// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/reader/spirv/parser_impl.h" #include #include #include #include #include #include #include #include #include #include "source/opt/basic_block.h" #include "source/opt/build_module.h" #include "source/opt/constants.h" #include "source/opt/decoration_manager.h" #include "source/opt/function.h" #include "source/opt/instruction.h" #include "source/opt/module.h" #include "source/opt/type_manager.h" #include "source/opt/types.h" #include "spirv-tools/libspirv.hpp" #include "src/ast/binary_expression.h" #include "src/ast/binding_decoration.h" #include "src/ast/bitcast_expression.h" #include "src/ast/bool_literal.h" #include "src/ast/builtin.h" #include "src/ast/builtin_decoration.h" #include "src/ast/constant_id_decoration.h" #include "src/ast/float_literal.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/set_decoration.h" #include "src/ast/sint_literal.h" #include "src/ast/stride_decoration.h" #include "src/ast/struct.h" #include "src/ast/struct_block_decoration.h" #include "src/ast/struct_decoration.h" #include "src/ast/struct_member.h" #include "src/ast/struct_member_decoration.h" #include "src/ast/struct_member_offset_decoration.h" #include "src/ast/type/access_control_type.h" #include "src/ast/type/alias_type.h" #include "src/ast/type/array_type.h" #include "src/ast/type/bool_type.h" #include "src/ast/type/depth_texture_type.h" #include "src/ast/type/f32_type.h" #include "src/ast/type/i32_type.h" #include "src/ast/type/matrix_type.h" #include "src/ast/type/multisampled_texture_type.h" #include "src/ast/type/pointer_type.h" #include "src/ast/type/sampled_texture_type.h" #include "src/ast/type/sampler_type.h" #include "src/ast/type/storage_texture_type.h" #include "src/ast/type/struct_type.h" #include "src/ast/type/type.h" #include "src/ast/type/u32_type.h" #include "src/ast/type/vector_type.h" #include "src/ast/type/void_type.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/uint_literal.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable.h" #include "src/ast/variable_decl_statement.h" #include "src/ast/variable_decoration.h" #include "src/reader/spirv/enum_converter.h" #include "src/reader/spirv/function.h" #include "src/reader/spirv/usage.h" namespace tint { namespace reader { namespace spirv { namespace { // Input SPIR-V needs only to conform to Vulkan 1.1 requirements. // The combination of the SPIR-V reader and the semantics of WGSL // tighten up the code so that the output of the SPIR-V *writer* // will satisfy SPV_ENV_WEBGPU_0 validation. const spv_target_env kInputEnv = SPV_ENV_VULKAN_1_1; // A FunctionTraverser is used to compute an ordering of functions in the // module such that callees precede callers. class FunctionTraverser { public: explicit FunctionTraverser(const spvtools::opt::Module& module) : module_(module) {} // @returns the functions in the modules such that callees precede callers. std::vector TopologicallyOrderedFunctions() { visited_.clear(); ordered_.clear(); id_to_func_.clear(); for (const auto& f : module_) { id_to_func_[f.result_id()] = &f; } for (const auto& f : module_) { Visit(f); } return ordered_; } private: void Visit(const spvtools::opt::Function& f) { if (visited_.count(&f)) { return; } visited_.insert(&f); for (const auto& bb : f) { for (const auto& inst : bb) { if (inst.opcode() != SpvOpFunctionCall) { continue; } const auto* callee = id_to_func_[inst.GetSingleWordInOperand(0)]; if (callee) { Visit(*callee); } } } ordered_.push_back(&f); } const spvtools::opt::Module& module_; std::unordered_set visited_; std::unordered_map id_to_func_; std::vector ordered_; }; // Returns true if the opcode operates as if its operands are signed integral. bool AssumesSignedOperands(SpvOp opcode) { switch (opcode) { case SpvOpSNegate: case SpvOpSDiv: case SpvOpSRem: case SpvOpSMod: case SpvOpSLessThan: case SpvOpSLessThanEqual: case SpvOpSGreaterThan: case SpvOpSGreaterThanEqual: case SpvOpConvertSToF: return true; default: break; } return false; } // Returns true if the GLSL extended instruction expects operands to be signed. // @param extended_opcode GLSL.std.450 opcode // @returns true if all operands must be signed integral type bool AssumesSignedOperands(GLSLstd450 extended_opcode) { switch (extended_opcode) { case GLSLstd450SAbs: case GLSLstd450SSign: case GLSLstd450SMin: case GLSLstd450SMax: case GLSLstd450SClamp: return true; default: break; } return false; } // Returns true if the opcode operates as if its operands are unsigned integral. bool AssumesUnsignedOperands(SpvOp opcode) { switch (opcode) { case SpvOpUDiv: case SpvOpUMod: case SpvOpULessThan: case SpvOpULessThanEqual: case SpvOpUGreaterThan: case SpvOpUGreaterThanEqual: case SpvOpConvertUToF: return true; default: break; } return false; } // Returns true if the GLSL extended instruction expects operands to be // unsigned. // @param extended_opcode GLSL.std.450 opcode // @returns true if all operands must be unsigned integral type bool AssumesUnsignedOperands(GLSLstd450 extended_opcode) { switch (extended_opcode) { case GLSLstd450UMin: case GLSLstd450UMax: case GLSLstd450UClamp: return true; default: break; } return false; } // Returns true if the corresponding WGSL operation requires // the signedness of the result to match the signedness of the first operand. bool AssumesResultSignednessMatchesFirstOperand(SpvOp opcode) { switch (opcode) { case SpvOpNot: case SpvOpSNegate: case SpvOpBitCount: case SpvOpBitReverse: case SpvOpSDiv: case SpvOpSMod: case SpvOpSRem: return true; default: break; } return false; } // Returns true if the extended instruction requires the signedness of the // result to match the signedness of the first operand to the operation. // @param extended_opcode GLSL.std.450 opcode // @returns true if the result type must match the first operand type. bool AssumesResultSignednessMatchesFirstOperand(GLSLstd450 extended_opcode) { switch (extended_opcode) { case GLSLstd450SAbs: case GLSLstd450SSign: case GLSLstd450SMin: case GLSLstd450SMax: case GLSLstd450SClamp: case GLSLstd450UMin: case GLSLstd450UMax: case GLSLstd450UClamp: // TODO(dneto): FindSMsb? // TODO(dneto): FindUMsb? return true; default: break; } return false; } } // namespace ParserImpl::ParserImpl(const std::vector& spv_binary) : Reader(), spv_binary_(spv_binary), fail_stream_(&success_, &errors_), bool_type_(ast_module_.create()), namer_(fail_stream_), enum_converter_(fail_stream_), tools_context_(kInputEnv) { // Create a message consumer to propagate error messages from SPIRV-Tools // out as our own failures. message_consumer_ = [this](spv_message_level_t level, const char* /*source*/, const spv_position_t& position, const char* message) { switch (level) { // Ignore info and warning message. case SPV_MSG_WARNING: case SPV_MSG_INFO: break; // Otherwise, propagate the error. default: // For binary validation errors, we only have the instruction // number. It's not text, so there is no column number. this->Fail() << "line:" << position.index << ": " << message; } }; } ParserImpl::~ParserImpl() = default; bool ParserImpl::Parse() { // Set up use of SPIRV-Tools utilities. spvtools::SpirvTools spv_tools(kInputEnv); // Error messages from SPIRV-Tools are forwarded as failures, including // setting |success_| to false. spv_tools.SetMessageConsumer(message_consumer_); if (!success_) { return false; } // Only consider modules valid for Vulkan 1.0. On failure, the message // consumer will set the error status. if (!spv_tools.Validate(spv_binary_)) { return false; } if (!BuildInternalModule()) { return false; } if (!ParseInternalModule()) { return false; } return success_; } ast::Module ParserImpl::module() { // TODO(dneto): Should we clear out spv_binary_ here, to reduce // memory usage? return std::move(ast_module_); } ast::type::Type* ParserImpl::ConvertType(uint32_t