// Copyright 2022 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/ir/builder_impl.h" #include #include "src/tint/ast/alias.h" #include "src/tint/ast/assignment_statement.h" #include "src/tint/ast/binary_expression.h" #include "src/tint/ast/bitcast_expression.h" #include "src/tint/ast/block_statement.h" #include "src/tint/ast/bool_literal_expression.h" #include "src/tint/ast/break_if_statement.h" #include "src/tint/ast/break_statement.h" #include "src/tint/ast/call_expression.h" #include "src/tint/ast/call_statement.h" #include "src/tint/ast/compound_assignment_statement.h" #include "src/tint/ast/const.h" #include "src/tint/ast/const_assert.h" #include "src/tint/ast/continue_statement.h" #include "src/tint/ast/discard_statement.h" #include "src/tint/ast/enable.h" #include "src/tint/ast/float_literal_expression.h" #include "src/tint/ast/for_loop_statement.h" #include "src/tint/ast/function.h" #include "src/tint/ast/id_attribute.h" #include "src/tint/ast/identifier.h" #include "src/tint/ast/identifier_expression.h" #include "src/tint/ast/if_statement.h" #include "src/tint/ast/int_literal_expression.h" #include "src/tint/ast/invariant_attribute.h" #include "src/tint/ast/let.h" #include "src/tint/ast/literal_expression.h" #include "src/tint/ast/loop_statement.h" #include "src/tint/ast/override.h" #include "src/tint/ast/return_statement.h" #include "src/tint/ast/statement.h" #include "src/tint/ast/struct.h" #include "src/tint/ast/struct_member_align_attribute.h" #include "src/tint/ast/struct_member_size_attribute.h" #include "src/tint/ast/switch_statement.h" #include "src/tint/ast/templated_identifier.h" #include "src/tint/ast/unary_op_expression.h" #include "src/tint/ast/var.h" #include "src/tint/ast/variable_decl_statement.h" #include "src/tint/ast/while_statement.h" #include "src/tint/ir/function.h" #include "src/tint/ir/if.h" #include "src/tint/ir/loop.h" #include "src/tint/ir/module.h" #include "src/tint/ir/store.h" #include "src/tint/ir/switch.h" #include "src/tint/ir/value.h" #include "src/tint/program.h" #include "src/tint/sem/builtin.h" #include "src/tint/sem/call.h" #include "src/tint/sem/function.h" #include "src/tint/sem/materialize.h" #include "src/tint/sem/module.h" #include "src/tint/sem/switch_statement.h" #include "src/tint/sem/value_constructor.h" #include "src/tint/sem/value_conversion.h" #include "src/tint/sem/value_expression.h" #include "src/tint/sem/variable.h" #include "src/tint/switch.h" #include "src/tint/type/void.h" #include "src/tint/utils/defer.h" #include "src/tint/utils/scoped_assignment.h" namespace tint::ir { namespace { using ResultType = utils::Result; class FlowStackScope { public: FlowStackScope(BuilderImpl* impl, FlowNode* node) : impl_(impl) { impl_->flow_stack.Push(node); } ~FlowStackScope() { impl_->flow_stack.Pop(); } private: BuilderImpl* impl_; }; bool IsBranched(const Block* b) { return b->branch.target != nullptr; } bool IsConnected(const FlowNode* b) { // Function is always connected as it's the start. if (b->Is()) { return true; } for (auto* parent : b->inbound_branches) { if (IsConnected(parent)) { return true; } } // Getting here means all the incoming branches are disconnected. return false; } } // namespace BuilderImpl::BuilderImpl(const Program* program) : program_(program), clone_ctx_{ type::CloneContext{{&program->Symbols()}, {&builder.ir.symbols, &builder.ir.types}}, {&builder.ir.constants}} {} BuilderImpl::~BuilderImpl() = default; void BuilderImpl::add_error(const Source& s, const std::string& err) { diagnostics_.add_error(tint::diag::System::IR, err, s); } void BuilderImpl::BranchTo(FlowNode* node, utils::VectorRef args) { TINT_ASSERT(IR, current_flow_block); TINT_ASSERT(IR, !IsBranched(current_flow_block)); builder.Branch(current_flow_block, node, args); current_flow_block = nullptr; } void BuilderImpl::BranchToIfNeeded(FlowNode* node) { if (!current_flow_block || IsBranched(current_flow_block)) { return; } BranchTo(node); } FlowNode* BuilderImpl::FindEnclosingControl(ControlFlags