// Copyright 2018 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "common/Constants.h" #include "dawn_native/ShaderModule.h" #include "tests/unittests/validation/ValidationTest.h" #include "utils/WGPUHelpers.h" #include class ShaderModuleValidationTest : public ValidationTest {}; // Test case with a simpler shader that should successfully be created TEST_F(ShaderModuleValidationTest, CreationSuccess) { const char* shader = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" %fragColor OpExecutionMode %main OriginUpperLeft OpSource GLSL 450 OpSourceExtension "GL_GOOGLE_cpp_style_line_directive" OpSourceExtension "GL_GOOGLE_include_directive" OpName %main "main" OpName %fragColor "fragColor" OpDecorate %fragColor Location 0 %void = OpTypeVoid %3 = OpTypeFunction %void %float = OpTypeFloat 32 %v4float = OpTypeVector %float 4 %_ptr_Output_v4float = OpTypePointer Output %v4float %fragColor = OpVariable %_ptr_Output_v4float Output %float_1 = OpConstant %float 1 %float_0 = OpConstant %float 0 %12 = OpConstantComposite %v4float %float_1 %float_0 %float_0 %float_1 %main = OpFunction %void None %3 %5 = OpLabel OpStore %fragColor %12 OpReturn OpFunctionEnd)"; utils::CreateShaderModuleFromASM(device, shader); } // Tests that if the output location exceeds kMaxColorAttachments the fragment shader will fail to // be compiled. TEST_F(ShaderModuleValidationTest, FragmentOutputLocationExceedsMaxColorAttachments) { std::ostringstream stream; stream << "[[stage(fragment)]] fn main() -> [[location(" << kMaxColorAttachments << R"()]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"; ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, stream.str().c_str())); } // Test that it is invalid to create a shader module with no chained descriptor. (It must be // WGSL or SPIRV, not empty) TEST_F(ShaderModuleValidationTest, NoChainedDescriptor) { wgpu::ShaderModuleDescriptor desc = {}; ASSERT_DEVICE_ERROR(device.CreateShaderModule(&desc)); } // Test that it is not allowed to use combined texture and sampler. TEST_F(ShaderModuleValidationTest, CombinedTextureAndSampler) { // SPIR-V ASM produced by glslang for the following fragment shader: // // #version 450 // layout(set = 0, binding = 0) uniform sampler2D tex; // void main () {} // // Note that the following defines an interface combined texture/sampler which is not allowed // in Dawn / WebGPU. // // %8 = OpTypeSampledImage %7 // %_ptr_UniformConstant_8 = OpTypePointer UniformConstant %8 // %tex = OpVariable %_ptr_UniformConstant_8 UniformConstant const char* shader = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft OpSource GLSL 450 OpName %main "main" OpName %tex "tex" OpDecorate %tex DescriptorSet 0 OpDecorate %tex Binding 0 %void = OpTypeVoid %3 = OpTypeFunction %void %float = OpTypeFloat 32 %7 = OpTypeImage %float 2D 0 0 0 1 Unknown %8 = OpTypeSampledImage %7 %_ptr_UniformConstant_8 = OpTypePointer UniformConstant %8 %tex = OpVariable %_ptr_UniformConstant_8 UniformConstant %main = OpFunction %void None %3 %5 = OpLabel OpReturn OpFunctionEnd )"; ASSERT_DEVICE_ERROR(utils::CreateShaderModuleFromASM(device, shader)); } // Test that it is not allowed to declare a multisampled-array interface texture. // TODO(enga): Also test multisampled cube, cube array, and 3D. These have no GLSL keywords. TEST_F(ShaderModuleValidationTest, MultisampledArrayTexture) { // SPIR-V ASM produced by glslang for the following fragment shader: // // #version 450 // layout(set=0, binding=0) uniform texture2DMSArray tex; // void main () {}} // // Note that the following defines an interface array multisampled texture which is not allowed // in Dawn / WebGPU. // // %7 = OpTypeImage %float 2D 0 1 1 1 Unknown // %_ptr_UniformConstant_7 = OpTypePointer UniformConstant %7 // %tex = OpVariable %_ptr_UniformConstant_7 UniformConstant const char* shader = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft OpSource GLSL 450 OpName %main "main" OpName %tex "tex" OpDecorate %tex DescriptorSet 0 OpDecorate %tex Binding 0 %void = OpTypeVoid %3 = OpTypeFunction %void %float = OpTypeFloat 32 %7 = OpTypeImage %float 2D 0 1 1 1 Unknown %_ptr_UniformConstant_7 = OpTypePointer UniformConstant %7 %tex = OpVariable %_ptr_UniformConstant_7 UniformConstant %main = OpFunction %void None %3 %5 = OpLabel OpReturn OpFunctionEnd )"; ASSERT_DEVICE_ERROR(utils::CreateShaderModuleFromASM(device, shader)); } // Tests that shader module compilation messages can be queried. TEST_F(ShaderModuleValidationTest, GetCompilationMessages) { // This test works assuming ShaderModule is backed by a dawn_native::ShaderModuleBase, which // is not the case on the wire. DAWN_SKIP_TEST_IF(UsesWire()); wgpu::ShaderModule shaderModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); dawn_native::ShaderModuleBase* shaderModuleBase = dawn_native::FromAPI(shaderModule.Get()); dawn_native::OwnedCompilationMessages* messages = shaderModuleBase->GetCompilationMessages(); messages->ClearMessages(); messages->AddMessageForTesting("Info Message"); messages->AddMessageForTesting("Warning Message", wgpu::CompilationMessageType::Warning); messages->AddMessageForTesting("Error Message", wgpu::CompilationMessageType::Error, 3, 4); messages->AddMessageForTesting("Complete Message", wgpu::CompilationMessageType::Info, 3, 4, 5, 6); auto callback = [](WGPUCompilationInfoRequestStatus status, const WGPUCompilationInfo* info, void* userdata) { ASSERT_EQ(WGPUCompilationInfoRequestStatus_Success, status); ASSERT_NE(nullptr, info); ASSERT_EQ(4u, info->messageCount); const WGPUCompilationMessage* message = &info->messages[0]; ASSERT_STREQ("Info Message", message->message); ASSERT_EQ(WGPUCompilationMessageType_Info, message->type); ASSERT_EQ(0u, message->lineNum); ASSERT_EQ(0u, message->linePos); message = &info->messages[1]; ASSERT_STREQ("Warning Message", message->message); ASSERT_EQ(WGPUCompilationMessageType_Warning, message->type); ASSERT_EQ(0u, message->lineNum); ASSERT_EQ(0u, message->linePos); message = &info->messages[2]; ASSERT_STREQ("Error Message", message->message); ASSERT_EQ(WGPUCompilationMessageType_Error, message->type); ASSERT_EQ(3u, message->lineNum); ASSERT_EQ(4u, message->linePos); message = &info->messages[3]; ASSERT_STREQ("Complete Message", message->message); ASSERT_EQ(WGPUCompilationMessageType_Info, message->type); ASSERT_EQ(3u, message->lineNum); ASSERT_EQ(4u, message->linePos); ASSERT_EQ(5u, message->offset); ASSERT_EQ(6u, message->length); }; shaderModule.GetCompilationInfo(callback, nullptr); } // Validate the maximum location of effective inter-stage variables cannot be greater than 14 // (kMaxInterStageShaderComponents / 4 - 1). TEST_F(ShaderModuleValidationTest, MaximumShaderIOLocations) { auto generateShaderForTest = [](uint32_t maximumOutputLocation, wgpu::ShaderStage shaderStage) { std::ostringstream stream; stream << "struct ShaderIO {" << std::endl; for (uint32_t location = 1; location <= maximumOutputLocation; ++location) { stream << "[[location(" << location << ")]] var" << location << ": f32;" << std::endl; } switch (shaderStage) { case wgpu::ShaderStage::Vertex: { stream << R"( [[builtin(position)]] pos: vec4; }; [[stage(vertex)]] fn main() -> ShaderIO { var shaderIO : ShaderIO; shaderIO.pos = vec4(0.0, 0.0, 0.0, 1.0); return shaderIO; })"; } break; case wgpu::ShaderStage::Fragment: { stream << R"( }; [[stage(fragment)]] fn main(shaderIO: ShaderIO) -> [[location(0)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"; } break; case wgpu::ShaderStage::Compute: default: UNREACHABLE(); } return stream.str(); }; constexpr uint32_t kMaxInterShaderIOLocation = kMaxInterStageShaderComponents / 4 - 1; // It is allowed to create a shader module with the maximum active vertex output location == 14; { std::string vertexShader = generateShaderForTest(kMaxInterShaderIOLocation, wgpu::ShaderStage::Vertex); utils::CreateShaderModule(device, vertexShader.c_str()); } // It isn't allowed to create a shader module with the maximum active vertex output location > // 14; { std::string vertexShader = generateShaderForTest(kMaxInterShaderIOLocation + 1, wgpu::ShaderStage::Vertex); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, vertexShader.c_str())); } // It is allowed to create a shader module with the maximum active fragment input location == // 14; { std::string fragmentShader = generateShaderForTest(kMaxInterShaderIOLocation, wgpu::ShaderStage::Fragment); utils::CreateShaderModule(device, fragmentShader.c_str()); } // It is allowed to create a shader module with the maximum active vertex output location > 14; { std::string fragmentShader = generateShaderForTest(kMaxInterShaderIOLocation + 1, wgpu::ShaderStage::Fragment); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, fragmentShader.c_str())); } } // Validate the maximum number of total inter-stage user-defined variable component count and // built-in variables cannot exceed kMaxInterStageShaderComponents. TEST_F(ShaderModuleValidationTest, MaximumInterStageShaderComponents) { auto generateShaderForTest = [](uint32_t totalUserDefinedInterStageShaderComponentCount, wgpu::ShaderStage shaderStage, const char* builtInDeclarations) { std::ostringstream stream; stream << "struct ShaderIO {" << std::endl << builtInDeclarations << std::endl; uint32_t vec4InputLocations = totalUserDefinedInterStageShaderComponentCount / 4; for (uint32_t location = 0; location < vec4InputLocations; ++location) { stream << "[[location(" << location << ")]] var" << location << ": vec4;" << std::endl; } uint32_t lastComponentCount = totalUserDefinedInterStageShaderComponentCount % 4; if (lastComponentCount > 0) { stream << "[[location(" << vec4InputLocations << ")]] var" << vec4InputLocations << ": "; if (lastComponentCount == 1) { stream << "f32;"; } else { stream << " vec" << lastComponentCount << ";"; } stream << std::endl; } switch (shaderStage) { case wgpu::ShaderStage::Vertex: { stream << R"( [[builtin(position)]] pos: vec4; }; [[stage(vertex)]] fn main() -> ShaderIO { var shaderIO : ShaderIO; shaderIO.pos = vec4(0.0, 0.0, 0.0, 1.0); return shaderIO; })"; } break; case wgpu::ShaderStage::Fragment: { stream << R"( }; [[stage(fragment)]] fn main(shaderIO: ShaderIO) -> [[location(0)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"; } break; case wgpu::ShaderStage::Compute: default: UNREACHABLE(); } return stream.str(); }; // Verify when there is no input builtin variable in a fragment shader, the total user-defined // input component count must be less than kMaxInterStageShaderComponents. { constexpr uint32_t kInterStageShaderComponentCount = kMaxInterStageShaderComponents; std::string correctFragmentShader = generateShaderForTest(kInterStageShaderComponentCount, wgpu::ShaderStage::Fragment, ""); utils::CreateShaderModule(device, correctFragmentShader.c_str()); std::string errorFragmentShader = generateShaderForTest(kInterStageShaderComponentCount + 1, wgpu::ShaderStage::Fragment, ""); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, errorFragmentShader.c_str())); } // [[position]] should be counted into the maximum inter-stage component count. // Note that in vertex shader we always have [[position]] so we don't need to specify it // again in the parameter "builtInDeclarations" of generateShaderForTest(). { constexpr uint32_t kInterStageShaderComponentCount = kMaxInterStageShaderComponents - 4; std::string vertexShader = generateShaderForTest(kInterStageShaderComponentCount, wgpu::ShaderStage::Vertex, ""); utils::CreateShaderModule(device, vertexShader.c_str()); std::string fragmentShader = generateShaderForTest(kInterStageShaderComponentCount, wgpu::ShaderStage::Fragment, "[[builtin(position)]] fragCoord: vec4;"); utils::CreateShaderModule(device, fragmentShader.c_str()); } { constexpr uint32_t kInterStageShaderComponentCount = kMaxInterStageShaderComponents - 3; std::string vertexShader = generateShaderForTest(kInterStageShaderComponentCount, wgpu::ShaderStage::Vertex, ""); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, vertexShader.c_str())); std::string fragmentShader = generateShaderForTest(kInterStageShaderComponentCount, wgpu::ShaderStage::Fragment, "[[builtin(position)]] fragCoord: vec4;"); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, fragmentShader.c_str())); } // [[front_facing]] should be counted into the maximum inter-stage component count. { const char* builtinDeclaration = "[[builtin(front_facing)]] frontFacing : bool;"; { std::string fragmentShader = generateShaderForTest(kMaxInterStageShaderComponents - 1, wgpu::ShaderStage::Fragment, builtinDeclaration); utils::CreateShaderModule(device, fragmentShader.c_str()); } { std::string fragmentShader = generateShaderForTest( kMaxInterStageShaderComponents, wgpu::ShaderStage::Fragment, builtinDeclaration); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, fragmentShader.c_str())); } } // [[sample_index]] should be counted into the maximum inter-stage component count. { const