type_id) { if (!success_) { return nullptr; } if (type_mgr_ == nullptr) { Fail() << "ConvertType called when the internal module has not been built"; return nullptr; } auto where = id_to_type_.find(type_id); if (where != id_to_type_.end()) { return where->second; } auto* spirv_type = type_mgr_->GetType(type_id); if (spirv_type == nullptr) { Fail() << "ID is not a SPIR-V type: " << type_id; return nullptr; } auto save = [this, type_id, spirv_type](ast::type::Type* type) { if (type != nullptr) { id_to_type_[type_id] = type; MaybeGenerateAlias(type_id, spirv_type); } return type; }; switch (spirv_type->kind()) { case spvtools::opt::analysis::Type::kVoid: return save(ast_module_.create()); case spvtools::opt::analysis::Type::kBool: return save(bool_type_); case spvtools::opt::analysis::Type::kInteger: return save(ConvertType(spirv_type->AsInteger())); case spvtools::opt::analysis::Type::kFloat: return save(ConvertType(spirv_type->AsFloat())); case spvtools::opt::analysis::Type::kVector: return save(ConvertType(spirv_type->AsVector())); case spvtools::opt::analysis::Type::kMatrix: return save(ConvertType(spirv_type->AsMatrix())); case spvtools::opt::analysis::Type::kRuntimeArray: return save(ConvertType(spirv_type->AsRuntimeArray())); case spvtools::opt::analysis::Type::kArray: return save(ConvertType(spirv_type->AsArray())); case spvtools::opt::analysis::Type::kStruct: return save(ConvertType(type_id, spirv_type->AsStruct())); case spvtools::opt::analysis::Type::kPointer: return save(ConvertType(type_id, spirv_type->AsPointer())); case spvtools::opt::analysis::Type::kFunction: // Tint doesn't have a Function type. // We need to convert the result type and parameter types. // But the SPIR-V defines those before defining the function // type. No further work is required here. return nullptr; case spvtools::opt::analysis::Type::kSampler: case spvtools::opt::analysis::Type::kSampledImage: case spvtools::opt::analysis::Type::kImage: // Fake it for sampler and texture types. These are handled in an // entirely different way. return save(ast_module_.create()); default: break; } Fail() << "unknown SPIR-V type with ID " << type_id << ": " << def_use_mgr_->GetDef(type_id)->PrettyPrint(); return nullptr; } DecorationList ParserImpl::GetDecorationsFor(uint32_t id) const { DecorationList result; const auto& decorations = deco_mgr_->GetDecorationsFor(id, true); for (const auto* inst : decorations) { if (inst->opcode() != SpvOpDecorate) { continue; } // Example: OpDecorate %struct_id Block // Example: OpDecorate %array_ty ArrayStride 16 std::vector inst_as_words; inst->ToBinaryWithoutAttachedDebugInsts(&inst_as_words); Decoration d(inst_as_words.begin() + 2, inst_as_words.end()); result.push_back(d); } return result; } DecorationList ParserImpl::GetDecorationsForMember( uint32_t id, uint32_t member_index) const { DecorationList result; const auto& decorations = deco_mgr_->GetDecorationsFor(id, true); for (const auto* inst : decorations) { if ((inst->opcode() != SpvOpMemberDecorate) || (inst->GetSingleWordInOperand(1) != member_index)) { continue; } // Example: OpMemberDecorate %struct_id 2 Offset 24 std::vector inst_as_words; inst->ToBinaryWithoutAttachedDebugInsts(&inst_as_words); Decoration d(inst_as_words.begin() + 3, inst_as_words.end()); result.push_back(d); } return result; } std::string ParserImpl::ShowType(uint32_t type_id) { if (def_use_mgr_) { const auto* type_inst = def_use_mgr_->GetDef(type_id); if (type_inst) { return type_inst->PrettyPrint(); } } return "SPIR-V type " + std::to_string(type_id); } ast::StructMemberDecoration* ParserImpl::ConvertMemberDecoration( uint32_t struct_type_id, uint32_t member_index, const Decoration& decoration) { if (decoration.empty()) { Fail() << "malformed SPIR-V decoration: it's empty"; return nullptr; } switch (decoration[0]) { case SpvDecorationOffset: if (decoration.size() != 2) { Fail() << "malformed Offset decoration: expected 1 literal operand, has " << decoration.size() - 1 << ": member " << member_index << " of " << ShowType(struct_type_id); return nullptr; } return create(Source{}, decoration[1]); case SpvDecorationNonReadable: // WGSL doesn't have a member decoration for this. Silently drop it. return nullptr; case SpvDecorationNonWritable: // WGSL doesn't have a member decoration for this. return nullptr; case SpvDecorationColMajor: // WGSL only supports column major matrices. return nullptr; case SpvDecorationRowMajor: Fail() << "WGSL does not support row-major matrices: can't " "translate member " << member_index << " of " << ShowType(struct_type_id); return nullptr; case SpvDecorationMatrixStride: { if (decoration.size() != 2) { Fail() << "malformed MatrixStride decoration: expected 1 literal " "operand, has " << decoration.size() - 1 << ": member " << member_index << " of " << ShowType(struct_type_id); return nullptr; } // TODO(dneto): Fail if the matrix stride is not allocation size of the // column vector of the underlying matrix. This would need to unpack // any levels of array-ness. return nullptr; } default: // TODO(dneto): Support the remaining member decorations. break; } Fail() << "unhandled member decoration: " << decoration[0] << " on member " << member_index << " of " << ShowType(struct_type_id); return nullptr; } bool ParserImpl::BuildInternalModule() { if (!success_) { return false; } const spv_context& context = tools_context_.CContext(); ir_context_ = spvtools::BuildModule(context->target_env, context->consumer, spv_binary_.data(), spv_binary_.size()); if (!ir_context_) { return Fail() << "internal error: couldn't build the internal " "representation of the module"; } module_ = ir_context_->module(); def_use_mgr_ = ir_context_->get_def_use_mgr(); constant_mgr_ = ir_context_->get_constant_mgr(); type_mgr_ = ir_context_->get_type_mgr(); deco_mgr_ = ir_context_->get_decoration_mgr(); topologically_ordered_functions_ = FunctionTraverser(*module_).TopologicallyOrderedFunctions(); return success_; } void ParserImpl::ResetInternalModule() { ir_context_.reset(nullptr); module_ = nullptr; def_use_mgr_ = nullptr; constant_mgr_ = nullptr; type_mgr_ = nullptr; deco_mgr_ = nullptr; glsl_std_450_imports_.clear(); } bool ParserImpl::ParseInternalModule() { if (!success_) { return false; } RegisterLineNumbers(); if (!ParseInternalModuleExceptFunctions()) { return false; } if (!EmitFunctions()) { return false; } return success_; } void ParserImpl::RegisterLineNumbers() { Source::Location instruction_number{}; // Has there been an OpLine since the last OpNoLine or start of the module? bool in_op_line_scope = false; // The source location provided by the most recent OpLine instruction. Source::Location op_line_source{}; const bool run_on_debug_insts = true; module_->ForEachInst( [this, &in_op_line_scope, &op_line_source, &instruction_number](const spvtools::opt::Instruction* inst) { ++instruction_number.line; switch (inst->opcode()) { case SpvOpLine: in_op_line_scope = true; // TODO(dneto): This ignores the File ID (operand 0), since the Tint // Source concept doesn't represent that. op_line_source.line = inst->GetSingleWordInOperand(1); op_line_source.column = inst->GetSingleWordInOperand(2); break; case SpvOpNoLine: in_op_line_scope = false; break; default: break; } this->inst_source_[inst] = in_op_line_scope ? op_line_source : instruction_number; }, run_on_debug_insts); } Source ParserImpl::GetSourceForResultIdForTest(uint32_t id) const { return GetSourceForInst(def_use_mgr_->GetDef(id)); } Source ParserImpl::GetSourceForInst( const spvtools::opt::Instruction* inst) const { auto where = inst_source_.find(inst); if (where == inst_source_.end()) { return {}; } return Source{where->second}; } bool ParserImpl::ParseInternalModuleExceptFunctions() { if (!success_) { return false; } if (!RegisterExtendedInstructionImports()) { return false; } if (!RegisterUserAndStructMemberNames()) { return false; } if (!RegisterEntryPoints()) { return false; } if (!RegisterHandleUsage()) { return false; } if (!RegisterTypes()) { return false; } if (!EmitScalarSpecConstants()) { return false; } if (!EmitModuleScopeVariables()) { return false; } return success_; } bool ParserImpl::RegisterExtendedInstructionImports() { for (const spvtools::opt::Instruction& import : module_->ext_inst_imports()) { std::string name( reinterpret_cast(import.GetInOperand(0).words.data())); // TODO(dneto): Handle other extended instruction sets when needed. if (name == "GLSL.std.450") { glsl_std_450_imports_.insert(import.result_id()); } else { return Fail() << "Unrecognized extended instruction set: " << name; } } return true; } bool ParserImpl::IsGlslExtendedInstruction( const spvtools::opt::Instruction& inst) const { return (inst.opcode() == SpvOpExtInst) && (glsl_std_450_imports_.count(inst.GetSingleWordInOperand(0)) > 0); } bool ParserImpl::RegisterUserAndStructMemberNames() { if (!success_) { return false; } // Register entry point names. An entry point name is the point of contact // between the API and the shader. It has the highest priority for // preservation, so register it first. for (const spvtools::opt::Instruction& entry_point : module_->entry_points()) { const uint32_t function_id = entry_point.GetSingleWordInOperand(1); const std::string name = entry_point.GetInOperand(2).AsString(); namer_.SuggestSanitizedName(function_id, name); } // Register names from OpName and OpMemberName for (const auto& inst : module_->debugs2()) { switch (inst.opcode()) { case SpvOpName: { const auto name = inst.GetInOperand(1).AsString(); if (!name.empty()) { namer_.SuggestSanitizedName(inst.GetSingleWordInOperand(0), name); } break; } case SpvOpMemberName: { const auto name = inst.GetInOperand(2).AsString(); if (!name.empty()) { namer_.SuggestSanitizedMemberName(inst.GetSingleWordInOperand(0), inst.GetSingleWordInOperand(1), name); } break; } default: break; } } // Fill in struct member names, and disambiguate them. for (const auto* type_inst : module_->GetTypes()) { if (type_inst->opcode() == SpvOpTypeStruct) { namer_.ResolveMemberNamesForStruct(type_inst->result_id(), type_inst->NumInOperands()); } } return true; } bool ParserImpl::IsValidIdentifier(const std::string& str) { if (str.empty()) { return false; } std::locale c_locale("C"); if (!std::isalpha(str[0], c_locale)) { return false; } for (const char& ch : str) { if ((ch != '_') && !std::isalnum(ch, c_locale)) { return false; } } return true; } bool ParserImpl::RegisterEntryPoints() { for (const spvtools::opt::Instruction& entry_point : module_->entry_points()) { const auto stage = SpvExecutionModel(entry_point.GetSingleWordInOperand(0)); const uint32_t function_id = entry_point.GetSingleWordInOperand(1); const std::string ep_name = entry_point.GetOperand(2).AsString(); EntryPointInfo info{ep_name, enum_converter_.ToPipelineStage(stage)}; if (!IsValidIdentifier(ep_name)) { return Fail() << "entry point name is not a valid WGSL identifier: " << ep_name; } function_to_ep_info_[function_id].push_back(info); } // The enum conversion could have failed, so return the existing status value. return success_; } ast::type::Type* ParserImpl::ConvertType( const spvtools::opt::analysis::Integer* int_ty) { if (int_ty->width() == 32) { ast::type::Type* signed_ty = ast_module_.create(); ast::type::Type* unsigned_ty = ast_module_.create(); signed_type_for_[unsigned_ty] = signed_ty; unsigned_type_for_[signed_ty] = unsigned_ty; return int_ty->IsSigned() ? signed_ty : unsigned_ty; } Fail() << "unhandled integer width: " << int_ty->width(); return nullptr; } ast::type::Type* ParserImpl::ConvertType( const spvtools::opt::analysis::Float* float_ty) { if (float_ty->width() == 32) { return ast_module_.create(); } Fail() << "unhandled float width: " << float_ty->width(); return nullptr; } ast::type::Type* ParserImpl::ConvertType( const spvtools::opt::analysis::Vector* vec_ty) { const auto num_elem = vec_ty->element_count(); auto* ast_elem_ty = ConvertType(type_mgr_->GetId(vec_ty->element_type())); if (ast_elem_ty == nullptr) { return nullptr; } auto* this_ty = ast_module_.create(ast_elem_ty, num_elem); // Generate the opposite-signedness vector type, if this type is integral. if (unsigned_type_for_.count(ast_elem_ty)) { auto* other_ty = ast_module_.create( unsigned_type_for_[ast_elem_ty], num_elem); signed_type_for_[other_ty] = this_ty; unsigned_type_for_[this_ty] = other_ty; } else if (signed_type_for_.count(ast_elem_ty)) { auto* other_ty = ast_module_.create( signed_type_for_[ast_elem_ty], num_elem); unsigned_type_for_[other_ty] = this_ty; signed_type_for_[this_ty] = other_ty; } return this_ty; } ast::type::Type* ParserImpl::ConvertType( const spvtools::opt::analysis::Matrix* mat_ty) { const auto* vec_ty = mat_ty->element_type()->AsVector(); const auto* scalar_ty = vec_ty->element_type(); const auto num_rows = vec_ty->element_count(); const auto num_columns = mat_ty->element_count(); auto* ast_scalar_ty = ConvertType(type_mgr_->GetId(scalar_ty)); if (ast_scalar_ty == nullptr) { return nullptr; } return ast_module_.create(ast_scalar_ty, num_rows, num_columns); } ast::type::Type* ParserImpl::ConvertType( const spvtools::opt::analysis::RuntimeArray* rtarr_ty) { auto* ast_elem_ty = ConvertType(type_mgr_->GetId(rtarr_ty->element_type())); if (ast_elem_ty == nullptr) { return nullptr; } ast::ArrayDecorationList decorations; if (!ParseArrayDecorations(rtarr_ty, &decorations)) { return nullptr; } return create(ast_elem_ty, 0, std::move(decorations)); } ast::type::Type* ParserImpl::ConvertType( const spvtools::opt::analysis::Array* arr_ty) { const auto elem_type_id = type_mgr_->GetId(arr_ty->element_type()); auto* ast_elem_ty = ConvertType(elem_type_id); if (ast_elem_ty == nullptr) { return nullptr; } const auto& length_info = arr_ty->length_info(); if (length_info.words.empty()) { // The internal representation is invalid. The discriminant vector // is mal-formed. Fail() << "internal error: Array length info is invalid"; return nullptr; } if (length_info.words[0] != spvtools::opt::analysis::Array::LengthInfo::kConstant) { Fail() << "Array type " << type_mgr_->GetId(arr_ty) << " length is a specialization constant"; return nullptr; } const auto* constant = constant_mgr_->FindDeclaredConstant(length_info.id); if (constant == nullptr) { Fail() << "Array type " << type_mgr_->GetId(arr_ty) << " length ID " << length_info.id << " does not name an OpConstant"; return nullptr; } const uint64_t num_elem = constant->GetZeroExtendedValue(); // For now, limit to only 32bits. if (num_elem > std::numeric_limits::max()) { Fail() << "Array type " << type_mgr_->GetId(arr_ty) << " has too many elements (more than can fit in 32 bits): " << num_elem; return nullptr; } ast::ArrayDecorationList decorations; if (!ParseArrayDecorations(arr_ty, &decorations)) { return nullptr; } if (remap_buffer_block_type_.count(elem_type_id)) { remap_buffer_block_type_.insert(type_mgr_->GetId(arr_ty)); } return create(ast_elem_ty, static_cast(num_elem), std::move(decorations)); } bool ParserImpl::ParseArrayDecorations( const spvtools::opt::analysis::Type* spv_type, ast::ArrayDecorationList* decorations) { bool has_array_stride = false; const auto type_id = type_mgr_->GetId(spv_type); for (auto& decoration : this->GetDecorationsFor(type_id)) { if (decoration.size() == 2 && decoration[0] == SpvDecorationArrayStride) { const auto stride = decoration[1]; if (stride == 0) { return Fail() << "invalid array type ID " << type_id << ": ArrayStride can't be 0"; } if (has_array_stride) { return Fail() << "invalid array type ID " << type_id << ": multiple ArrayStride decorations"; } has_array_stride = true; decorations->push_back(create(Source{}, stride)); } else { return Fail() << "invalid array type ID " << type_id << ": unknown