// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include #include "gmock/gmock.h" #include "gtest/gtest-spi.h" #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/if_statement.h" #include "src/ast/intrinsic_texture_helper_test.h" #include "src/ast/loop_statement.h" #include "src/ast/return_statement.h" #include "src/ast/stage_decoration.h" #include "src/ast/switch_statement.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/resolver/resolver_test_helper.h" #include "src/sem/call.h" #include "src/sem/function.h" #include "src/sem/member_accessor_expression.h" #include "src/sem/statement.h" #include "src/sem/variable.h" #include "src/type/access_control_type.h" #include "src/type/sampled_texture_type.h" using ::testing::ElementsAre; using ::testing::HasSubstr; namespace tint { namespace resolver { namespace { // Helpers and typedefs using i32 = ProgramBuilder::i32; using u32 = ProgramBuilder::u32; using f32 = ProgramBuilder::f32; using Op = ast::BinaryOp; TEST_F(ResolverTest, Stmt_Assign) { auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = create(lhs, rhs); WrapInFunction(v, assign); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); } TEST_F(ResolverTest, Stmt_Case) { auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = create(lhs, rhs); auto* block = Block(assign); ast::CaseSelectorList lit; lit.push_back(create(ty.i32(), 3)); auto* cse = create(lit, block); WrapInFunction(v, cse); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); EXPECT_EQ(BlockOf(assign), block); } TEST_F(ResolverTest, Stmt_Block) { auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = create(lhs, rhs); auto* block = Block(assign); WrapInFunction(v, block); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); EXPECT_EQ(BlockOf(lhs), block); EXPECT_EQ(BlockOf(rhs), block); EXPECT_EQ(BlockOf(assign), block); } TEST_F(ResolverTest, Stmt_If) { auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction); auto* else_lhs = Expr("v"); auto* else_rhs = Expr(2.3f); auto* else_body = Block(create(else_lhs, else_rhs)); auto* else_cond = Expr(3); auto* else_stmt = create(else_cond, else_body); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = create(lhs, rhs); auto* body = Block(assign); auto* cond = Expr(true); auto* stmt = create(cond, body, ast::ElseStatementList{else_stmt}); WrapInFunction(v, stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(stmt->condition()), nullptr); ASSERT_NE(TypeOf(else_lhs), nullptr); ASSERT_NE(TypeOf(else_rhs), nullptr); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(stmt->condition())->Is()); EXPECT_TRUE(TypeOf(else_lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(else_rhs)->Is()); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); EXPECT_EQ(StmtOf(cond), stmt); EXPECT_EQ(StmtOf(else_cond), else_stmt); EXPECT_EQ(BlockOf(lhs), body); EXPECT_EQ(BlockOf(rhs), body); EXPECT_EQ(BlockOf(else_lhs), else_body); EXPECT_EQ(BlockOf(else_rhs), else_body); } TEST_F(ResolverTest, Stmt_Loop) { auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction); auto* body_lhs = Expr("v"); auto* body_rhs = Expr(2.3f); auto* body = Block(create(body_lhs, body_rhs)); auto* continuing_lhs = Expr("v"); auto* continuing_rhs = Expr(2.3f); auto* continuing = create(ast::StatementList{ create(continuing_lhs, continuing_rhs), }); auto* stmt = create(body, continuing); WrapInFunction(v, stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(body_lhs), nullptr); ASSERT_NE(TypeOf(body_rhs), nullptr); ASSERT_NE(TypeOf(continuing_lhs), nullptr); ASSERT_NE(TypeOf(continuing_rhs), nullptr); EXPECT_TRUE(TypeOf(body_lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(body_rhs)->Is()); EXPECT_TRUE(TypeOf(continuing_lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(continuing_rhs)->Is()); EXPECT_EQ(BlockOf(body_lhs), body); EXPECT_EQ(BlockOf(body_rhs), body); EXPECT_EQ(BlockOf(continuing_lhs), continuing); EXPECT_EQ(BlockOf(continuing_rhs), continuing); } TEST_F(ResolverTest, Stmt_Return) { auto* cond = Expr(2); auto* ret = create(cond); Func("test", {}, ty.i32(), {ret}, {}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(cond), nullptr); EXPECT_TRUE(TypeOf(cond)->Is()); } TEST_F(ResolverTest, Stmt_Return_WithoutValue) { auto* ret = create(); WrapInFunction(ret); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverTest, Stmt_Switch) { auto* v = Var("v", ty.f32(), ast::StorageClass::kFunction); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* case_block = Block(Assign(lhs, rhs)); auto* stmt = Switch(Expr(2), Case(Literal(3), case_block), DefaultCase()); WrapInFunction(v, stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(stmt->condition()), nullptr); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(stmt->condition())->Is()); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(BlockOf(lhs), case_block); EXPECT_EQ(BlockOf(rhs), case_block); } TEST_F(ResolverTest, Stmt_Call) { ast::VariableList params; Func("my_func", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))}, ast::DecorationList{}); auto* expr = Call("my_func"); auto* call = create(expr); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); EXPECT_TRUE(TypeOf(expr)->Is()); EXPECT_EQ(StmtOf(expr), call); } TEST_F(ResolverTest, Stmt_VariableDecl) { auto* var = Var("my_var", ty.i32(), ast::StorageClass::kNone, Expr(2)); auto* init = var->constructor(); auto* decl = create(var); WrapInFunction(decl); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(init), nullptr); EXPECT_TRUE(TypeOf(init)->Is()); } TEST_F(ResolverTest, Stmt_VariableDecl_Alias) { auto* my_int = ty.alias("MyInt", ty.i32()); auto* var = Var("my_var", my_int, ast::StorageClass::kNone, Expr(2)); auto* init = var->constructor(); auto* decl = create(var); WrapInFunction(decl); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(init), nullptr); EXPECT_TRUE(TypeOf(init)->Is()); } TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScope) { auto* init = Expr(2); Global("my_var", ty.i32(), ast::StorageClass::kInput, init); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(init), nullptr); EXPECT_TRUE(TypeOf(init)->Is()); EXPECT_EQ(StmtOf(init), nullptr); } TEST_F(ResolverTest, Stmt_VariableDecl_OuterScopeAfterInnerScope) { // fn func_i32() { // { // var foo : i32 = 2; // var bar : i32 = foo; // } // var foo : f32 = 2.0; // var bar : f32 = foo; // } ast::VariableList params; // Declare i32 "foo" inside a block auto* foo_i32 = Var("foo", ty.i32(), ast::StorageClass::kNone, Expr(2)); auto* foo_i32_init = foo_i32->constructor(); auto* foo_i32_decl = create(foo_i32); // Reference "foo" inside the block auto* bar_i32 = Var("bar", ty.i32(), ast::StorageClass::kNone, Expr("foo")); auto* bar_i32_init = bar_i32->constructor(); auto* bar_i32_decl = create(bar_i32); auto* inner = create( ast::StatementList{foo_i32_decl, bar_i32_decl}); // Declare f32 "foo" at function scope auto* foo_f32 = Var("foo", ty.f32(), ast::StorageClass::kNone, Expr(2.f)); auto* foo_f32_init = foo_f32->constructor(); auto* foo_f32_decl = create(foo_f32); // Reference "foo" at function scope auto* bar_f32 = Var("bar", ty.f32(), ast::StorageClass::kNone, Expr("foo")); auto* bar_f32_init = bar_f32->constructor(); auto* bar_f32_decl = create(bar_f32); Func("func", params, ty.void_(), ast::StatementList{inner, foo_f32_decl, bar_f32_decl}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(foo_i32_init), nullptr); EXPECT_TRUE(TypeOf(foo_i32_init)->Is()); ASSERT_NE(TypeOf(foo_f32_init), nullptr); EXPECT_TRUE(TypeOf(foo_f32_init)->Is()); ASSERT_NE(TypeOf(bar_i32_init), nullptr); EXPECT_TRUE(TypeOf(bar_i32_init)->UnwrapAll()->Is()); ASSERT_NE(TypeOf(bar_f32_init), nullptr); EXPECT_TRUE(TypeOf(bar_f32_init)->UnwrapAll()->Is()); EXPECT_EQ(StmtOf(foo_i32_init), foo_i32_decl); EXPECT_EQ(StmtOf(bar_i32_init), bar_i32_decl); EXPECT_EQ(StmtOf(foo_f32_init), foo_f32_decl); EXPECT_EQ(StmtOf(bar_f32_init), bar_f32_decl); EXPECT_TRUE(CheckVarUsers(foo_i32, {bar_i32->constructor()})); EXPECT_TRUE(CheckVarUsers(foo_f32, {bar_f32->constructor()})); ASSERT_NE(VarOf(bar_i32->constructor()), nullptr); EXPECT_EQ(VarOf(bar_i32->constructor())->Declaration(), foo_i32); ASSERT_NE(VarOf(bar_f32->constructor()), nullptr); EXPECT_EQ(VarOf(bar_f32->constructor())->Declaration(), foo_f32); } TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScopeAfterFunctionScope) { // fn func_i32() { // var foo : i32 = 2; // } // var foo : f32 = 2.0; // fn func_f32() { // var bar : f32 = foo; // } ast::VariableList params; // Declare i32 "foo" inside a function auto* fn_i32 = Var("foo", ty.i32(), ast::StorageClass::kFunction, Expr(2)); auto* fn_i32_init = fn_i32->constructor(); auto* fn_i32_decl = create(fn_i32); Func("func_i32", params, ty.void_(), ast::StatementList{fn_i32_decl}, ast::DecorationList{}); // Declare f32 "foo" at module scope auto* mod_f32 = Var("foo", ty.f32(), ast::StorageClass::kInput, Expr(2.f)); auto* mod_init = mod_f32->constructor(); AST().AddGlobalVariable(mod_f32); // Reference "foo" in another function auto* fn_f32 = Var("bar", ty.f32(), ast::StorageClass::kFunction, Expr("foo")); auto* fn_f32_init = fn_f32->constructor(); auto* fn_f32_decl = create(fn_f32); Func("func_f32", params, ty.void_(), ast::StatementList{fn_f32_decl}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mod_init), nullptr); EXPECT_TRUE(TypeOf(mod_init)->Is()); ASSERT_NE(TypeOf(fn_i32_init), nullptr); EXPECT_TRUE(TypeOf(fn_i32_init)->Is()); ASSERT_NE(TypeOf(fn_f32_init), nullptr); EXPECT_TRUE(TypeOf(fn_f32_init)->UnwrapAll()->Is()); EXPECT_EQ(StmtOf(fn_i32_init), fn_i32_decl); EXPECT_EQ(StmtOf(mod_init), nullptr); EXPECT_EQ(StmtOf(fn_f32_init), fn_f32_decl); EXPECT_TRUE(CheckVarUsers(fn_i32, {})); EXPECT_TRUE(CheckVarUsers(mod_f32, {fn_f32->constructor()})); ASSERT_NE(VarOf(fn_f32->constructor()), nullptr); EXPECT_EQ(VarOf(fn_f32->constructor())->Declaration(), mod_f32); } TEST_F(ResolverTest, Expr_ArrayAccessor_Array) { auto* idx = Expr(2); Global("my_var", ty.array(), ast::StorageClass::kFunction); auto* acc = IndexAccessor("my_var", idx); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_ArrayAccessor_Alias_Array) { auto* aary = ty.alias("myarrty", ty.array()); Global("my_var", aary, ast::StorageClass::kFunction); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_ArrayAccessor_Array_Constant) { GlobalConst("my_var", ty.array()); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); EXPECT_TRUE(TypeOf(acc)->Is()) << TypeOf(acc)->type_name(); } TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix) { Global("my_var", ty.mat2x3(), ast::StorageClass::kInput); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); ASSERT_TRUE(ptr->type()->Is()); EXPECT_EQ(ptr->type()->As()->size(), 