flags) { for (auto it = flow_stack.rbegin(); it != flow_stack.rend(); ++it) { if ((*it)->Is()) { return *it; } if (flags == ControlFlags::kExcludeSwitch) { continue; } if ((*it)->Is()) { return *it; } } return nullptr; } Symbol BuilderImpl::CloneSymbol(Symbol sym) const { return clone_ctx_.type_ctx.dst.st->Register(sym.Name()); } ResultType BuilderImpl::Build() { auto* sem = program_->Sem().Module(); for (auto* decl : sem->DependencyOrderedDeclarations()) { tint::Switch( decl, // [&](const ast::Struct*) { // Will be encoded into the `type::Struct` when used. We will then hoist all // used structs up to module scope when converting IR. }, [&](const ast::Alias*) { // Folded away and doesn't appear in the IR. }, [&](const ast::Variable* var) { // Setup the current flow node to be the root block for the module. The builder will // handle creating it if it doesn't exist already. TINT_SCOPED_ASSIGNMENT(current_flow_block, builder.CreateRootBlockIfNeeded()); EmitVariable(var); }, [&](const ast::Function* func) { EmitFunction(func); }, [&](const ast::Enable*) { // TODO(dsinclair): Implement? I think these need to be passed along so further // stages know what is enabled. }, [&](const ast::ConstAssert*) { // Evaluated by the resolver, drop from the IR. }, [&](Default) { add_error(decl->source, "unknown type: " + std::string(decl->TypeInfo().name)); }); } if (!diagnostics_.empty()) { return utils::Failure; } return ResultType{std::move(mod)}; } void BuilderImpl::EmitFunction(const ast::Function* ast_func) { // The flow stack should have been emptied when the previous function finished building. TINT_ASSERT(IR, flow_stack.IsEmpty()); auto* ir_func = builder.CreateFunction(); ir_func->name = CloneSymbol(ast_func->name->symbol); current_function_ = ir_func; builder.ir.functions.Push(ir_func); ast_to_flow_[ast_func] = ir_func; const auto* sem = program_->Sem().Get(ast_func); if (ast_func->IsEntryPoint()) { builder.ir.entry_points.Push(ir_func); switch (ast_func->PipelineStage()) { case ast::PipelineStage::kVertex: ir_func->pipeline_stage = Function::PipelineStage::kVertex; break; case ast::PipelineStage::kFragment: ir_func->pipeline_stage = Function::PipelineStage::kFragment; break; case ast::PipelineStage::kCompute: { ir_func->pipeline_stage = Function::PipelineStage::kCompute; auto wg_size = sem->WorkgroupSize(); ir_func->workgroup_size = { wg_size[0].value(), wg_size[1].value_or(1), wg_size[2].value_or(1), }; break; } default: { TINT_ICE(IR, diagnostics_) << "Invalid pipeline stage"; return; } } for (auto* attr : ast_func->return_type_attributes) { tint::Switch( attr, // [&](const ast::LocationAttribute*) { ir_func->return_attributes.Push(Function::ReturnAttribute::kLocation); }, [&](const ast::InvariantAttribute*) { ir_func->return_attributes.Push(Function::ReturnAttribute::kInvariant); }, [&](const ast::BuiltinAttribute* b) { if (auto* ident_sem = program_->Sem() .Get(b) ->As>()) { switch (ident_sem->Value()) { case builtin::BuiltinValue::kPosition: ir_func->return_attributes.Push( Function::ReturnAttribute::kPosition); break; case builtin::BuiltinValue::kFragDepth: ir_func->return_attributes.Push( Function::ReturnAttribute::kFragDepth); break; case builtin::BuiltinValue::kSampleMask: ir_func->return_attributes.Push( Function::ReturnAttribute::kSampleMask); break; default: TINT_ICE(IR, diagnostics_) << "Unknown builtin value in return attributes " << ident_sem->Value(); return; } } else { TINT_ICE(IR, diagnostics_) << "Builtin attribute sem invalid"; return; } }); } } ir_func->return_type = sem->ReturnType()->Clone(clone_ctx_.type_ctx); ir_func->return_location = sem->ReturnLocation(); { FlowStackScope scope(this, ir_func); current_flow_block = ir_func->start_target; EmitBlock(ast_func->body); // TODO(dsinclair): Store return type and attributes // TODO(dsinclair): Store parameters // If the branch target has already been set then a `return` was called. Only set in the // case where `return` wasn't called. BranchToIfNeeded(current_function_->end_target); } TINT_ASSERT(IR, flow_stack.IsEmpty()); current_flow_block = nullptr; current_function_ = nullptr; } void BuilderImpl::EmitStatements(utils::VectorRef stmts) { for (auto* s : stmts) { EmitStatement(s); // If the current flow block has a branch target then the rest of the statements in this // block are dead code. Skip them. if (!current_flow_block || IsBranched(current_flow_block)) { break; } } } void BuilderImpl::EmitStatement(const ast::Statement* stmt) { tint::Switch( stmt, // [&](const ast::AssignmentStatement* a) { EmitAssignment(a); }, [&](const ast::BlockStatement* b) { EmitBlock(b); }, [&](const ast::BreakStatement* b) { EmitBreak(b); }, [&](const ast::BreakIfStatement* b) { EmitBreakIf(b); }, [&](const ast::CallStatement* c) { EmitCall(c); }, [&](const ast::CompoundAssignmentStatement* c) { EmitCompoundAssignment(c); }, [&](const ast::ContinueStatement* c) { EmitContinue(c); }, [&](const ast::DiscardStatement* d) { EmitDiscard(d); }, [&](const ast::IfStatement* i) { EmitIf(i); }, [&](const ast::LoopStatement* l) { EmitLoop(l); }, [&](const ast::ForLoopStatement* l) { EmitForLoop(l); }, [&](const ast::WhileStatement* l) { EmitWhile(l); }, [&](const ast::ReturnStatement* r) { EmitReturn(r); }, [&](const ast::SwitchStatement* s) { EmitSwitch(s); }, [&](const ast::VariableDeclStatement* v) { EmitVariable(v->variable); }, [&](const ast::ConstAssert*) { // Not emitted }, [&](Default) { add_error(stmt->source, "unknown statement type: " + std::string(stmt->TypeInfo().name)); }); } void BuilderImpl::EmitAssignment(const ast::AssignmentStatement* stmt) { auto lhs = EmitExpression(stmt->lhs); if (!lhs) { return; } auto rhs = EmitExpression(stmt->rhs); if (!rhs) { return; } auto store = builder.Store(lhs.Get(), rhs.Get()); current_flow_block->instructions.Push(store); } void BuilderImpl::EmitCompoundAssignment(const ast::CompoundAssignmentStatement* stmt) { auto lhs = EmitExpression(stmt->lhs); if (!lhs) { return; } auto rhs = EmitExpression(stmt->rhs); if (!rhs) { return; } auto* ty = lhs.Get()->Type(); Binary* inst = nullptr; switch (stmt->op) { case ast::BinaryOp::kAnd: inst = builder.And(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kOr: inst = builder.Or(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kXor: inst = builder.Xor(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kShiftLeft: inst = builder.ShiftLeft(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kShiftRight: inst = builder.ShiftRight(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kAdd: inst = builder.Add(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kSubtract: inst = builder.Subtract(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kMultiply: inst = builder.Multiply(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kDivide: inst = builder.Divide(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kModulo: inst = builder.Modulo(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kLessThanEqual: case ast::BinaryOp::kGreaterThanEqual: case ast::BinaryOp::kGreaterThan: case ast::BinaryOp::kLessThan: case ast::BinaryOp::kNotEqual: case ast::BinaryOp::kEqual: case ast::BinaryOp::kLogicalAnd: case ast::BinaryOp::kLogicalOr: TINT_ICE(IR, diagnostics_) << "invalid compound assignment"; return; case ast::BinaryOp::kNone: TINT_ICE(IR, diagnostics_) << "missing binary operand type"; return; } current_flow_block->instructions.Push(inst); auto store = builder.Store(lhs.Get(), inst); current_flow_block->instructions.Push(store); } void BuilderImpl::EmitBlock(const ast::BlockStatement* block) { scopes_.Push(); TINT_DEFER(scopes_.Pop()); // Note, this doesn't need to emit a Block as the current block flow node should be sufficient // as the blocks all get flattened. Each flow control node will inject the basic blocks it // requires. EmitStatements(block->statements); } void BuilderImpl::EmitIf(const ast::IfStatement* stmt) { auto* if_node = builder.CreateIf(); // Emit the if condition into the end of the preceding block auto reg = EmitExpression(stmt->condition); if (!reg) { return; } if_node->condition = reg.Get(); BranchTo(if_node); ast_to_flow_[stmt] = if_node; { FlowStackScope scope(this, if_node); current_flow_block = if_node->true_.target->As(); EmitBlock(stmt->body); // If the true branch did not execute control flow, then go to the merge target BranchToIfNeeded(if_node->merge.target); current_flow_block = if_node->false_.target->As(); if (stmt->else_statement) { EmitStatement(stmt->else_statement); } // If the false branch did not execute control flow, then go to the merge target BranchToIfNeeded(if_node->merge.target); } current_flow_block = nullptr; // If both branches went somewhere, then they both returned, continued or broke. So, there is no // need for the if merge-block and there is nothing to branch to the merge block anyway. if (IsConnected(if_node->merge.target)) { current_flow_block = if_node->merge.target->As(); } } void BuilderImpl::EmitLoop(const ast::LoopStatement* stmt) { auto* loop_node = builder.CreateLoop(); BranchTo(loop_node); ast_to_flow_[stmt] = loop_node; { FlowStackScope scope(this, loop_node); current_flow_block = loop_node->start.target->As(); EmitBlock(stmt->body); // The current block didn't `break`, `return` or `continue`, go to the continuing block. BranchToIfNeeded(loop_node->continuing.target); current_flow_block = loop_node->continuing.target->As(); if (stmt->continuing) { EmitBlock(stmt->continuing); } // Branch back to the start node if the continue target didn't branch out already BranchToIfNeeded(loop_node->start.target); } // The loop merge can get disconnected if the loop returns directly, or the continuing target // branches, eventually, to the merge, but nothing branched to the continuing target. current_flow_block = loop_node->merge.target->As(); if (!IsConnected(loop_node->merge.target)) { current_flow_block = nullptr; } } void BuilderImpl::EmitWhile(const ast::WhileStatement* stmt) { auto* loop_node = builder.CreateLoop(); // Continue is always empty, just go back to the start TINT_ASSERT(IR, loop_node->continuing.target->Is()); builder.Branch(loop_node->continuing.target->As(), loop_node->start.target, utils::Empty); BranchTo(loop_node); ast_to_flow_[stmt] = loop_node; { FlowStackScope scope(this, loop_node); current_flow_block = loop_node->start.target->As(); // Emit the while condition into the start target of the loop auto reg = EmitExpression(stmt->condition); if (!reg) { return; } // Create an `if (cond) {} else {break;}` control flow auto* if_node = builder.CreateIf(); TINT_ASSERT(IR, if_node->true_.target->Is()); builder.Branch(if_node->true_.target->As(), if_node->merge.target, utils::Empty); TINT_ASSERT(IR, if_node->false_.target->Is()); builder.Branch(if_node->false_.target->As(), loop_node->merge.target, utils::Empty); if_node->condition = reg.Get(); BranchTo(if_node); current_flow_block = if_node->merge.target->As(); EmitBlock(stmt->body); BranchToIfNeeded(loop_node->continuing.target); } // The while loop always has a path to the merge target as the break statement comes before // anything inside the loop. current_flow_block = loop_node->merge.target->As(); } void BuilderImpl::EmitForLoop(const ast::ForLoopStatement* stmt) { auto* loop_node = builder.CreateLoop(); TINT_ASSERT(IR, loop_node->continuing.target->Is()); builder.Branch(loop_node->continuing.target->As(), loop_node->start.target, utils::Empty); // Make sure the initializer ends up in a contained scope scopes_.Push(); TINT_DEFER(scopes_.Pop()); if (stmt->initializer) { // Emit the for initializer before branching to the loop EmitStatement(stmt->initializer); } BranchTo(loop_node); ast_to_flow_[stmt] = loop_node; { FlowStackScope scope(this, loop_node); current_flow_block = loop_node->start.target->As(); if (stmt->condition) { // Emit the condition into the target target of the loop auto reg = EmitExpression(stmt->condition); if (!reg) { return; } // Create an `if (cond) {} else {break;}` control flow auto* if_node = builder.CreateIf(); TINT_ASSERT(IR, if_node->true_.target->Is()); builder.Branch(if_node->true_.target->As(), if_node->merge.target, utils::Empty); TINT_ASSERT(IR, if_node->false_.target->Is()); builder.Branch(if_node->false_.target->As(), loop_node->merge.target, utils::Empty); if_node->condition = reg.Get(); BranchTo(if_node); current_flow_block = if_node->merge.target->As(); } EmitBlock(stmt->body); BranchToIfNeeded(loop_node->continuing.target); if (stmt->continuing) { current_flow_block = loop_node->continuing.target->As(); EmitStatement(stmt->continuing); } } // The while loop always has a path to the merge target as the break statement comes before // anything inside the loop. current_flow_block = loop_node->merge.target->As(); } void BuilderImpl::EmitSwitch(const ast::SwitchStatement* stmt) { auto* switch_node = builder.CreateSwitch(); // Emit the condition into the preceding block auto reg = EmitExpression(stmt->condition); if (!reg) { return; } switch_node->condition = reg.Get(); BranchTo(switch_node); ast_to_flow_[stmt] = switch_node; { FlowStackScope scope(this, switch_node); const auto* sem = program_->Sem().Get(stmt); for (const auto* c : sem->Cases()) { utils::Vector selectors; for (const auto* selector : c->Selectors()) { if (selector->IsDefault()) { selectors.Push({nullptr}); } else { selectors.Push({builder.Constant(selector->Value()->Clone(clone_ctx_))}); } } current_flow_block = builder.CreateCase(switch_node, selectors); EmitBlock(c->Body()->Declaration()); BranchToIfNeeded(switch_node->merge.target); } } current_flow_block = nullptr; if (IsConnected(switch_node->merge.target)) { current_flow_block = switch_node->merge.target->As(); } } void BuilderImpl::EmitReturn(const ast::ReturnStatement* stmt) { utils::Vector ret_value; if (stmt->value) { auto ret = EmitExpression(stmt->value); if (!ret) { return; } ret_value.Push(ret.Get()); } BranchTo(current_function_->end_target, std::move(ret_value)); } void BuilderImpl::EmitBreak(const ast::BreakStatement*) { auto* current_control = FindEnclosingControl(ControlFlags::kNone); TINT_ASSERT(IR, current_control); if (auto* c = current_control->As()) { BranchTo(c->merge.target); } else if (auto* s = current_control->As()) { BranchTo(s->merge.target); } else { TINT_UNREACHABLE(IR, diagnostics_); } } void BuilderImpl::EmitContinue(const ast::ContinueStatement*) { auto* current_control = FindEnclosingControl(ControlFlags::kExcludeSwitch); TINT_ASSERT(IR, current_control); if (auto* c = current_control->As()) { BranchTo(c->continuing.target); } else { TINT_UNREACHABLE(IR, diagnostics_); } } // Discard is being treated as an instruction. The semantics in WGSL is demote_to_helper, so the // code has to continue as before it just predicates writes. If WGSL grows some kind of terminating // discard that would probably make sense as a FlowNode but would then require figuring out the // multi-level exit that is triggered. void BuilderImpl::EmitDiscard(const ast::DiscardStatement*) { auto* inst = builder.Discard(); current_flow_block->instructions.Push(inst); } void BuilderImpl::EmitBreakIf(const ast::BreakIfStatement* stmt) { auto* if_node = builder.CreateIf(); // Emit the break-if condition into the end of the preceding block auto reg = EmitExpression(stmt->condition); if (!reg) { return; } if_node->condition = reg.Get(); BranchTo(if_node); ast_to_flow_[stmt] = if_node; auto* current_control = FindEnclosingControl(ControlFlags::kExcludeSwitch); TINT_ASSERT(IR, current_control); TINT_ASSERT(IR, current_control->Is()); auto* loop = current_control->As(); current_flow_block = if_node->true_.target->As(); BranchTo(loop->merge.target); current_flow_block = if_node->false_.target->As(); BranchTo(if_node->merge.target); current_flow_block = if_node->merge.target->As(); // The `break-if` has to be the last item in the continuing block. The false branch of the // `break-if` will