char* builtinDeclaration = "[[builtin(sample_index)]] sampleIndex: u32;"; { std::string fragmentShader = generateShaderForTest(kMaxInterStageShaderComponents - 1, wgpu::ShaderStage::Fragment, builtinDeclaration); utils::CreateShaderModule(device, fragmentShader.c_str()); } { std::string fragmentShader = generateShaderForTest( kMaxInterStageShaderComponents, wgpu::ShaderStage::Fragment, builtinDeclaration); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, fragmentShader.c_str())); } } // [[sample_mask]] should be counted into the maximum inter-stage component count. { const char* builtinDeclaration = "[[builtin(front_facing)]] frontFacing : bool;"; { std::string fragmentShader = generateShaderForTest(kMaxInterStageShaderComponents - 1, wgpu::ShaderStage::Fragment, builtinDeclaration); utils::CreateShaderModule(device, fragmentShader.c_str()); } { std::string fragmentShader = generateShaderForTest( kMaxInterStageShaderComponents, wgpu::ShaderStage::Fragment, builtinDeclaration); ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, fragmentShader.c_str())); } } } // Tests that we validate workgroup size limits. TEST_F(ShaderModuleValidationTest, ComputeWorkgroupSizeLimits) { auto MakeShaderWithWorkgroupSize = [this](uint32_t x, uint32_t y, uint32_t z) { std::ostringstream ss; ss << "[[stage(compute), workgroup_size(" << x << "," << y << "," << z << ")]] fn main() {}"; utils::CreateShaderModule(device, ss.str().c_str()); }; wgpu::Limits supportedLimits = GetSupportedLimits().limits; MakeShaderWithWorkgroupSize(1, 1, 1); MakeShaderWithWorkgroupSize(supportedLimits.maxComputeWorkgroupSizeX, 1, 1); MakeShaderWithWorkgroupSize(1, supportedLimits.maxComputeWorkgroupSizeY, 1); MakeShaderWithWorkgroupSize(1, 1, supportedLimits.maxComputeWorkgroupSizeZ); ASSERT_DEVICE_ERROR( MakeShaderWithWorkgroupSize(supportedLimits.maxComputeWorkgroupSizeX + 1, 1, 1)); ASSERT_DEVICE_ERROR( MakeShaderWithWorkgroupSize(1, supportedLimits.maxComputeWorkgroupSizeY + 1, 1)); ASSERT_DEVICE_ERROR( MakeShaderWithWorkgroupSize(1, 1, supportedLimits.maxComputeWorkgroupSizeZ + 1)); // No individual dimension exceeds its limit, but the combined size should definitely exceed the // total invocation limit. ASSERT_DEVICE_ERROR(MakeShaderWithWorkgroupSize(supportedLimits.maxComputeWorkgroupSizeX, supportedLimits.maxComputeWorkgroupSizeY, supportedLimits.maxComputeWorkgroupSizeZ)); } // Tests that we validate workgroup storage size limits. TEST_F(ShaderModuleValidationTest, ComputeWorkgroupStorageSizeLimits) { wgpu::Limits supportedLimits = GetSupportedLimits().limits; constexpr uint32_t kVec4Size = 16; const uint32_t maxVec4Count = supportedLimits.maxComputeWorkgroupStorageSize / kVec4Size; constexpr uint32_t kMat4Size = 64; const uint32_t maxMat4Count = supportedLimits.maxComputeWorkgroupStorageSize / kMat4Size; auto MakeShaderWithWorkgroupStorage = [this](uint32_t vec4_count, uint32_t mat4_count) { std::ostringstream ss; std::ostringstream body; if (vec4_count > 0) { ss << "var vec4_data: array, " << vec4_count << ">;"; body << "_ = vec4_data;"; } if (mat4_count > 0) { ss << "var mat4_data: array, " << mat4_count << ">;"; body << "_ = mat4_data;"; } ss << "[[stage(compute), workgroup_size(1)]] fn main() { " << body.str() << " }"; utils::CreateShaderModule(device, ss.str().c_str()); }; MakeShaderWithWorkgroupStorage(1, 1); MakeShaderWithWorkgroupStorage(maxVec4Count, 0); MakeShaderWithWorkgroupStorage(0, maxMat4Count); MakeShaderWithWorkgroupStorage(maxVec4Count - 4, 1); MakeShaderWithWorkgroupStorage(4, maxMat4Count - 1); ASSERT_DEVICE_ERROR(MakeShaderWithWorkgroupStorage(maxVec4Count + 1, 0)); ASSERT_DEVICE_ERROR(MakeShaderWithWorkgroupStorage(maxVec4Count - 3, 1)); ASSERT_DEVICE_ERROR(MakeShaderWithWorkgroupStorage(0, maxMat4Count + 1)); ASSERT_DEVICE_ERROR(MakeShaderWithWorkgroupStorage(4, maxMat4Count)); } // Test that numeric ID must be unique TEST_F(ShaderModuleValidationTest, OverridableConstantsNumericIDConflicts) { ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, R"( [[override(1234)]] let c0: u32; [[override(1234)]] let c1: u32; struct Buf { data : array; }; [[group(0), binding(0)]] var buf : Buf; [[stage(compute), workgroup_size(1)]] fn main() { // make sure the overridable constants are not optimized out buf.data[0] = c0; buf.data[1] = c1; })")); }