3u); } TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix_BothDimensions) { Global("my_var", ty.mat2x3(), ast::StorageClass::kInput); auto* acc = IndexAccessor(IndexAccessor("my_var", 2), 1); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_ArrayAccessor_Vector) { Global("my_var", ty.vec3(), ast::StorageClass::kInput); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_Bitcast) { Global("name", ty.f32(), ast::StorageClass::kPrivate); auto* bitcast = create(ty.f32(), Expr("name")); WrapInFunction(bitcast); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(bitcast), nullptr); EXPECT_TRUE(TypeOf(bitcast)->Is()); } TEST_F(ResolverTest, Expr_Call) { ast::VariableList params; Func("my_func", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))}, ast::DecorationList{}); auto* call = Call("my_func"); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(call), nullptr); EXPECT_TRUE(TypeOf(call)->Is()); } TEST_F(ResolverTest, Expr_Call_InBinaryOp) { ast::VariableList params; Func("func", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))}, ast::DecorationList{}); auto* expr = Add(Call("func"), Call("func")); WrapInFunction(expr); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); EXPECT_TRUE(TypeOf(expr)->Is()); } TEST_F(ResolverTest, Expr_Call_WithParams) { ast::VariableList params; Func("my_func", params, ty.void_(), ast::StatementList{}, ast::DecorationList{}); auto* param = Expr(2.4f); auto* call = Call("my_func", param); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(param), nullptr); EXPECT_TRUE(TypeOf(param)->Is()); } TEST_F(ResolverTest, Expr_Call_Intrinsic) { auto* call = Call("round", 2.4f); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(call), nullptr); EXPECT_TRUE(TypeOf(call)->Is()); } TEST_F(ResolverTest, Expr_Cast) { Global("name", ty.f32(), ast::StorageClass::kPrivate); auto* cast = Construct(ty.f32(), "name"); WrapInFunction(cast); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(cast), nullptr); EXPECT_TRUE(TypeOf(cast)->Is()); } TEST_F(ResolverTest, Expr_Constructor_Scalar) { auto* s = Expr(1.0f); WrapInFunction(s); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(s), nullptr); EXPECT_TRUE(TypeOf(s)->Is()); } TEST_F(ResolverTest, Expr_Constructor_Type_Vec2) { auto* tc = vec2(1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverTest, Expr_Constructor_Type_Vec3) { auto* tc = vec3(1.0f, 1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverTest, Expr_Constructor_Type_Vec4) { auto* tc = vec4(1.0f, 1.0f, 1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverTest, Expr_Identifier_GlobalVariable) { auto* my_var = Global("my_var", ty.f32(), ast::StorageClass::kInput); auto* ident = Expr("my_var"); WrapInFunction(ident); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(ident), nullptr); EXPECT_TRUE(TypeOf(ident)->Is()); EXPECT_TRUE(TypeOf(ident)->As()->type()->Is()); EXPECT_TRUE(CheckVarUsers(my_var, {ident})); ASSERT_NE(VarOf(ident), nullptr); EXPECT_EQ(VarOf(ident)->Declaration(), my_var); } TEST_F(ResolverTest, Expr_Identifier_GlobalConstant) { auto* my_var = GlobalConst("my_var", ty.f32()); auto* ident = Expr("my_var"); WrapInFunction(ident); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(ident), nullptr); EXPECT_TRUE(TypeOf(ident)->Is()); EXPECT_TRUE(CheckVarUsers(my_var, {ident})); ASSERT_NE(VarOf(ident), nullptr); EXPECT_EQ(VarOf(ident)->Declaration(), my_var); } TEST_F(ResolverTest, Expr_Identifier_FunctionVariable_Const) { auto* my_var_a = Expr("my_var"); auto* var = Const("my_var", ty.f32()); auto* decl = Decl(Var("b", ty.f32(), ast::StorageClass::kFunction, my_var_a)); Func("my_func", ast::VariableList{}, ty.void_(), ast::StatementList{ create(var), decl, }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(my_var_a), nullptr); EXPECT_TRUE(TypeOf(my_var_a)->Is()); EXPECT_EQ(StmtOf(my_var_a), decl); EXPECT_TRUE(CheckVarUsers(var, {my_var_a})); ASSERT_NE(VarOf(my_var_a), nullptr); EXPECT_EQ(VarOf(my_var_a)->Declaration(), var); } TEST_F(ResolverTest, Expr_Identifier_FunctionVariable) { auto* my_var_a = Expr("my_var"); auto* my_var_b = Expr("my_var"); auto* assign = create(my_var_a, my_var_b); auto* var = Var("my_var", ty.f32(), ast::StorageClass::kNone); Func("my_func", ast::VariableList{}, ty.void_(), ast::StatementList{ create(var), assign, }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(my_var_a), nullptr); EXPECT_TRUE(TypeOf(my_var_a)->Is()); EXPECT_TRUE(TypeOf(my_var_a)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_a), assign); ASSERT_NE(TypeOf(my_var_b), nullptr); EXPECT_TRUE(TypeOf(my_var_b)->Is()); EXPECT_TRUE(TypeOf(my_var_b)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_b), assign); EXPECT_TRUE(CheckVarUsers(var, {my_var_a, my_var_b})); ASSERT_NE(VarOf(my_var_a), nullptr); EXPECT_EQ(VarOf(my_var_a)->Declaration(), var); ASSERT_NE(VarOf(my_var_b), nullptr); EXPECT_EQ(VarOf(my_var_b)->Declaration(), var); } TEST_F(ResolverTest, Expr_Identifier_Function_Ptr) { auto* my_var_a = Expr("my_var"); auto* my_var_b = Expr("my_var"); auto* assign = create(my_var_a, my_var_b); Func("my_func", ast::VariableList{}, ty.void_(), ast::StatementList{ create( Var("my_var", ty.pointer(ast::StorageClass::kFunction), ast::StorageClass::kNone)), assign, }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(my_var_a), nullptr); EXPECT_TRUE(TypeOf(my_var_a)->Is()); EXPECT_TRUE(TypeOf(my_var_a)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_a), assign); ASSERT_NE(TypeOf(my_var_b), nullptr); EXPECT_TRUE(TypeOf(my_var_b)->Is()); EXPECT_TRUE(TypeOf(my_var_b)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_b), assign); } TEST_F(ResolverTest, Expr_Call_Function) { Func("my_func", ast::VariableList{}, ty.f32(), ast::StatementList{Return(Expr(0.0f))}, ast::DecorationList{}); auto* call = Call("my_func"); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(call), nullptr); EXPECT_TRUE(TypeOf(call)->Is()); } TEST_F(ResolverTest, Expr_Identifier_Unknown) { auto* a = Expr("a"); WrapInFunction(a); EXPECT_FALSE(r()->Resolve()); } TEST_F(ResolverTest, Function_Parameters) { auto* param_a = Param("a", ty.f32()); auto* param_b = Param("b", ty.i32()); auto* param_c = Param("c", ty.u32()); auto* func = Func("my_func", ast::VariableList{ param_a, param_b, param_c, }, ty.void_(), {}); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->Parameters().size(), 3u); EXPECT_EQ(func_sem->Parameters()[0]->Type(), ty.f32()); EXPECT_EQ(func_sem->Parameters()[1]->Type(), ty.i32()); EXPECT_EQ(func_sem->Parameters()[2]->Type(), ty.u32()); EXPECT_EQ(func_sem->Parameters()[0]->Declaration(), param_a); EXPECT_EQ(func_sem->Parameters()[1]->Declaration(), param_b); EXPECT_EQ(func_sem->Parameters()[2]->Declaration(), param_c); } TEST_F(ResolverTest, Function_RegisterInputOutputVariables) { auto* s = Structure("S", {Member("m", ty.u32())}); auto* a = ty.access(ast::AccessControl::kReadOnly, s); auto* in_var = Global("in_var", ty.f32(), ast::StorageClass::kInput); auto* out_var = Global("out_var", ty.f32(), ast::StorageClass::kOutput); auto* sb_var = Global("sb_var", a, ast::StorageClass::kStorage); auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup); auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate); auto* func = Func( "my_func", ast::VariableList{}, ty.void_(), ast::StatementList{ create(Expr("out_var"), Expr("in_var")), create(Expr("wg_var"), Expr("wg_var")), create(Expr("sb_var"), Expr("sb_var")), create(Expr("priv_var"), Expr("priv_var")), }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->Parameters().size(), 0u); const auto& vars = func_sem->ReferencedModuleVariables(); ASSERT_EQ(vars.size(), 5u); EXPECT_EQ(vars[0]->Declaration(), out_var); EXPECT_EQ(vars[1]->Declaration(), in_var); EXPECT_EQ(vars[2]->Declaration(), wg_var); EXPECT_EQ(vars[3]->Declaration(), sb_var); EXPECT_EQ(vars[4]->Declaration(), priv_var); } TEST_F(ResolverTest, Function_RegisterInputOutputVariables_SubFunction) { auto* s = Structure("S", {Member("m", ty.u32())}); auto* a = ty.access(ast::AccessControl::kReadOnly, s); auto* in_var = Global("in_var", ty.f32(), ast::StorageClass::kInput); auto* out_var = Global("out_var", ty.f32(), ast::StorageClass::kOutput); auto* sb_var = Global("sb_var", a, ast::StorageClass::kStorage); auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup); auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate); Func("my_func", ast::VariableList{}, ty.f32(), ast::StatementList{ create(Expr("out_var"), Expr("in_var")), create(Expr("wg_var"), Expr("wg_var")), create(Expr("sb_var"), Expr("sb_var")), create(Expr("priv_var"), Expr("priv_var")), Return(Expr(0.0f))}, ast::DecorationList{}); auto* func2 = Func( "func", ast::VariableList{}, ty.void_(), ast::StatementList{ create(Expr("out_var"), Call("my_func")), }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func2_sem = Sem().Get(func2); ASSERT_NE(func2_sem, nullptr); EXPECT_EQ(func2_sem->Parameters().size(), 0u); const auto& vars = func2_sem->ReferencedModuleVariables(); ASSERT_EQ(vars.size(), 5u); EXPECT_EQ(vars[0]->Declaration(), out_var); EXPECT_EQ(vars[1]->Declaration(), in_var); EXPECT_EQ(vars[2]->Declaration(), wg_var); EXPECT_EQ(vars[3]->Declaration(), sb_var); EXPECT_EQ(vars[4]->Declaration(), priv_var); } TEST_F(ResolverTest, Function_NotRegisterFunctionVariable) { auto* var = Var("in_var", ty.f32(), ast::StorageClass::kFunction); Global("var", ty.f32(), ast::StorageClass::kFunction); auto* func = Func("my_func", ast::VariableList{}, ty.void_(), ast::StatementList{ create(var), create(Expr("var"), Expr(1.f)), }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->ReferencedModuleVariables().size(), 0u); } TEST_F(ResolverTest, Function_ReturnStatements) { auto* var = Var("foo", ty.f32(), ast::StorageClass::kFunction); auto* ret_1 = create(Expr(1.f)); auto* ret_foo = create(Expr("foo")); auto* func = Func("my_func", ast::VariableList{}, ty.f32(), ast::StatementList{ create(var), If(Expr(true), Block(ret_1)), ret_foo, }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->Parameters().size(), 0u); EXPECT_EQ(func_sem->ReturnStatements().size(), 2u); EXPECT_EQ(func_sem->ReturnStatements()[0], ret_1); EXPECT_EQ(func_sem->ReturnStatements()[1], ret_foo); } TEST_F(ResolverTest, Expr_MemberAccessor_Struct) { auto* strct = create( ast::StructMemberList{Member("first_member", ty.i32()), Member("second_member", ty.f32())}, ast::DecorationList{}); auto* st = ty.struct_("S", strct); Global("my_struct", st, ast::StorageClass::kInput); auto* mem = MemberAccessor("my_struct", "second_member"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); auto* ptr = TypeOf(mem)->As(); EXPECT_TRUE(ptr->type()->Is()); ASSERT_TRUE(Sem().Get(mem)->Is()); EXPECT_EQ(Sem() .Get(mem) ->As() ->Member() ->Declaration() ->symbol(), Symbols().Get("second_member")); } TEST_F(ResolverTest, Expr_MemberAccessor_Struct_Alias) { auto* strct = create( ast::StructMemberList{Member("first_member", ty.i32()), Member("second_member", ty.f32())}, ast::DecorationList{}); auto* st = ty.struct_("alias", strct); auto* alias = ty.alias("alias", st); Global("my_struct", alias, ast::StorageClass::kInput); auto* mem = MemberAccessor("my_struct", "second_member"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); auto* ptr = TypeOf(mem)->As(); EXPECT_TRUE(ptr->type()->Is()); ASSERT_TRUE(Sem().Get(mem)->Is()); } TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle) { Global("my_vec", ty.vec3(), ast::StorageClass::kInput); auto* mem = MemberAccessor("my_vec", "xzyw"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); EXPECT_TRUE(TypeOf(mem)->As()->type()->Is()); EXPECT_EQ(TypeOf(mem)->As()->size(), 4u); ASSERT_TRUE(Sem().Get(mem)->Is()); EXPECT_THAT(Sem().Get(mem)->As()->Indices(), ElementsAre(0, 2, 1, 3)); } TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle_SingleElement) { Global("my_vec", ty.vec3(), ast::StorageClass::kInput); auto* mem = MemberAccessor("my_vec", "b"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); auto* ptr = TypeOf(mem)->As(); ASSERT_TRUE(ptr->type()->Is()); ASSERT_TRUE(Sem().Get(mem)->Is()); EXPECT_THAT(Sem().Get(mem)->As()->Indices(), ElementsAre(2)); } TEST_F(ResolverTest, Expr_Accessor_MultiLevel) { // struct b { // vec4 foo // } // struct A { // vec3 mem // } // var c : A // c.mem[0].foo.yx // -> vec2 // // MemberAccessor{ // MemberAccessor{ // ArrayAccessor{ // MemberAccessor{ // Identifier{c} // Identifier{mem} // } // ScalarConstructor{0} // } // Identifier{foo} // } // Identifier{yx} // } // auto* strctB = create(ast::StructMemberList{Member("foo", ty.vec4())}, ast::DecorationList{}); auto* stB = ty.struct_("B", strctB); type::Vector vecB(stB, 3); auto* strctA = create( ast::StructMemberList{Member("mem", &vecB)}, ast::DecorationList{}); auto* stA = ty.struct_("A", strctA); Global("c", stA, ast::StorageClass::kInput); auto* mem = MemberAccessor( MemberAccessor(IndexAccessor(MemberAccessor("c", "mem"), 0), "foo"), "yx"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); EXPECT_TRUE(TypeOf(mem)->As()->type()->Is()); EXPECT_EQ(TypeOf(mem)->As()->size(), 2u); ASSERT_TRUE(Sem().Get(mem)->Is()); } TEST_F(ResolverTest, Expr_MemberAccessor_InBinaryOp) { auto* strct = create( ast::StructMemberList{Member("first_member", ty.f32()), Member("second_member", ty.f32())}, ast::DecorationList{}); auto* st = ty.struct_("S", strct); Global("my_struct", st, ast::StorageClass::kInput); auto* expr = Add(MemberAccessor("my_struct", "first_member"), MemberAccessor("my_struct", "second_member")); WrapInFunction(expr); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); EXPECT_TRUE(TypeOf(expr)->Is()); } namespace ExprBinaryTest { struct Params { ast::BinaryOp op; create_type_func_ptr create_lhs_type; create_type_func_ptr create_rhs_type; create_type_func_ptr create_result_type; }; static constexpr create_type_func_ptr all_create_type_funcs[] = { ty_bool_, ty_u32, ty_i32, ty_f32, ty_vec3, ty_vec3, ty_vec3, ty_vec3, ty_mat3x3, ty_mat3x3, ty_mat3x3}; // A list of all valid test cases for 'lhs op rhs', except that for vecN and // matNxN, we only test N=3. static constexpr Params all_valid_cases[] = { // Logical expressions // https://gpuweb.github.io/gpuweb/wgsl.html#logical-expr // Binary logical expressions Params{Op::kLogicalAnd, ty_bool_, ty_bool_, ty_bool_}, Params{Op::kLogicalOr, ty_bool_, ty_bool_, ty_bool_}, Params{Op::kAnd, ty_bool_, ty_bool_, ty_bool_}, Params{Op::kOr, ty_bool_, ty_bool_, ty_bool_}, Params{Op::kAnd, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kOr, ty_vec3, ty_vec3, ty_vec3}, // Arithmetic expressions // https://gpuweb.github.io/gpuweb/wgsl.html#arithmetic-expr // Binary arithmetic expressions over scalars Params{Op::kAdd, ty_i32, ty_i32, ty_i32}, Params{Op::kSubtract, ty_i32, ty_i32, ty_i32}, Params{Op::kMultiply, ty_i32, ty_i32, ty_i32}, Params{Op::kDivide, ty_i32, ty_i32, ty_i32}, Params{Op::kModulo, ty_i32, ty_i32, ty_i32}, Params{Op::kAdd, ty_u32, ty_u32, ty_u32}, Params{Op::kSubtract, ty_u32, ty_u32, ty_u32}, Params{Op::kMultiply, ty_u32, ty_u32, ty_u32}, Params{Op::kDivide, ty_u32, ty_u32, ty_u32}, Params{Op::kModulo, ty_u32, ty_u32, ty_u32}, Params{Op::kAdd, ty_f32, ty_f32, ty_f32}, Params{Op::kSubtract, ty_f32, ty_f32, ty_f32}, Params{Op::kMultiply, ty_f32, ty_f32, ty_f32}, Params{Op::kDivide, ty_f32, ty_f32, ty_f32}, Params{Op::kModulo, ty_f32, ty_f32, ty_f32}, // Binary arithmetic expressions over vectors Params{Op::kAdd, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kSubtract, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kMultiply, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kDivide, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kModulo, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kAdd, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kSubtract, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kMultiply, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kDivide, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kModulo, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kAdd, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kSubtract, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kMultiply, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kDivide, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kModulo, ty_vec3, ty_vec3, ty_vec3}, // Binary