always take us back to the start of the loop. BranchTo(loop->start.target); } utils::Result BuilderImpl::EmitExpression(const ast::Expression* expr) { // If this is a value that has been const-eval'd return the result. if (auto* sem = program_->Sem().Get(expr)->As()) { if (auto* v = sem->ConstantValue()) { if (auto* cv = v->Clone(clone_ctx_)) { return builder.Constant(cv); } } } return tint::Switch( expr, // [&](const ast::IndexAccessorExpression* a) { // TODO(dsinclair): Implement // }, [&](const ast::BinaryExpression* b) { return EmitBinary(b); }, [&](const ast::BitcastExpression* b) { return EmitBitcast(b); }, [&](const ast::CallExpression* c) { return EmitCall(c); }, [&](const ast::IdentifierExpression* i) { auto* v = scopes_.Get(i->identifier->symbol); return utils::Result{v}; }, [&](const ast::LiteralExpression* l) { return EmitLiteral(l); }, // [&](const ast::MemberAccessorExpression* m) { // TODO(dsinclair): Implement // }, // [&](const ast::PhonyExpression*) { // TODO(dsinclair): Implement. The call may have side effects so has to be made. // }, [&](const ast::UnaryOpExpression* u) { return EmitUnary(u); }, [&](Default) { add_error(expr->source, "unknown expression type: " + std::string(expr->TypeInfo().name)); return utils::Failure; }); } void BuilderImpl::EmitVariable(const ast::Variable* var) { auto* sem = program_->Sem().Get(var); return tint::Switch( // var, [&](const ast::Var* v) { auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); auto* val = builder.Declare(ty, sem->AddressSpace(), sem->Access()); current_flow_block->instructions.Push(val); if (v->initializer) { auto init = EmitExpression(v->initializer); if (!init) { return; } val->initializer = init.Get(); } // Store the declaration so we can get the instruction to store too scopes_.Set(v->name->symbol, val); // Record the original name of the var builder.ir.SetName(val, v->name->symbol.Name()); }, [&](const ast::Let* l) { // A `let` doesn't exist as a standalone item in the IR, it's just the result of the // initializer. auto init = EmitExpression(l->initializer); if (!init) { return; } // Store the results of the initialization scopes_.Set(l->name->symbol, init.Get()); // Record the original name of the let builder.ir.SetName(init.Get(), l->name->symbol.Name()); }, [&](const ast::Override*) { add_error(var->source, "found an `Override` variable. The SubstituteOverrides " "transform must be run before converting to IR"); }, [&](const ast::Const*) { // Skip. This should be handled by const-eval already, so the const will be a // `constant::` value at the usage sites. Can just ignore the `const` variable as it // should never be used. // // TODO(dsinclair): Probably want to store the const variable somewhere and then in // identifier expression log an error if we ever see a const identifier. Add this when // identifiers and variables are supported. }, [&](Default) { add_error(var->source, "unknown variable: " + std::string(var->TypeInfo().name)); }); } utils::Result BuilderImpl::EmitUnary(const ast::UnaryOpExpression* expr) { auto val = EmitExpression(expr->expr); if (!val) { return utils::Failure; } auto* sem = program_->Sem().Get(expr); auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); Instruction* inst = nullptr; switch (expr->op) { case ast::UnaryOp::kAddressOf: inst = builder.AddressOf(ty, val.Get()); break; case ast::UnaryOp::kComplement: inst = builder.Complement(ty, val.Get()); break; case ast::UnaryOp::kIndirection: inst = builder.Indirection(ty, val.Get()); break; case ast::UnaryOp::kNegation: inst = builder.Negation(ty, val.Get()); break; case ast::UnaryOp::kNot: inst = builder.Not(ty, val.Get()); break; } current_flow_block->instructions.Push(inst); return inst; } // A short-circut needs special treatment. The short-circuit is decomposed into the relevant if // statements and declarations. utils::Result BuilderImpl::EmitShortCircuit(const ast::BinaryExpression* expr) { switch (expr->op) { case ast::BinaryOp::kLogicalAnd: case ast::BinaryOp::kLogicalOr: break; default: TINT_ICE(IR, diagnostics_) << "invalid operation type for short-circut decomposition"; return utils::Failure; } // Evaluate the LHS of the short-circuit auto lhs = EmitExpression(expr->lhs); if (!lhs) { return utils::Failure; } // Generate a variable to store the short-circut into auto* ty = builder.ir.types.Get(); auto* result_var = builder.Declare(ty, builtin::AddressSpace::kFunction, builtin::Access::kReadWrite); current_flow_block->instructions.Push(result_var); auto* lhs_store = builder.Store(result_var, lhs.Get()); current_flow_block->instructions.Push(lhs_store); auto* if_node = builder.CreateIf(); if_node->condition = lhs.Get(); BranchTo(if_node); utils::Result rhs; { FlowStackScope scope(this, if_node); // If this is an `&&` then we only evaluate the RHS expression in the true block. // If this is an `||` then we only evaluate the RHS expression in the false block. if (expr->op == ast::BinaryOp::kLogicalAnd) { current_flow_block = if_node->true_.target->As(); } else { current_flow_block = if_node->false_.target->As(); } rhs = EmitExpression(expr->rhs); if (!rhs) { return utils::Failure; } auto* rhs_store = builder.Store(result_var, rhs.Get()); current_flow_block->instructions.Push(rhs_store); BranchTo(if_node->merge.target); } current_flow_block = if_node->merge.target->As(); return result_var; } utils::Result BuilderImpl::EmitBinary(const ast::BinaryExpression* expr) { if (expr->op == ast::BinaryOp::kLogicalAnd || expr->op == ast::BinaryOp::kLogicalOr) { return EmitShortCircuit(expr); } auto lhs = EmitExpression(expr->lhs); if (!lhs) { return utils::Failure; } auto rhs = EmitExpression(expr->rhs); if (!rhs) { return utils::Failure; } auto* sem = program_->Sem().Get(expr); auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); Binary* inst = nullptr; switch (expr->op) { case ast::BinaryOp::kAnd: inst = builder.And(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kOr: inst = builder.Or(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kXor: inst = builder.Xor(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kEqual: inst = builder.Equal(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kNotEqual: inst = builder.NotEqual(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kLessThan: inst = builder.LessThan(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kGreaterThan: inst = builder.GreaterThan(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kLessThanEqual: inst = builder.LessThanEqual(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kGreaterThanEqual: inst = builder.GreaterThanEqual(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kShiftLeft: inst = builder.ShiftLeft(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kShiftRight: inst = builder.ShiftRight(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kAdd: inst = builder.Add(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kSubtract: inst = builder.Subtract(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kMultiply: inst = builder.Multiply(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kDivide: inst = builder.Divide(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kModulo: inst = builder.Modulo(ty, lhs.Get(), rhs.Get()); break; case ast::BinaryOp::kLogicalAnd: case ast::BinaryOp::kLogicalOr: TINT_ICE(IR, diagnostics_) << "short circuit op should have already been handled"; return utils::Failure; case ast::BinaryOp::kNone: TINT_ICE(IR, diagnostics_) << "missing binary operand type"; return utils::Failure; } current_flow_block->instructions.Push(inst); return inst; } utils::Result BuilderImpl::EmitBitcast(const ast::BitcastExpression* expr) { auto val = EmitExpression(expr->expr); if (!val) { return utils::Failure; } auto* sem = program_->Sem().Get(expr); auto* ty = sem->Type()->Clone(clone_ctx_.type_ctx); auto* inst = builder.Bitcast(ty, val.Get()); current_flow_block->instructions.Push(inst); return inst; } void BuilderImpl::EmitCall(const