct_align = 1; for (auto* member : str->members()) { Mark(member); // Resolve member type auto* type = Type(member->type()); if (!type) { return nullptr; } // Validate member type if (!IsPlain(type)) { AddError(type->FriendlyName(builder_->Symbols()) + " cannot be used as the type of a structure member", member->source()); return nullptr; } uint32_t offset = struct_size; uint32_t align = 0; uint32_t size = 0; if (!DefaultAlignAndSize(type, align, size)) { return nullptr; } if (!ValidateNoDuplicateDecorations(member->decorations())) { return nullptr; } bool has_offset_deco = false; bool has_align_deco = false; bool has_size_deco = false; for (auto* deco : member->decorations()) { Mark(deco); if (auto* o = deco->As()) { // Offset decorations are not part of the WGSL spec, but are emitted // by the SPIR-V reader. if (o->offset() < struct_size) { AddError("offsets must be in ascending order", o->source()); return nullptr; } offset = o->offset(); align = 1; has_offset_deco = true; } else if (auto* a = deco->As()) { if (a->align() <= 0 || !utils::IsPowerOfTwo(a->align())) { AddError("align value must be a positive, power-of-two integer", a->source()); return nullptr; } align = a->align(); has_align_deco = true; } else if (auto* s = deco->As()) { if (s->size() < size) { AddError("size must be at least as big as the type's size (" + std::to_string(size) + ")", s->source()); return nullptr; } size = s->size(); has_size_deco = true; } } if (has_offset_deco && (has_align_deco || has_size_deco)) { AddError( "offset decorations cannot be used with align or size decorations", member->source()); return nullptr; } offset = utils::RoundUp(align, offset); auto* sem_member = builder_->create( member, const_cast(type), static_cast(sem_members.size()), offset, align, size); builder_->Sem().Add(member, sem_member); sem_members.emplace_back(sem_member); struct_size = offset + size; struct_align = std::max(struct_align, align); } auto size_no_padding = struct_size; struct_size = utils::RoundUp(struct_align, struct_size); auto* out = builder_->create(str, sem_members, struct_align, struct_size, size_no_padding); // Keep track of atomic members for validation after all usages have been // determined. for (size_t i = 0; i < sem_members.size(); i++) { if (sem_members[i]->Type()->Is()) { atomic_members_.emplace_back(StructMember{out, i}); } } if (!ValidateStructure(out)) { return nullptr; } return out; } bool Resolver::ValidateReturn(const ast::ReturnStatement* ret) { auto* func_type = current_function_->return_type; auto* ret_type = ret->has_value() ? TypeOf(ret->value())->UnwrapRef() : builder_->create(); if (func_type->UnwrapRef() != ret_type) { AddError( "return statement type must match its function " "return type, returned '" + ret_type->FriendlyName(builder_->Symbols()) + "', expected '" + current_function_->return_type_name + "'", ret->source()); return false; } return true; } bool Resolver::Return(ast::ReturnStatement* ret) { current_function_->return_statements.push_back(ret); if (auto* value = ret->value()) { Mark(value); if (!Expression(value)) { return false; } } // Validate after processing the return value expression so that its type is // available for validation. return ValidateReturn(ret); } bool Resolver::ValidateSwitch(const ast::SwitchStatement* s) { auto* cond_type = TypeOf(s->condition())->UnwrapRef(); if (!cond_type->is_integer_scalar()) { AddError( "switch statement selector expression must be of a " "scalar integer type", s->condition()->source()); return false; } bool has_default = false; std::unordered_set selector_set; for (auto* case_stmt : s->body()) { if (case_stmt->IsDefault()) { if (has_default) { // More than one default clause AddError("switch statement must have exactly one default clause", case_stmt->source()); return false; } has_default = true; } for (auto* selector : case_stmt->selectors()) { if (cond_type != TypeOf(selector)) { AddError( "the case selector values must have the same " "type as the selector expression.", case_stmt->source()); return false; } auto v = selector->value_as_u32(); if (selector_set.find(v) != selector_set.end()) { AddError( "a literal value must not appear more than once in " "the case selectors for a switch statement: '" + builder_->str(selector) + "'", case_stmt->source()); return false; } selector_set.emplace(v); } } if (!has_default) { // No default clause AddError("switch statement must have a default clause", s->source()); return false; } if (!s->body().empty()) { auto* last_clause = s->body().back()->As(); auto* last_stmt = last_clause->body()->last(); if (last_stmt && last_stmt->Is()) { AddError( "a fallthrough statement must not appear as " "the last statement in last clause of a switch", last_stmt->source()); return false; } } return true; } bool Resolver::Switch(ast::SwitchStatement* s) { Mark(s->condition()); if (!Expression(s->condition())) { return false; } for (auto* case_stmt : s->body()) { Mark(case_stmt); sem::Statement* sem_statement = builder_->create(case_stmt, current_statement_); builder_->Sem().Add(case_stmt, sem_statement); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_statement); if (!CaseStatement(case_stmt)) { return false; } } if (!ValidateSwitch(s)) { return false; } return true; } bool Resolver::Assignment(ast::AssignmentStatement* a) { Mark(a->lhs()); Mark(a->rhs()); if (!Expression(a->lhs()) || !Expression(a->rhs())) { return false; } return ValidateAssignment(a); } bool Resolver::ValidateAssignment(const ast::AssignmentStatement* a) { // https://gpuweb.github.io/gpuweb/wgsl/#assignment-statement auto const* lhs_type = TypeOf(a->lhs()); auto const* rhs_type = TypeOf(a->rhs()); if (auto* ident = a->lhs()->As()) { VariableInfo* var; if (variable_stack_.get(ident->symbol(), &var)) { if (var->kind == VariableKind::kParameter) { AddError("cannot assign to function parameter", a->lhs()->source()); AddNote("'" + builder_->Symbols().NameFor(ident->symbol()) + "' is declared here:", var->declaration->source()); return false; } if (var->declaration->is_const()) { AddError("cannot assign to const", a->lhs()->source()); AddNote("'" + builder_->Symbols().NameFor(ident->symbol()) + "' is declared here:", var->declaration->source()); return false; } } } auto* lhs_ref = lhs_type->As(); if (!lhs_ref) { // LHS is not a reference, so it has no storage. AddError("cannot assign to value of type '" + TypeNameOf(a->lhs()) + "'", a->lhs()->source()); return false; } auto* storage_type = lhs_ref->StoreType(); auto* value_type = rhs_type->UnwrapRef(); // Implicit load of RHS // Value type has to match storage type if (storage_type != value_type) { AddError("cannot assign '" + TypeNameOf(a->rhs()) + "' to '" + TypeNameOf(a->lhs()) + "'", a->source()); return false; } if (lhs_ref->Access() == ast::Access::kRead) { AddError( "cannot store into a read-only type '" + TypeNameOf(a->lhs()) + "'", a->source()); return false; } return true; } bool Resolver::ValidateNoDuplicateDefinition(Symbol sym, const Source& source, bool check_global_scope_only) { if (check_global_scope_only) { bool is_global = false; VariableInfo* var; if (variable_stack_.get(sym, &var, &is_global)) { if (is_global) { AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", source); AddNote("previous definition is here", var->declaration->source()); return false; } } auto it = symbol_to_function_.find(sym); if (it != symbol_to_function_.end()) { AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", source); AddNote("previous definition is here", it->second->declaration->source()); return false; } } else { VariableInfo* var; if (variable_stack_.get(sym, &var)) { AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", source); AddNote("previous definition is here", var->declaration->source()); return false; } } return true; } bool Resolver::ValidateNoDuplicateDecorations( const ast::DecorationList& decorations) { std::unordered_map seen; for (auto* d : decorations) { auto res = seen.emplace(&d->TypeInfo(), d->source()); if (!res.second && !d->Is()) { AddError("duplicate " + d->name() + " decoration", d->source()); AddNote("first decoration declared