arithmetic expressions with mixed scalar, vector, and matrix // operands Params{Op::kMultiply, ty_vec3, ty_f32, ty_vec3}, Params{Op::kMultiply, ty_f32, ty_vec3, ty_vec3}, Params{Op::kMultiply, ty_mat3x3, ty_f32, ty_mat3x3}, Params{Op::kMultiply, ty_f32, ty_mat3x3, ty_mat3x3}, Params{Op::kMultiply, ty_vec3, ty_mat3x3, ty_vec3}, Params{Op::kMultiply, ty_mat3x3, ty_vec3, ty_vec3}, Params{Op::kMultiply, ty_mat3x3, ty_mat3x3, ty_mat3x3}, // Comparison expressions // https://gpuweb.github.io/gpuweb/wgsl.html#comparison-expr // Comparisons over scalars Params{Op::kEqual, ty_bool_, ty_bool_, ty_bool_}, Params{Op::kNotEqual, ty_bool_, ty_bool_, ty_bool_}, Params{Op::kEqual, ty_i32, ty_i32, ty_bool_}, Params{Op::kNotEqual, ty_i32, ty_i32, ty_bool_}, Params{Op::kLessThan, ty_i32, ty_i32, ty_bool_}, Params{Op::kLessThanEqual, ty_i32, ty_i32, ty_bool_}, Params{Op::kGreaterThan, ty_i32, ty_i32, ty_bool_}, Params{Op::kGreaterThanEqual, ty_i32, ty_i32, ty_bool_}, Params{Op::kEqual, ty_u32, ty_u32, ty_bool_}, Params{Op::kNotEqual, ty_u32, ty_u32, ty_bool_}, Params{Op::kLessThan, ty_u32, ty_u32, ty_bool_}, Params{Op::kLessThanEqual, ty_u32, ty_u32, ty_bool_}, Params{Op::kGreaterThan, ty_u32, ty_u32, ty_bool_}, Params{Op::kGreaterThanEqual, ty_u32, ty_u32, ty_bool_}, Params{Op::kEqual, ty_f32, ty_f32, ty_bool_}, Params{Op::kNotEqual, ty_f32, ty_f32, ty_bool_}, Params{Op::kLessThan, ty_f32, ty_f32, ty_bool_}, Params{Op::kLessThanEqual, ty_f32, ty_f32, ty_bool_}, Params{Op::kGreaterThan, ty_f32, ty_f32, ty_bool_}, Params{Op::kGreaterThanEqual, ty_f32, ty_f32, ty_bool_}, // Comparisons over vectors Params{Op::kEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kNotEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kNotEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kLessThan, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kLessThanEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kGreaterThan, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kGreaterThanEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kNotEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kLessThan, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kLessThanEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kGreaterThan, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kGreaterThanEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kNotEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kLessThan, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kLessThanEqual, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kGreaterThan, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kGreaterThanEqual, ty_vec3, ty_vec3, ty_vec3}, // Bit expressions // https://gpuweb.github.io/gpuweb/wgsl.html#bit-expr // Binary bitwise operations Params{Op::kOr, ty_i32, ty_i32, ty_i32}, Params{Op::kAnd, ty_i32, ty_i32, ty_i32}, Params{Op::kXor, ty_i32, ty_i32, ty_i32}, Params{Op::kOr, ty_u32, ty_u32, ty_u32}, Params{Op::kAnd, ty_u32, ty_u32, ty_u32}, Params{Op::kXor, ty_u32, ty_u32, ty_u32}, // Bit shift expressions Params{Op::kShiftLeft, ty_i32, ty_u32, ty_i32}, Params{Op::kShiftLeft, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kShiftLeft, ty_u32, ty_u32, ty_u32}, Params{Op::kShiftLeft, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kShiftRight, ty_i32, ty_u32, ty_i32}, Params{Op::kShiftRight, ty_vec3, ty_vec3, ty_vec3}, Params{Op::kShiftRight, ty_u32, ty_u32, ty_u32}, Params{Op::kShiftRight, ty_vec3, ty_vec3, ty_vec3}}; using Expr_Binary_Test_Valid = ResolverTestWithParam; TEST_P(Expr_Binary_Test_Valid, All) { auto& params = GetParam(); auto* lhs_type = params.create_lhs_type(ty); auto* rhs_type = params.create_rhs_type(ty); auto* result_type = params.create_result_type(ty); std::stringstream ss; ss << lhs_type->FriendlyName(Symbols()) << " " << params.op << " " << rhs_type->FriendlyName(Symbols()); SCOPED_TRACE(ss.str()); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = create(params.op, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr) == result_type); } INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Valid, testing::ValuesIn(all_valid_cases)); enum class BinaryExprSide { Left, Right, Both }; using Expr_Binary_Test_WithAlias_Valid = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_WithAlias_Valid, All) { const Params& params = std::get<0>(GetParam()); BinaryExprSide side = std::get<1>(GetParam()); auto* lhs_type = params.create_lhs_type(ty); auto* rhs_type = params.create_rhs_type(ty); std::stringstream ss; ss << lhs_type->FriendlyName(Symbols()) << " " << params.op << " " << rhs_type->FriendlyName(Symbols()); // For vectors and matrices, wrap the sub type in an alias auto make_alias = [this](type::Type* type) -> type::Type* { type::Type* result; if (auto* v = type->As()) { result = create( create(Symbols().New(), v->type()), v->size()); } else if (auto* m = type->As()) { result = create(create(Symbols().New(), m->type()), m->rows(), m->columns()); } else { result = create(Symbols().New(), type); } return result; }; // Wrap in alias if (side == BinaryExprSide::Left || side == BinaryExprSide::Both) { lhs_type = make_alias(lhs_type); } if (side == BinaryExprSide::Right || side == BinaryExprSide::Both) { rhs_type = make_alias(rhs_type); } ss << ", After aliasing: " << lhs_type->FriendlyName(Symbols()) << " " << params.op << " " << rhs_type->FriendlyName(Symbols()); SCOPED_TRACE(ss.str()); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = create(params.op, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); // TODO(amaiorano): Bring this back once we have a way to get the canonical // type // auto* result_type = params.create_result_type(ty); // ASSERT_TRUE(TypeOf(expr) == result_type); } INSTANTIATE_TEST_SUITE_P( ResolverTest, Expr_Binary_Test_WithAlias_Valid, testing::Combine(testing::ValuesIn(all_valid_cases), testing::Values(BinaryExprSide::Left, BinaryExprSide::Right, BinaryExprSide::Both))); using Expr_Binary_Test_Invalid = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_Invalid, All) { const Params& params = std::get<0>(GetParam()); const create_type_func_ptr& create_type_func = std::get<1>(GetParam()); // Currently, for most operations, for a given lhs type, there is exactly one // rhs type allowed. The only exception is for multiplication, which allows // any permutation of f32, vecN, and matNxN. We are fed valid inputs // only via `params`, and all possible types via `create_type_func`, so we // test invalid combinations by testing every other rhs type, modulo // exceptions. // Skip valid rhs type if (params.create_rhs_type == create_type_func) { return; } auto* lhs_type = params.create_lhs_type(ty); auto* rhs_type = create_type_func(ty); // Skip exceptions: multiplication of f32, vecN, and matNxN if (params.op == Op::kMultiply && lhs_type->is_float_scalar_or_vector_or_matrix() && rhs_type->is_float_scalar_or_vector_or_matrix()) { return; } std::stringstream ss; ss << lhs_type->FriendlyName(Symbols()) << " " << params.op << " " << rhs_type->FriendlyName(Symbols()); SCOPED_TRACE(ss.str()); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = create(Source{{12, 34}}, params.op, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); ASSERT_FALSE(r()->Resolve()); ASSERT_EQ(r()->error(), "12:34 error: Binary expression operand types are invalid for " "this operation: " + lhs_type->FriendlyName(Symbols()) + " " + FriendlyName(expr->op()) + " " + rhs_type->FriendlyName(Symbols())); } INSTANTIATE_TEST_SUITE_P( ResolverTest, Expr_Binary_Test_Invalid, testing::Combine(testing::ValuesIn(all_valid_cases), testing::ValuesIn(all_create_type_funcs))); using Expr_Binary_Test_Invalid_VectorMatrixMultiply = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_Invalid_VectorMatrixMultiply, All) { bool vec_by_mat = std::get<0>(GetParam()); uint32_t vec_size = std::get<1>(GetParam()); uint32_t mat_rows = std::get<2>(GetParam()); uint32_t mat_cols = std::get<3>(GetParam()); type::Type* lhs_type; type::Type* rhs_type; type::Type* result_type; bool is_valid_expr; if (vec_by_mat) { lhs_type = create(ty.f32(), vec_size); rhs_type = create(ty.f32(), mat_rows, mat_cols); result_type = create(ty.f32(), mat_cols); is_valid_expr = vec_size == mat_rows; } else { lhs_type = create(ty.f32(), mat_rows, mat_cols); rhs_type = create(ty.f32(), vec_size); result_type = create(ty.f32(), mat_rows); is_valid_expr = vec_size == mat_cols; } Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); if (is_valid_expr) { ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(expr) == result_type); } else { ASSERT_FALSE(r()->Resolve()); ASSERT_EQ(r()->error(), "12:34 error: Binary expression operand types are invalid for " "this operation: " + lhs_type->FriendlyName(Symbols()) + " " + FriendlyName(expr->op()) + " " + rhs_type->FriendlyName(Symbols())); } } auto all_dimension_values = testing::Values(2u, 3u, 4u); INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Invalid_VectorMatrixMultiply, testing::Combine(testing::Values(true, false), all_dimension_values, all_dimension_values, all_dimension_values)); using Expr_Binary_Test_Invalid_MatrixMatrixMultiply = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_Invalid_MatrixMatrixMultiply, All) { uint32_t lhs_mat_rows = std::get<0>(GetParam()); uint32_t lhs_mat_cols = std::get<1>(GetParam()); uint32_t rhs_mat_rows = std::get<2>(GetParam()); uint32_t rhs_mat_cols = std::get<3>(GetParam()); auto* lhs_type = create(ty.f32(), lhs_mat_rows, lhs_mat_cols); auto* rhs_type = create(ty.f32(), rhs_mat_rows, rhs_mat_cols); auto* result_type = create(ty.f32(), lhs_mat_rows, rhs_mat_cols); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); bool is_valid_expr = lhs_mat_cols == rhs_mat_rows; if (is_valid_expr) { ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(expr) == result_type); } else { ASSERT_FALSE(r()->Resolve()); ASSERT_EQ(r()->error(), "12:34 error: Binary expression operand types are invalid for " "this operation: " + lhs_type->FriendlyName(Symbols()) + " " + FriendlyName(expr->op()) + " " + rhs_type->FriendlyName(Symbols())); } } INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Invalid_MatrixMatrixMultiply, testing::Combine(all_dimension_values, all_dimension_values, all_dimension_values, all_dimension_values)); } // namespace