decoration " << (decoration.empty() ? "(empty)" : std::to_string(decoration[0])) << " with " << decoration.size() << " total words"; } } return true; } ast::type::Type* ParserImpl::ConvertType( uint32_t type_id, const spvtools::opt::analysis::Struct* struct_ty) { // Compute the struct decoration. auto struct_decorations = this->GetDecorationsFor(type_id); ast::StructDecorationList ast_struct_decorations; if (struct_decorations.size() == 1) { const auto decoration = struct_decorations[0][0]; if (decoration == SpvDecorationBlock) { ast_struct_decorations.push_back( create(Source{})); } else if (decoration == SpvDecorationBufferBlock) { ast_struct_decorations.push_back( create(Source{})); remap_buffer_block_type_.insert(type_id); } else { Fail() << "struct with ID " << type_id << " has unrecognized decoration: " << int(decoration); } } else if (struct_decorations.size() > 1) { Fail() << "can't handle a struct with more than one decoration: struct " << type_id << " has " << struct_decorations.size(); return nullptr; } // Compute members ast::StructMemberList ast_members; const auto members = struct_ty->element_types(); unsigned num_non_writable_members = 0; bool is_per_vertex_struct = false; for (uint32_t member_index = 0; member_index < members.size(); ++member_index) { const auto member_type_id = type_mgr_->GetId(members[member_index]); auto* ast_member_ty = ConvertType(member_type_id); if (ast_member_ty == nullptr) { // Already emitted diagnostics. return nullptr; } ast::StructMemberDecorationList ast_member_decorations; bool is_non_writable = false; for (auto& decoration : GetDecorationsForMember(type_id, member_index)) { if (decoration.empty()) { Fail() << "malformed SPIR-V decoration: it's empty"; return nullptr; } if ((decoration[0] == SpvDecorationBuiltIn) && (decoration.size() > 1)) { switch (decoration[1]) { case SpvBuiltInPosition: // Record this built-in variable specially. builtin_position_.struct_type_id = type_id; builtin_position_.position_member_index = member_index; builtin_position_.position_member_type_id = member_type_id; // Don't map the struct type. But this is not an error either. is_per_vertex_struct = true; break; case SpvBuiltInPointSize: // not supported in WGSL, but ignore builtin_position_.pointsize_member_index = member_index; is_per_vertex_struct = true; break; case SpvBuiltInClipDistance: // not supported in WGSL case SpvBuiltInCullDistance: // not supported in WGSL // Silently ignore, so we can detect Position and PointSize is_per_vertex_struct = true; break; default: Fail() << "unrecognized builtin " << decoration[1]; return nullptr; } } else if (decoration[0] == SpvDecorationNonWritable) { // WGSL doesn't represent individual members as non-writable. Instead, // apply the ReadOnly access control to the containing struct if all // the members are non-writable. is_non_writable = true; } else { auto* ast_member_decoration = ConvertMemberDecoration(type_id, member_index, decoration); if (!success_) { return nullptr; } if (ast_member_decoration) { ast_member_decorations.push_back(ast_member_decoration); } } } if (is_non_writable) { // Count a member as non-writable only once, no matter how many // NonWritable decorations are applied to it. ++num_non_writable_members; } const auto member_name = namer_.GetMemberName(type_id, member_index); auto* ast_struct_member = create( Source{}, ast_module_.RegisterSymbol(member_name), member_name, ast_member_ty, std::move(ast_member_decorations)); ast_members.push_back(ast_struct_member); } if (is_per_vertex_struct) { // We're replacing it by the Position builtin alone. return nullptr; } // Now make the struct. auto* ast_struct = create(Source{}, std::move(ast_members), std::move(ast_struct_decorations)); namer_.SuggestSanitizedName(type_id, "S"); auto name = namer_.GetName(type_id); auto* result = ast_module_.create( ast_module_.RegisterSymbol(name), name, ast_struct); id_to_type_[type_id] = result; if (num_non_writable_members == members.size()) { read_only_struct_types_.insert(result); } ast_module_.AddConstructedType(result); return result; } ast::type::Type* ParserImpl::ConvertType( uint32_t type_id, const spvtools::opt::analysis::Pointer*) { const auto* inst = def_use_mgr_->GetDef(type_id); const auto pointee_type_id = inst->GetSingleWordInOperand(1); const auto storage_class = SpvStorageClass(inst->GetSingleWordInOperand(0)); if (pointee_type_id == builtin_position_.struct_type_id) { builtin_position_.pointer_type_id = type_id; builtin_position_.storage_class = storage_class; return nullptr; } auto* ast_elem_ty = ConvertType(pointee_type_id); if (ast_elem_ty == nullptr) { Fail() << "SPIR-V pointer type with ID " << type_id << " has invalid pointee type " << pointee_type_id; return nullptr; } auto ast_storage_class = enum_converter_.ToStorageClass(storage_class); if (ast_storage_class == ast::StorageClass::kNone) { Fail() << "SPIR-V pointer type with ID " << type_id << " has invalid storage class " << static_cast(storage_class); return nullptr; } if (ast_storage_class == ast::StorageClass::kUniform && remap_buffer_block_type_.count(pointee_type_id)) { ast_storage_class = ast::StorageClass::kStorageBuffer; remap_buffer_block_type_.insert(type_id); } return ast_module_.create(ast_elem_ty, ast_storage_class); } bool ParserImpl::RegisterTypes() { if (!success_) { return false; } for (auto& type_or_const : module_->types_values()) { const auto* type = type_mgr_->GetType(type_or_const.result_id()); if (type == nullptr) { continue; } ConvertType(type_or_const.result_id()); } // Manufacture a type for the gl_Position varible if we have to. if ((builtin_position_.struct_type_id != 0) && (builtin_position_.position_member_pointer_type_id == 0)) { builtin_position_.position_member_pointer_type_id = type_mgr_->FindPointerToType(builtin_position_.position_member_type_id, builtin_position_.storage_class); ConvertType(builtin_position_.position_member_pointer_type_id); } return success_; } bool ParserImpl::EmitScalarSpecConstants() { if (!success_) { return false; } // Generate a module-scope const declaration for each instruction // that is OpSpecConstantTrue, OpSpecConstantFalse, or OpSpecConstant. for (auto& inst : module_->types_values()) { // These will be populated for a valid scalar spec constant. ast::type::Type* ast_type = nullptr; ast::ScalarConstructorExpression* ast_expr = nullptr; switch (inst.opcode()) { case SpvOpSpecConstantTrue: case SpvOpSpecConstantFalse: { ast_type = ConvertType(inst.type_id()); ast_expr = create( Source{}, create(Source{}, ast_type, inst.opcode() == SpvOpSpecConstantTrue)); break; } case SpvOpSpecConstant: { ast_type = ConvertType(inst.type_id()); const uint32_t literal_value = inst.GetSingleWordInOperand(0); if (ast_type->Is()) { ast_expr = create( Source{}, create(Source{}, ast_type, static_cast(literal_value))); } else if (ast_type->Is()) { ast_expr = create( Source{}, create(Source{}, ast_type, static_cast(literal_value))); } else if (ast_type->Is()) { float float_value; // Copy the bits so we can read them as a float. std::memcpy(&float_value, &literal_value, sizeof(float_value)); ast_expr = create( Source{}, create(Source{}, ast_type, float_value)); } else { return Fail() << " invalid result type for OpSpecConstant " << inst.PrettyPrint(); } break; } default: break; } if (ast_type && ast_expr) { ast::VariableDecorationList spec_id_decos; for (const auto& deco : GetDecorationsFor(inst.result_id())) { if ((deco.size() == 2) && (deco[0] == SpvDecorationSpecId)) { auto* cid = create(Source{}, deco[1]); spec_id_decos.push_back(cid); break; } } auto* ast_var = MakeVariable(inst.result_id(), ast::StorageClass::kNone, ast_type, true, ast_expr, std::move(spec_id_decos)); if (ast_var) { ast_module_.AddGlobalVariable(ast_var); scalar_spec_constants_.insert(inst.result_id()); } } } return success_; } void