here", res.first->second); return false; } } return true; } bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc, sem::Type* ty, const Source& usage) { ty = const_cast(ty->UnwrapRef()); if (auto* str = ty->As()) { if (str->StorageClassUsage().count(sc)) { return true; // Already applied } str->AddUsage(sc); for (auto* member : str->Members()) { if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) { std::stringstream err; err << "while analysing structure member " << str->FriendlyName(builder_->Symbols()) << "." << builder_->Symbols().NameFor(member->Declaration()->symbol()); AddNote(err.str(), member->Declaration()->source()); return false; } } return true; } if (auto* arr = ty->As()) { return ApplyStorageClassUsageToType( sc, const_cast(arr->ElemType()), usage); } if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) { std::stringstream err; err << "Type '" << ty->FriendlyName(builder_->Symbols()) << "' cannot be used in storage class '" << sc << "' as it is non-host-shareable"; AddError(err.str(), usage); return false; } return true; } template bool Resolver::GetScalarConstExprValue(ast::Expression* expr, T* result) { if (auto* type_constructor = expr->As()) { if (type_constructor->values().size() == 0) { // Zero-valued constructor. *result = static_cast(0); return true; } else if (type_constructor->values().size() == 1) { // Recurse into the constructor argument expression. return GetScalarConstExprValue(type_constructor->values()[0], result); } else { TINT_ICE(Resolver, diagnostics_) << "malformed scalar type constructor"; } } else if (auto* scalar = expr->As()) { // Cast literal to result type. if (auto* int_lit = scalar->literal()->As()) { *result = static_cast(int_lit->value_as_u32()); return true; } else if (auto* float_lit = scalar->literal()->As()) { *result = static_cast(float_lit->value()); return true; } else if (auto* bool_lit = scalar->literal()->As()) { *result = static_cast(bool_lit->IsTrue()); return true; } else { TINT_ICE(Resolver, diagnostics_) << "unhandled scalar constructor"; } } else { TINT_ICE(Resolver, diagnostics_) << "unhandled constant expression"; } return false; } template bool Resolver::BlockScope(const ast::BlockStatement* block, F&& callback) { auto* sem_block = builder_->Sem().Get(block); if (!sem_block) { TINT_ICE(Resolver, diagnostics_) << "Resolver::BlockScope() called on a block for " "which semantic information is not available"; return false; } TINT_SCOPED_ASSIGNMENT(current_block_, const_cast(sem_block)); variable_stack_.push_scope(); bool result = callback(); variable_stack_.pop_scope(); return result; } std::string Resolver::VectorPretty(uint32_t size, const sem::Type* element_type) { sem::Vector vec_type(element_type, size); return vec_type.FriendlyName(builder_->Symbols()); } void Resolver::Mark(const ast::Node* node) { if (node == nullptr) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr"; } if (marked_.emplace(node).second) { return; } TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was encountered twice in the same AST of a Program\n" << "At: " << node->source() << "\n" << "Content: " << builder_->str(node) << "\n" << "Pointer: " << node; } void Resolver::AddError(const std::string& msg, const Source& source) const { diagnostics_.add_error(diag::System::Resolver, msg, source); } void Resolver::AddWarning(const std::string& msg, const Source& source) const { diagnostics_.add_warning(diag::System::Resolver, msg, source); } void Resolver::AddNote(const std::string& msg, const Source& source) const { diagnostics_.add_note(diag::System::Resolver, msg, source); } Resolver::VariableInfo::VariableInfo(const ast::Variable* decl, sem::Type* ty, const std::string& tn, ast::StorageClass sc, ast::Access ac, VariableKind k) : declaration(decl), type(ty), type_name(tn), storage_class(sc), access(ac), kind(k) {} Resolver::VariableInfo::~VariableInfo() = default; Resolver::FunctionInfo::FunctionInfo(ast::Function* decl) : declaration(decl) {} Resolver::FunctionInfo::~FunctionInfo() = default; } // namespace resolver } // namespace tint