ExprBinaryTest using UnaryOpExpressionTest = ResolverTestWithParam; TEST_P(UnaryOpExpressionTest, Expr_UnaryOp) { auto op = GetParam(); Global("ident", ty.vec4(), ast::StorageClass::kInput); auto* der = create(op, Expr("ident")); WrapInFunction(der); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(der), nullptr); ASSERT_TRUE(TypeOf(der)->Is()); EXPECT_TRUE(TypeOf(der)->As()->type()->Is()); EXPECT_EQ(TypeOf(der)->As()->size(), 4u); } INSTANTIATE_TEST_SUITE_P(ResolverTest, UnaryOpExpressionTest, testing::Values(ast::UnaryOp::kNegation, ast::UnaryOp::kNot)); TEST_F(ResolverTest, StorageClass_SetsIfMissing) { auto* var = Var("var", ty.i32(), ast::StorageClass::kNone); auto* stmt = create(var); Func("func", ast::VariableList{}, ty.void_(), ast::StatementList{stmt}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kFunction); } TEST_F(ResolverTest, StorageClass_DoesNotSetOnConst) { auto* var = Const("var", ty.i32()); auto* stmt = create(var); Func("func", ast::VariableList{}, ty.void_(), ast::StatementList{stmt}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kNone); } TEST_F(ResolverTest, Function_EntryPoints_StageDecoration) { // fn b() {} // fn c() { b(); } // fn a() { c(); } // fn ep_1() { a(); b(); } // fn ep_2() { c();} // // c -> {ep_1, ep_2} // a -> {ep_1} // b -> {ep_1, ep_2} // ep_1 -> {} // ep_2 -> {} Global("first", ty.f32(), ast::StorageClass::kPrivate); Global("second", ty.f32(), ast::StorageClass::kPrivate); Global("call_a", ty.f32(), ast::StorageClass::kPrivate); Global("call_b", ty.f32(), ast::StorageClass::kPrivate); Global("call_c", ty.f32(), ast::StorageClass::kPrivate); ast::VariableList params; auto* func_b = Func("b", params, ty.f32(), ast::StatementList{Return(Expr(0.0f))}, ast::DecorationList{}); auto* func_c = Func("c", params, ty.f32(), ast::StatementList{create( Expr("second"), Call("b")), Return(Expr(0.0f))}, ast::DecorationList{}); auto* func_a = Func("a", params, ty.f32(), ast::StatementList{create( Expr("first"), Call("c")), Return(Expr(0.0f))}, ast::DecorationList{}); auto* ep_1 = Func("ep_1", params, ty.void_(), ast::StatementList{ create(Expr("call_a"), Call("a")), create(Expr("call_b"), Call("b")), }, ast::DecorationList{ create(ast::PipelineStage::kVertex), }); auto* ep_2 = Func("ep_2", params, ty.void_(), ast::StatementList{ create(Expr("call_c"), Call("c")), }, ast::DecorationList{ create(ast::PipelineStage::kVertex), }); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* func_b_sem = Sem().Get(func_b); auto* func_a_sem = Sem().Get(func_a); auto* func_c_sem = Sem().Get(func_c); auto* ep_1_sem = Sem().Get(ep_1); auto* ep_2_sem = Sem().Get(ep_2); ASSERT_NE(func_b_sem, nullptr); ASSERT_NE(func_a_sem, nullptr); ASSERT_NE(func_c_sem, nullptr); ASSERT_NE(ep_1_sem, nullptr); ASSERT_NE(ep_2_sem, nullptr); EXPECT_EQ(func_b_sem->Parameters().size(), 0u); EXPECT_EQ(func_a_sem->Parameters().size(), 0u); EXPECT_EQ(func_c_sem->Parameters().size(), 0u); const auto& b_eps = func_b_sem->AncestorEntryPoints(); ASSERT_EQ(2u, b_eps.size()); EXPECT_EQ(Symbols().Register("ep_1"), b_eps[0]); EXPECT_EQ(Symbols().Register("ep_2"), b_eps[1]); const auto& a_eps = func_a_sem->AncestorEntryPoints(); ASSERT_EQ(1u, a_eps.size()); EXPECT_EQ(Symbols().Register("ep_1"), a_eps[0]); const auto& c_eps = func_c_sem->AncestorEntryPoints(); ASSERT_EQ(2u, c_eps.size()); EXPECT_EQ(Symbols().Register("ep_1"), c_eps[0]); EXPECT_EQ(Symbols().Register("ep_2"), c_eps[1]); EXPECT_TRUE(ep_1_sem->AncestorEntryPoints().empty()); EXPECT_TRUE(ep_2_sem->AncestorEntryPoints().empty()); } // Check for linear-time traversal of functions reachable from entry points. // See: crbug.com/tint/245 TEST_F(ResolverTest, Function_EntryPoints_LinearTime) { // fn lNa() { } // fn lNb() { } // ... // fn l2a() { l3a(); l3b(); } // fn l2b() { l3a(); l3b(); } // fn l1a() { l2a(); l2b(); } // fn l1b() { l2a(); l2b(); } // fn main() { l1a(); l1b(); } static constexpr int levels = 64; auto fn_a = [](int level) { return "l" + std::to_string(level + 1) + "a"; }; auto fn_b = [](int level) { return "l" + std::to_string(level + 1) + "b"; }; Func(fn_a(levels), {}, ty.void_(), {}, {}); Func(fn_b(levels), {}, ty.void_(), {}, {}); for (int i = levels - 1; i >= 0; i--) { Func(fn_a(i), {}, ty.void_(), { create(Call(fn_a(i + 1))), create(Call(fn_b(i + 1))), }, {}); Func(fn_b(i), {}, ty.void_(), { create(Call(fn_a(i + 1))), create(Call(fn_b(i + 1))), }, {}); } Func("main", {}, ty.void_(), { create(Call(fn_a(0))), create(Call(fn_b(0))), }, { create(ast::PipelineStage::kVertex), }); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverTest, ASTNodeNotReached) { EXPECT_FATAL_FAILURE( { ProgramBuilder builder; builder.Expr("1"); Resolver(&builder).Resolve(); }, "internal compiler error: AST node 'tint::ast::IdentifierExpression' was " "not reached by the resolver"); } TEST_F(ResolverTest, ASTNodeReachedTwice) { EXPECT_FATAL_FAILURE( { ProgramBuilder builder; auto* expr = builder.Expr("1"); auto* usesExprTwice = builder.Add(expr, expr); builder.Global("g", builder.ty.i32(), ast::StorageClass::kPrivate, usesExprTwice); Resolver(&builder).Resolve(); }, "internal compiler error: AST node 'tint::ast::IdentifierExpression' was " "encountered twice in the same AST of a Program"); } } // namespace } // namespace resolver } // namespace tint