ParserImpl::MaybeGenerateAlias(uint32_t type_id, const spvtools::opt::analysis::Type* type) { if (!success_) { return; } // We only care about arrays, and runtime arrays. switch (type->kind()) { case spvtools::opt::analysis::Type::kRuntimeArray: // Runtime arrays are always decorated with ArrayStride so always get a // type alias. namer_.SuggestSanitizedName(type_id, "RTArr"); break; case spvtools::opt::analysis::Type::kArray: // Only make a type aliase for arrays with decorations. if (GetDecorationsFor(type_id).empty()) { return; } namer_.SuggestSanitizedName(type_id, "Arr"); break; default: // Ignore constants, and any other types. return; } auto* ast_underlying_type = id_to_type_[type_id]; if (ast_underlying_type == nullptr) { Fail() << "internal error: no type registered for SPIR-V ID: " << type_id; return; } const auto name = namer_.GetName(type_id); auto* ast_alias_type = ast_module_.create( ast_module_.RegisterSymbol(name), name, ast_underlying_type); // Record this new alias as the AST type for this SPIR-V ID. id_to_type_[type_id] = ast_alias_type; ast_module_.AddConstructedType(ast_alias_type); } bool ParserImpl::EmitModuleScopeVariables() { if (!success_) { return false; } for (const auto& type_or_value : module_->types_values()) { if (type_or_value.opcode() != SpvOpVariable) { continue; } const auto& var = type_or_value; const auto spirv_storage_class = SpvStorageClass(var.GetSingleWordInOperand(0)); uint32_t type_id = var.type_id(); if ((type_id == builtin_position_.pointer_type_id) && ((spirv_storage_class == SpvStorageClassInput) || (spirv_storage_class == SpvStorageClassOutput))) { // Skip emitting gl_PerVertex. builtin_position_.per_vertex_var_id = var.result_id(); continue; } switch (enum_converter_.ToStorageClass(spirv_storage_class)) { case ast::StorageClass::kInput: case ast::StorageClass::kOutput: case ast::StorageClass::kUniform: case ast::StorageClass::kUniformConstant: case ast::StorageClass::kStorageBuffer: case ast::StorageClass::kImage: case ast::StorageClass::kWorkgroup: case ast::StorageClass::kPrivate: break; default: return Fail() << "invalid SPIR-V storage class " << int(spirv_storage_class) << " for module scope variable: " << var.PrettyPrint(); } if (!success_) { return false; } ast::type::Type* ast_type = nullptr; if (spirv_storage_class == SpvStorageClassUniformConstant) { // These are opaque handles: samplers or textures ast_type = GetTypeForHandleVar(var); if (!ast_type) { return false; } } else { ast_type = id_to_type_[type_id]; if (ast_type == nullptr) { return Fail() << "internal error: failed to register Tint AST type for " "SPIR-V type with ID: " << var.type_id(); } if (!ast_type->Is()) { return Fail() << "variable with ID " << var.result_id() << " has non-pointer type " << var.type_id(); } } auto* ast_store_type = ast_type->As()->type(); auto ast_storage_class = ast_type->As()->storage_class(); ast::Expression* ast_constructor = nullptr; if (var.NumInOperands() > 1) { // SPIR-V initializers are always constants. // (OpenCL also allows the ID of an OpVariable, but we don't handle that // here.) ast_constructor = MakeConstantExpression(var.GetSingleWordInOperand(1)).expr; } auto* ast_var = MakeVariable(var.result_id(), ast_storage_class, ast_store_type, false, ast_constructor, ast::VariableDecorationList{}); // TODO(dneto): initializers (a.k.a. constructor expression) if (ast_var) { ast_module_.AddGlobalVariable(ast_var); } } // Emit gl_Position instead of gl_PerVertex if (builtin_position_.per_vertex_var_id) { // Make sure the variable has a name. namer_.SuggestSanitizedName(builtin_position_.per_vertex_var_id, "gl_Position"); auto* var = MakeVariable( builtin_position_.per_vertex_var_id, enum_converter_.ToStorageClass(builtin_position_.storage_class), ConvertType(builtin_position_.position_member_type_id), false, nullptr, ast::VariableDecorationList{ create(Source{}, ast::Builtin::kPosition), }); ast_module_.AddGlobalVariable(var); } return success_; } ast::Variable* ParserImpl::MakeVariable( uint32_t id, ast::StorageClass sc, ast::type::Type* type, bool is_const, ast::Expression* constructor, ast::VariableDecorationList decorations) { if (type == nullptr) { Fail() << "internal error: can't make ast::Variable for null type"; return nullptr; } if (sc == ast::StorageClass::kStorageBuffer) { // Apply the access(read) or access(read_write) modifier. auto access = read_only_struct_types_.count(type) ? ast::AccessControl::kReadOnly : ast::AccessControl::kReadWrite; type = ast_module_.create(access, type); } for (auto& deco : GetDecorationsFor(id)) { if (deco.empty()) { Fail() << "malformed decoration on ID " << id << ": it is empty"; return nullptr; } if (deco[0] == SpvDecorationBuiltIn) { if (deco.size() == 1) { Fail() << "malformed BuiltIn decoration on ID " << id << ": has no operand"; return nullptr; } const auto spv_builtin = static_cast(deco[1]); switch (spv_builtin) { case SpvBuiltInPointSize: ignored_builtins_[id] = spv_builtin; return nullptr; default: break; } auto ast_builtin = enum_converter_.ToBuiltin(spv_builtin); if (ast_builtin == ast::Builtin::kNone) { return nullptr; } decorations.emplace_back( create(Source{}, ast_builtin)); } if (deco[0] == SpvDecorationLocation) { if (deco.size() != 2) { Fail() << "malformed Location decoration on ID " << id << ": requires one literal operand"; return nullptr; } decorations.emplace_back( create(Source{}, deco[1])); } if (deco[0] == SpvDecorationDescriptorSet) { if (deco.size() == 1) { Fail() << "malformed DescriptorSet decoration on ID " << id << ": has no operand"; return nullptr; } decorations.emplace_back(create(Source{}, deco[1])); } if (deco[0] == SpvDecorationBinding) { if (deco.size() == 1) { Fail() << "malformed Binding decoration on ID " << id << ": has no operand"; return nullptr; } decorations.emplace_back( create(Source{}, deco[1])); } } std::string name = namer_.Name(id); return create(Source{}, // source ast_module_.RegisterSymbol(name), // symbol name, // name sc, // storage_class type, // type is_const, // is_const constructor, // constructor decorations); // decorations } TypedExpression ParserImpl::MakeConstantExpression(uint32_t id) { if (!success_) { return {}; } const auto* inst = def_use_mgr_->GetDef(id); if (inst == nullptr) { Fail() << "ID " << id << " is not a registered instruction"; return {}; } auto* original_ast_type = ConvertType(inst->type_id()); if (original_ast_type == nullptr) { return {}; } if (inst->opcode() == SpvOpUndef) { // Remap undef to null. return {original_ast_type, MakeNullValue(original_ast_type)}; } // TODO(dneto): Handle spec constants too? const auto* spirv_const = constant_mgr_->FindDeclaredConstant(id); if (spirv_const == nullptr) { Fail() << "ID " << id << " is not a constant"; return {}; } auto source = GetSourceForInst(inst); auto* ast_type = original_ast_type->UnwrapIfNeeded(); // TODO(dneto): Note: NullConstant for int, uint, float map to a regular 0. // So canonicalization should map that way too. // Currently "null" is missing from the WGSL parser. // See https://bugs.chromium.org/p/tint/issues/detail?id=34 if (ast_type->Is()) { return {ast_type, create( Source{}, create(source, ast_type, spirv_const->GetU32()))}; } if (ast_type->Is()) { return {ast_type, create( Source{}, create(source, ast_type, spirv_const->GetS32()))}; } if (ast_type->Is()) { return {ast_type, create( Source{}, create(source, ast_type, spirv_const->GetFloat()))}; } if (ast_type->Is()) { const bool value = spirv_const->AsNullConstant() ? false : spirv_const->AsBoolConstant()->value(); return {ast_type, create( Source{}, create(source, ast_type, value))}; } auto* spirv_composite_const = spirv_const->AsCompositeConstant(); if (spirv_composite_const != nullptr) { // Handle vector, matrix, array, and struct // TODO(dneto): Handle the spirv_composite_const->IsZero() case specially. // See