ast::CallStatement* stmt) { (void)EmitCall(stmt->expr); } utils::Result BuilderImpl::EmitCall(const ast::CallExpression* expr) { // If this is a materialized semantic node, just use the constant value. if (auto* mat = program_->Sem().Get(expr)) { if (mat->ConstantValue()) { auto* cv = mat->ConstantValue()->Clone(clone_ctx_); if (!cv) { add_error(expr->source, "failed to get constant value for call " + std::string(expr->TypeInfo().name)); return utils::Failure; } return builder.Constant(cv); } } utils::Vector args; args.Reserve(expr->args.Length()); // Emit the arguments for (const auto* arg : expr->args) { auto value = EmitExpression(arg); if (!value) { add_error(arg->source, "failed to convert arguments"); return utils::Failure; } args.Push(value.Get()); } auto* sem = program_->Sem().Get(expr); if (!sem) { add_error(expr->source, "failed to get semantic information for call " + std::string(expr->TypeInfo().name)); return utils::Failure; } auto* ty = sem->Target()->ReturnType()->Clone(clone_ctx_.type_ctx); Instruction* inst = nullptr; // If this is a builtin function, emit the specific builtin value if (auto* b = sem->Target()->As()) { inst = builder.Builtin(ty, b->Type(), args); } else if (sem->Target()->As()) { inst = builder.Construct(ty, std::move(args)); } else if (auto* conv = sem->Target()->As()) { auto* from = conv->Source()->Clone(clone_ctx_.type_ctx); inst = builder.Convert(ty, from, std::move(args)); } else if (expr->target->identifier->Is()) { TINT_UNIMPLEMENTED(IR, diagnostics_) << "missing templated ident support"; return utils::Failure; } else { // Not a builtin and not a templated call, so this is a user function. auto name = CloneSymbol(expr->target->identifier->symbol); inst = builder.UserCall(ty, name, std::move(args)); } if (inst == nullptr) { return utils::Failure; } current_flow_block->instructions.Push(inst); return inst; } utils::Result BuilderImpl::EmitLiteral(const ast::LiteralExpression* lit) { auto* sem = program_->Sem().Get(lit); if (!sem) { add_error(lit->source, "failed to get semantic information for node " + std::string(lit->TypeInfo().name)); return utils::Failure; } auto* cv = sem->ConstantValue()->Clone(clone_ctx_); if (!cv) { add_error(lit->source, "failed to get constant value for node " + std::string(lit->TypeInfo().name)); return utils::Failure; } return builder.Constant(cv); } void BuilderImpl::EmitAttributes(utils::VectorRef attrs) { for (auto* attr : attrs) { EmitAttribute(attr); } } void BuilderImpl::EmitAttribute(const ast::Attribute* attr) { tint::Switch( // attr, // [&](const ast::WorkgroupAttribute* wg) { // TODO(dsinclair): Implement // }, // [&](const ast::StageAttribute* s) { // TODO(dsinclair): Implement // }, // [&](const ast::BindingAttribute* b) { // TODO(dsinclair): Implement // }, // [&](const ast::GroupAttribute* g) { // TODO(dsinclair): Implement // }, // [&](const ast::LocationAttribute* l) { // TODO(dsinclair): Implement // }, // [&](const ast::BuiltinAttribute* b) { // TODO(dsinclair): Implement // }, // [&](const ast::InterpolateAttribute* i) { // TODO(dsinclair): Implement // }, // [&](const ast::InvariantAttribute* i) { // TODO(dsinclair): Implement // }, // [&](const ast::MustUseAttribute* i) { // TODO(dsinclair): Implement // }, [&](const ast::IdAttribute*) { add_error(attr->source, "found an `Id` attribute. The SubstituteOverrides transform " "must be run before converting to IR"); }, [&](const ast::StructMemberSizeAttribute*) { TINT_ICE(IR, diagnostics_) << "StructMemberSizeAttribute encountered during IR conversion"; }, [&](const ast::StructMemberAlignAttribute*) { TINT_ICE(IR, diagnostics_) << "StructMemberAlignAttribute encountered during IR conversion"; }, // [&](const ast::StrideAttribute* s) { // TODO(dsinclair): Implement // }, // [&](const ast::InternalAttribute *i) { // TODO(dsinclair): Implement // }, [&](Default) { add_error(attr->source, "unknown attribute: " + std::string(attr->TypeInfo().name)); }); } } // namespace tint::ir