https://github.com/gpuweb/gpuweb/issues/685 // Generate a composite from explicit components. ast::ExpressionList ast_components; for (const auto* component : spirv_composite_const->GetComponents()) { auto* def = constant_mgr_->GetDefiningInstruction(component); if (def == nullptr) { Fail() << "internal error: SPIR-V constant doesn't have defining " "instruction"; return {}; } auto ast_component = MakeConstantExpression(def->result_id()); if (!success_) { // We've already emitted a diagnostic. return {}; } ast_components.emplace_back(ast_component.expr); } return {original_ast_type, create(Source{}, original_ast_type, std::move(ast_components))}; } auto* spirv_null_const = spirv_const->AsNullConstant(); if (spirv_null_const != nullptr) { return {original_ast_type, MakeNullValue(original_ast_type)}; } Fail() << "Unhandled constant type " << inst->type_id() << " for value ID " << id; return {}; } ast::Expression* ParserImpl::MakeNullValue(ast::type::Type* type) { // TODO(dneto): Use the no-operands constructor syntax when it becomes // available in Tint. // https://github.com/gpuweb/gpuweb/issues/685 // https://bugs.chromium.org/p/tint/issues/detail?id=34 if (!type) { Fail() << "trying to create null value for a null type"; return nullptr; } auto* original_type = type; type = type->UnwrapIfNeeded(); if (type->Is()) { return create( Source{}, create(Source{}, type, false)); } if (type->Is()) { return create( Source{}, create(Source{}, type, 0u)); } if (type->Is()) { return create( Source{}, create(Source{}, type, 0)); } if (type->Is()) { return create( Source{}, create(Source{}, type, 0.0f)); } if (const auto* vec_ty = type->As()) { ast::ExpressionList ast_components; for (size_t i = 0; i < vec_ty->size(); ++i) { ast_components.emplace_back(MakeNullValue(vec_ty->type())); } return create(Source{}, type, std::move(ast_components)); } if (const auto* mat_ty = type->As()) { // Matrix components are columns auto* column_ty = ast_module_.create(mat_ty->type(), mat_ty->rows()); ast::ExpressionList ast_components; for (size_t i = 0; i < mat_ty->columns(); ++i) { ast_components.emplace_back(MakeNullValue(column_ty)); } return create(Source{}, type, std::move(ast_components)); } if (auto* arr_ty = type->As()) { ast::ExpressionList ast_components; for (size_t i = 0; i < arr_ty->size(); ++i) { ast_components.emplace_back(MakeNullValue(arr_ty->type())); } return create(Source{}, original_type, std::move(ast_components)); } if (auto* struct_ty = type->As()) { ast::ExpressionList ast_components; for (auto* member : struct_ty->impl()->members()) { ast_components.emplace_back(MakeNullValue(member->type())); } return create(Source{}, original_type, std::move(ast_components)); } Fail() << "can't make null value for type: " << type->type_name(); return nullptr; } TypedExpression ParserImpl::RectifyOperandSignedness( const spvtools::opt::Instruction& inst, TypedExpression&& expr) { bool requires_signed = false; bool requires_unsigned = false; if (IsGlslExtendedInstruction(inst)) { const auto extended_opcode = static_cast(inst.GetSingleWordInOperand(1)); requires_signed = AssumesSignedOperands(extended_opcode); requires_unsigned = AssumesUnsignedOperands(extended_opcode); } else { const auto opcode = inst.opcode(); requires_signed = AssumesSignedOperands(opcode); requires_unsigned = AssumesUnsignedOperands(opcode); } if (!requires_signed && !requires_unsigned) { // No conversion is required, assuming our tables are complete. return std::move(expr); } if (!expr.expr) { Fail() << "internal error: RectifyOperandSignedness given a null expr\n"; return {}; } auto* type = expr.type; if (!type) { Fail() << "internal error: unmapped type for: " << expr.expr->str() << "\n"; return {}; } if (requires_unsigned) { auto* unsigned_ty = unsigned_type_for_[type]; if (unsigned_ty != nullptr) { // Conversion is required. return {unsigned_ty, create(Source{}, unsigned_ty, expr.expr)}; } } else if (requires_signed) { auto* signed_ty = signed_type_for_[type]; if (signed_ty != nullptr) { // Conversion is required. return {signed_ty, create(Source{}, signed_ty, expr.expr)}; } } // We should not reach here. return std::move(expr); } ast::type::Type* ParserImpl::ForcedResultType( const spvtools::opt::Instruction& inst, ast::type::Type* first_operand_type) { const auto opcode = inst.opcode(); if (AssumesResultSignednessMatchesFirstOperand(opcode)) { return first_operand_type; } if (IsGlslExtendedInstruction(inst)) { const auto extended_opcode = static_cast(inst.GetSingleWordInOperand(1)); if (AssumesResultSignednessMatchesFirstOperand(extended_opcode)) { return first_operand_type; } } return nullptr; } ast::type::Type* ParserImpl::GetSignedIntMatchingShape(ast::type::Type* other) { if (other == nullptr) { Fail() << "no type provided"; } auto* i32 = ast_module_.create(); if (other->Is() || other->Is() || other->Is()) { return i32; } auto* vec_ty = other->As(); if (vec_ty) { return ast_module_.create(i32, vec_ty->size()); } Fail() << "required numeric scalar or vector, but got " << other->type_name(); return nullptr; } ast::type::Type* ParserImpl::GetUnsignedIntMatchingShape( ast::type::Type* other) { if (other == nullptr) { Fail() << "no type provided"; return nullptr; } auto* u32 = ast_module_.create(); if (other->Is() || other->Is() || other->Is()) { return u32; } auto* vec_ty = other->As(); if (vec_ty) { return ast_module_.create(u32, vec_ty->size()); } Fail() << "required numeric scalar or vector, but got " << other->type_name(); return nullptr; } TypedExpression ParserImpl::RectifyForcedResultType( TypedExpression expr, const spvtools::opt::Instruction& inst, ast::type::Type* first_operand_type) { auto* forced_result_ty = ForcedResultType(inst, first_operand_type); if ((forced_result_ty == nullptr) || (forced_result_ty == expr.type)) { return expr; } return {expr.type, create(Source{}, expr.type, expr.expr)}; } bool ParserImpl::EmitFunctions() { if (!success_) { return false; } for (const auto* f : topologically_ordered_functions_) { if (!success_) { return false; } auto id = f->result_id(); auto it = function_to_ep_info_.find(id); if (it == function_to_ep_info_.end()) { FunctionEmitter emitter(this, *f, nullptr); success_ = emitter.Emit(); } else { for (const auto& ep : it->second) { FunctionEmitter emitter(this, *f, &ep); success_ = emitter.Emit(); if (!success_) { return false; } } } } return success_; } const spvtools::opt::Instruction* ParserImpl::GetMemoryObjectDeclarationForHandle(uint32_t id, bool follow_image) { auto saved_id = id; auto local_fail = [this, saved_id, id, follow_image]() -> const spvtools::opt::Instruction* { const auto* inst = def_use_mgr_->GetDef(id); Fail() << "Could not find memory object declaration for the " << (follow_image ? "image" : "sampler") << " underlying id " << id << " (from original id " << saved_id << ") " << (inst ? inst->PrettyPrint() : std::string()); return nullptr; }; auto& memo_table = (follow_image ? mem_obj_decl_image_ : mem_obj_decl_sampler_); // Use a visited set to defend against bad input which might have long // chains or even loops. std::unordered_set visited; // Trace backward in the SSA data flow until we hit a memory object // declaration. while (true) { auto where = memo_table.find(id); if (where != memo_table.end()) { return where->second; } // Protect against loops. auto visited_iter = visited.find(id); if (visited_iter != visited.end()) { // We've hit a loop. Mark all the visited nodes // as dead ends. for (auto iter : visited) { memo_table[iter] = nullptr; } return nullptr; } visited.insert(id); const auto* inst = def_use_mgr_->GetDef(id); if (inst == nullptr) { return local_fail(); } switch (inst->opcode()) { case SpvOpFunctionParameter: case SpvOpVariable: // We found the memory object declaration. // Remember it as the answer for the whole path. for (auto iter : visited) { memo_table[iter] = inst; } return inst; case SpvOpLoad: // Follow the pointer being loaded id = inst->GetSingleWordInOperand(0); break; case SpvOpCopyObject: // Follow the object being copied. id = inst->GetSingleWordInOperand(0); break; case SpvOpAccessChain: case SpvOpInBoundsAccessChain: case SpvOpPtrAccessChain: case SpvOpInBoundsPtrAccessChain: // Follow the base pointer. id = inst->GetSingleWordInOperand(0); break; case SpvOpSampledImage: // Follow the image or the sampler, depending on the follow_image // parameter. id = inst->GetSingleWordInOperand(follow_image ? 0 : 1); break; case SpvOpImage: // Follow the sampled image id = inst->GetSingleWordInOperand(0); break; default: // Can't trace further. // Remember it as the answer for the whole path. for (auto iter : visited) { memo_table[iter] = nullptr; } return nullptr; } } } const spvtools::opt::Instruction* ParserImpl::GetSpirvTypeForHandleMemoryObjectDeclaration( const spvtools::opt::Instruction& var) { if (!success()) { return nullptr; } // The WGSL handle type is determined by looking at information from // several sources: // - the usage of the handle by image access instructions // - the SPIR-V type declaration // Each source does not have enough information to completely determine // the result. // Messages are phrased in terms of images and samplers because those // are the only SPIR-V handles supported by WGSL. // Get the SPIR-V handle type. const auto* ptr_type = def_use_mgr_->GetDef(var.type_id()); if (!ptr_type || (ptr_type->opcode() != SpvOpTypePointer)) { Fail() << "Invalid type for variable or function parameter " << var.PrettyPrint(); return nullptr; } const auto* raw_handle_type = def_use_mgr_->GetDef(ptr_type->GetSingleWordInOperand(1)); if (!raw_handle_type) { Fail() << "Invalid pointer type for variable or function parameter " << var.PrettyPrint(); return nullptr; } switch (raw_handle_type->opcode()) { case SpvOpTypeSampler: case SpvOpTypeImage: // The expected cases. break; case SpvOpTypeArray: case SpvOpTypeRuntimeArray: Fail() << "arrays of textures or samplers are not supported in WGSL; can't " "translate variable or function parameter: " << var.PrettyPrint(); return nullptr; default: Fail() << "invalid type for image or sampler variable or function " "parameter: " << var.PrettyPrint(); return nullptr; } return raw_handle_type; } ast::type::Pointer* ParserImpl::GetTypeForHandleVar( const spvtools::opt::Instruction& var) { auto where = handle_type_.find(&var); if (where != handle_type_.end()) { return where->second; } const spvtools::opt::Instruction* raw_handle_type = GetSpirvTypeForHandleMemoryObjectDeclaration(var); if (!raw_handle_type) { return nullptr; } // The variable could be a sampler or image. // Where possible, determine which one it is from the usage inferred // for the variable. Usage usage = handle_usage_[&var]; if (!usage.IsValid()) { Fail() << "Invalid sampler or texture usage for variable " << var.PrettyPrint() << "\n" << usage; return nullptr; } // Infer a handle type, if usage didn't already tell us. if (!usage.IsComplete()) { // In SPIR-V you could statically reference a texture or sampler without // using it in a way that gives us a clue on how to declare it. Look inside // the store type to infer a usage. if (raw_handle_type->opcode() == SpvOpTypeSampler) { usage.AddSampler(); } else { // It's a texture. if (raw_handle_type->NumInOperands() != 7) { Fail() << "invalid SPIR-V image type: expected 7 operands: " << raw_handle_type->PrettyPrint(); return nullptr; } const auto sampled_param = raw_handle_type->GetSingleWordInOperand(5); const auto format_param = raw_handle_type->GetSingleWordInOperand(6); // Only storage images have a format. if ((format_param != SpvImageFormatUnknown) || sampled_param == 2 /* without sampler */) { // Get NonWritable and NonReadable attributes of the variable. bool is_nonwritable = false; bool is_nonreadable = false; for (const auto& deco : GetDecorationsFor(var.result_id())) { if (deco.size() != 1) { continue; } if (deco[0] == SpvDecorationNonWritable) { is_nonwritable = true; } if (deco[0] == SpvDecorationNonReadable) { is_nonreadable = true; } } if (is_nonwritable && is_nonreadable) { Fail() << "storage image variable is both NonWritable and NonReadable" << var.PrettyPrint(); } if (!is_nonwritable && !is_nonreadable) { Fail() << "storage image variable is neither NonWritable nor NonReadable" << var.PrettyPrint(); } // Let's make it one of the storage textures. if (is_nonwritable) { usage.AddStorageReadTexture(); } else { usage.AddStorageWriteTexture(); } } else { usage.AddSampledTexture(); } } if (!usage.IsComplete()) { Fail() << "internal error: should have inferred a complete handle type. got " << usage.to_str(); return nullptr; } } // Construct the Tint handle type. ast::type::Type* ast_store_type = nullptr; if (usage.IsSampler()) { ast_store_type = ast_module_.create( usage.IsComparisonSampler() ? ast::type::SamplerKind::kComparisonSampler : ast::type::SamplerKind::kSampler); } else if (usage.IsTexture()) { const spvtools::opt::analysis::Image* image_type = type_mgr_->GetType(raw_handle_type->result_id())->AsImage(); if (!image_type) { Fail() << "internal error: Couldn't look up image type" << raw_handle_type->PrettyPrint(); return nullptr; } const ast::type::TextureDimension dim = enum_converter_.ToDim(image_type->dim(), image_type->is_arrayed()); if (dim == ast::type::TextureDimension::kNone) { return nullptr; } // WGSL textures are always formatted. Unformatted textures are always // sampled. if (usage.IsSampledTexture() || (image_type->format() == SpvImageFormatUnknown)) { // Make a sampled texture type. auto* ast_sampled_component_type = ConvertType(raw_handle_type->GetSingleWordInOperand(0)); // Vulkan ignores the depth parameter on OpImage, so pay attention to the // usage as well. That is, it's valid for a Vulkan shader to use an // OpImage variable with an OpImage*Dref* instruction. In WGSL we must // treat that as a depth texture. if (image_type->depth() || usage.IsDepthTexture()) { ast_store_type = ast_module_.create(dim); } else if (image_type->is_multisampled()) { // Multisampled textures are never depth textures. ast_store_type = ast_module_.create( dim, ast_sampled_component_type); } else { ast_store_type = ast_module_.create( dim, ast_sampled_component_type); } } else { const auto access = usage.IsStorageReadTexture() ? ast::AccessControl::kReadOnly : ast::AccessControl::kWriteOnly; const auto format = enum_converter_.ToImageFormat(image_type->format()); if (format == ast::type::ImageFormat::kNone) { return nullptr; } ast_store_type = ast_module_.create(dim, access, format); } } else { Fail() << "unsupported: UniformConstant variable is not a recognized " "sampler or texture" << var.PrettyPrint(); return nullptr; } // Form the pointer type. auto* result = ast_module_.create( ast_store_type, ast::StorageClass::kUniformConstant); // Remember it for later. handle_type_[&var] = result; return result; } ast::type::Type* ParserImpl::GetComponentTypeForFormat( ast::type::ImageFormat format) { switch (format) { case ast::type::ImageFormat::kR8Uint: case ast::type::ImageFormat::kR16Uint: case ast::type::ImageFormat::kRg8Uint: case ast::type::ImageFormat::kR32Uint: case ast::type::ImageFormat::kRg16Uint: case ast::type::ImageFormat::kRgba8Uint: case ast::type::ImageFormat::kRg32Uint: case ast::type::ImageFormat::kRgba16Uint: case ast::type::ImageFormat::kRgba32Uint: return ast_module_.create(); case ast::type::ImageFormat::kR8Sint: case ast::type::ImageFormat::kR16Sint: case ast::type::ImageFormat::kRg8Sint: case ast::type::ImageFormat::kR32Sint: case ast::type::ImageFormat::kRg16Sint: case ast::type::ImageFormat::kRgba8Sint: case ast::type::ImageFormat::kRg32Sint: case ast::type::ImageFormat::kRgba16Sint: case ast::type::ImageFormat::kRgba32Sint: return ast_module_.create(); case ast::type::ImageFormat::kR8Unorm: case ast::type::ImageFormat::kRg8Unorm: case ast::type::ImageFormat::kRgba8Unorm: case ast::type::ImageFormat::kRgba8UnormSrgb: case ast::type::ImageFormat::kBgra8Unorm: case ast::type::ImageFormat::kBgra8UnormSrgb: case ast::type::ImageFormat::kRgb10A2Unorm: case ast::type::ImageFormat::kR8Snorm: case ast::type::ImageFormat::kRg8Snorm: case ast::type::ImageFormat::kRgba8Snorm: case ast::type::ImageFormat::kR16Float: case ast::type::ImageFormat::kR32Float: case ast::type::ImageFormat::kRg16Float: case ast::type::ImageFormat::kRg11B10Float: case ast::type::ImageFormat::kRg32Float: case ast::type::ImageFormat::kRgba16Float: case ast::type::ImageFormat::kRgba32Float: return ast_module_.create(); default: break; } Fail() << "unknown format " << int(format); return nullptr; } ast::type::Type* ParserImpl::GetTexelTypeForFormat( ast::type::ImageFormat format) { auto* component_type = GetComponentTypeForFormat(format); if (!component_type) { return nullptr; } switch (format) { case ast::type::ImageFormat::kR16Float: case ast::type::ImageFormat::kR16Sint: case ast::type::ImageFormat::kR16Uint: case ast::type::ImageFormat::kR32Float: case ast::type::ImageFormat::kR32Sint: case ast::type::ImageFormat::kR32Uint: case ast::type::ImageFormat::kR8Sint: case ast::type::ImageFormat::kR8Snorm: case ast::type::ImageFormat::kR8Uint: case ast::type::ImageFormat::kR8Unorm: // One channel return component_type; case ast::type::ImageFormat::kRg11B10Float: case ast::type::ImageFormat::kRg16Float: case ast::type::ImageFormat::kRg16Sint: case ast::type::ImageFormat::kRg16Uint: case ast::type::ImageFormat::kRg32Float: case ast::type::ImageFormat::kRg32Sint: case ast::type::ImageFormat::kRg32Uint: case ast::type::ImageFormat::kRg8Sint: case ast::type::ImageFormat::kRg8Snorm: case ast::type::ImageFormat::kRg8Uint: case ast::type::ImageFormat::kRg8Unorm: // Two channels return ast_module_.create(component_type, 2); case ast::type::ImageFormat::kBgra8Unorm: case ast::type::ImageFormat::kBgra8UnormSrgb: case ast::type::ImageFormat::kRgb10A2Unorm: case ast::type::ImageFormat::kRgba16Float: case ast::type::ImageFormat::kRgba16Sint: case ast::type::ImageFormat::kRgba16Uint: case ast::type::ImageFormat::kRgba32Float: case ast::type::ImageFormat::kRgba32Sint: case ast::type::ImageFormat::kRgba32Uint: case ast::type::ImageFormat::kRgba8Sint: case ast::type::ImageFormat::kRgba8Snorm: case ast::type::ImageFormat::kRgba8Uint: case ast::type::ImageFormat::kRgba8Unorm: case ast::type::ImageFormat::kRgba8UnormSrgb: // Four channels return ast_module_.create(component_type, 4); default: break; } Fail() << "unknown format: " << int(format); return nullptr; } bool ParserImpl::RegisterHandleUsage() { if (!success_) { return false; } // Map a function ID to the list of its function parameter instructions, in // order. std::unordered_map> function_params; for (const auto* f : topologically_ordered_functions_) { // Record the instructions defining this function's parameters. auto& params = function_params[f->result_id()]; f->ForEachParam([¶ms](const spvtools::opt::Instruction* param) { params.push_back(param); }); } // Returns the memory object declaration for an image underlying the first // operand of the given image instruction. auto get_image = [this](const spvtools::opt::Instruction& image_inst) { return this->GetMemoryObjectDeclarationForHandle( image_inst.GetSingleWordInOperand(0), true); }; // Returns the memory object declaration for a sampler underlying the first // operand of the given image instruction. auto get_sampler = [this](const spvtools::opt::Instruction& image_inst) { return this->GetMemoryObjectDeclarationForHandle( image_inst.GetSingleWordInOperand(0), false); }; // Scan the bodies of functions for image operations, recording their implied // usage properties on the memory object declarations (i.e. variables or // function parameters). We scan the functions in an order so that callees // precede callers. That way the usage on a function parameter is already // computed before we see the call to that function. So when we reach // a function call, we can add the usage from the callee formal parameters. for (const auto* f : topologically_ordered_functions_) { for (const auto& bb : *f) { for (const auto& inst : bb) { switch (inst.opcode()) { // Single texel reads and writes case SpvOpImageRead: handle_usage_[get_image(inst)].AddStorageReadTexture(); break; case SpvOpImageWrite: handle_usage_[get_image(inst)].AddStorageWriteTexture(); break; case SpvOpImageFetch: handle_usage_[get_image(inst)].AddSampledTexture(); break; // Sampling and gathering from a sampled image. case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageGather: handle_usage_[get_image(inst)].AddSampledTexture(); handle_usage_[get_sampler(inst)].AddSampler(); break; case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageDrefGather: // Depth reference access implies usage as a depth texture, which // in turn is a sampled texture. handle_usage_[get_image(inst)].AddDepthTexture(); handle_usage_[get_sampler(inst)].AddComparisonSampler(); break; // Image queries case SpvOpImageQuerySizeLod: // Vulkan requires Sampled=1 for this. SPIR-V already requires MS=0. handle_usage_[get_image(inst)].AddSampledTexture(); break; case SpvOpImageQuerySize: // Applies to either MS=1 or Sampled=0 or 2. // So we can't force it to be multisampled, or storage image. break; case SpvOpImageQueryLod: handle_usage_[get_image(inst)].AddSampledTexture(); handle_usage_[get_sampler(inst)].AddSampler(); break; case SpvOpImageQueryLevels: // We can't tell anything more than that it's an image. handle_usage_[get_image(inst)].AddTexture(); break; case SpvOpImageQuerySamples: handle_usage_[get_image(inst)].AddMultisampledTexture(); break; // Function calls case SpvOpFunctionCall: { // Propagate handle usages from callee function formal parameters to // the matching caller parameters. This is where we rely on the // fact that callees have been processed earlier in the flow. const auto num_in_operands = inst.NumInOperands(); // The first operand of the call is the function ID. // The remaining operands are the operands to the function. if (num_in_operands < 1) { return Fail() << "Call instruction must have at least one operand" << inst.PrettyPrint(); } const auto function_id = inst.GetSingleWordInOperand(0); const auto& formal_params = function_params[function_id]; if (formal_params.size() != (num_in_operands - 1)) { return Fail() << "Called function has " << formal_params.size() << " parameters, but function call has " << (num_in_operands - 1) << " parameters" << inst.PrettyPrint(); } for (uint32_t i = 1; i < num_in_operands; ++i) { auto where = handle_usage_.find(formal_params[i - 1]); if (where == handle_usage_.end()) { // We haven't recorded any handle usage on the formal parameter. continue; } const Usage& formal_param_usage = where->second; const auto operand_id = inst.GetSingleWordInOperand(i); const auto* operand_as_sampler = GetMemoryObjectDeclarationForHandle(operand_id, false); const auto* operand_as_image = GetMemoryObjectDeclarationForHandle(operand_id, true); if (operand_as_sampler) { handle_usage_[operand_as_sampler].Add(formal_param_usage); } if (operand_as_image && (operand_as_image != operand_as_sampler)) { handle_usage_[operand_as_image].Add(formal_param_usage); } } break; } default: break; } } } } return success_; } Usage ParserImpl::GetHandleUsage(uint32_t id) const { const auto where = handle_usage_.find(def_use_mgr_->GetDef(id)); if (where != handle_usage_.end()) { return where->second; } return Usage(); } const spvtools::opt::Instruction* ParserImpl::GetInstructionForTest( uint32_t id) const { return def_use_mgr_ ? def_use_mgr_->GetDef(id) : nullptr; } } // namespace spirv } // namespace reader } // namespace tint