// Copyright 2017 The NXT Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "Utils.h" #include #include #include #include nxt::Device device; nxt::Queue queue; nxt::Buffer modelBuffer; std::array particleBuffers; nxt::Pipeline renderPipeline; nxt::RenderPass renderpass; nxt::Framebuffer framebuffer; nxt::Buffer updateParams; nxt::Pipeline updatePipeline; std::array updateBGs; std::array commandBuffers; size_t pingpong = 0; static const uint32_t kNumParticles = 1000; struct Particle { glm::vec2 pos; glm::vec2 vel; }; struct SimParams { float deltaT; float rule1Distance; float rule2Distance; float rule3Distance; float rule1Scale; float rule2Scale; float rule3Scale; int particleCount; }; void initBuffers() { glm::vec2 model[3] = { {-0.01, -0.02}, {0.01, -0.02}, {0.00, 0.02}, }; modelBuffer = device.CreateBufferBuilder() .SetAllowedUsage(nxt::BufferUsageBit::Mapped | nxt::BufferUsageBit::Vertex) .SetInitialUsage(nxt::BufferUsageBit::Mapped) .SetSize(sizeof(model)) .GetResult(); modelBuffer.SetSubData(0, sizeof(model) / sizeof(uint32_t), reinterpret_cast(model)); modelBuffer.FreezeUsage(nxt::BufferUsageBit::Vertex); SimParams params = { 0.04, 0.1, 0.025, 0.025, 0.02, 0.05, 0.005, kNumParticles }; updateParams = device.CreateBufferBuilder() .SetAllowedUsage(nxt::BufferUsageBit::Mapped | nxt::BufferUsageBit::Uniform) .SetInitialUsage(nxt::BufferUsageBit::Mapped) .SetSize(sizeof(SimParams)) .GetResult(); updateParams.SetSubData(0, sizeof(SimParams) / sizeof(uint32_t), reinterpret_cast(¶ms)); updateParams.FreezeUsage(nxt::BufferUsageBit::Uniform); std::vector initialParticles(kNumParticles); { std::mt19937 generator; std::uniform_real_distribution dist(-1.0f, 1.0f); for (auto& p : initialParticles) { p.pos = glm::vec2(dist(generator), dist(generator)); p.vel = glm::vec2(dist(generator), dist(generator)) * 0.1f; } } for (int i = 0; i < 2; i++) { particleBuffers[i] = device.CreateBufferBuilder() .SetAllowedUsage(nxt::BufferUsageBit::Mapped | nxt::BufferUsageBit::Vertex | nxt::BufferUsageBit::Storage) .SetInitialUsage(nxt::BufferUsageBit::Mapped) .SetSize(sizeof(Particle) * kNumParticles) .GetResult(); particleBuffers[i].SetSubData(0, sizeof(Particle) * kNumParticles / sizeof(uint32_t), reinterpret_cast(initialParticles.data())); } } void initRender() { nxt::ShaderModule vsModule = CreateShaderModule(device, nxt::ShaderStage::Vertex, R"( #version 450 layout(location = 0) in vec2 a_particlePos; layout(location = 1) in vec2 a_particleVel; layout(location = 2) in vec2 a_pos; void main() { float angle = -atan(a_particleVel.x, a_particleVel.y); vec2 pos = vec2(a_pos.x * cos(angle) - a_pos.y * sin(angle), a_pos.x * sin(angle) + a_pos.y * cos(angle)); gl_Position = vec4(pos + a_particlePos, 0, 1); } )"); nxt::ShaderModule fsModule = CreateShaderModule(device, nxt::ShaderStage::Fragment, R"( #version 450 out vec4 fragColor; void main() { fragColor = vec4(1.0); } )"); nxt::InputState inputState = device.CreateInputStateBuilder() .SetAttribute(0, 0, nxt::VertexFormat::FloatR32G32, offsetof(Particle, pos)) .SetAttribute(1, 0, nxt::VertexFormat::FloatR32G32, offsetof(Particle, vel)) .SetInput(0, sizeof(Particle), nxt::InputStepMode::Instance) .SetAttribute(2, 1, nxt::VertexFormat::FloatR32G32, 0) .SetInput(1, sizeof(glm::vec2), nxt::InputStepMode::Vertex) .GetResult(); CreateDefaultRenderPass(device, &renderpass, &framebuffer); renderPipeline = device.CreatePipelineBuilder() .SetSubpass(renderpass, 0) .SetStage(nxt::ShaderStage::Vertex, vsModule, "main") .SetStage(nxt::ShaderStage::Fragment, fsModule, "main") .SetInputState(inputState) .GetResult(); } void initSim() { nxt::ShaderModule module = CreateShaderModule(device, nxt::ShaderStage::Compute, R"( #version 450 struct Particle { vec2 pos; vec2 vel; }; layout(std140, set = 0, binding = 0) uniform SimParams { float deltaT; float rule1Distance; float rule2Distance; float rule3Distance; float rule1Scale; float rule2Scale; float rule3Scale; int particleCount; } params; layout(std140, set = 0, binding = 1) buffer ParticlesA { Particle particlesA[1000]; }; layout(std140, set = 0, binding = 2) buffer ParticlesB { Particle particlesB[1000]; }; void main() { // https://github.com/austinEng/Project6-Vulkan-Flocking/blob/master/data/shaders/computeparticles/particle.comp uint index = gl_GlobalInvocationID.x; if (index >= params.particleCount) { return; } vec2 vPos = particlesA[index].pos; vec2 vVel = particlesA[index].vel; vec2 cMass = vec2(0.0, 0.0); vec2 cVel = vec2(0.0, 0.0); vec2 colVel = vec2(0.0, 0.0); int cMassCount = 0; int cVelCount = 0; vec2 pos; vec2 vel; for (int i = 0; i < params.particleCount; ++i) { if (i == index) { continue; } pos = particlesA[i].pos.xy; vel = particlesA[i].vel.xy; if (distance(pos, vPos) < params.rule1Distance) { cMass += pos; cMassCount++; } if (distance(pos, vPos) < params.rule2Distance) { colVel -= (pos - vPos); } if (distance(pos, vPos) < params.rule3Distance) { cVel += vel; cVelCount++; } } if (cMassCount > 0) { cMass = cMass / cMassCount - vPos; } if (cVelCount > 0) { cVel = cVel / cVelCount; } vVel += cMass * params.rule1Scale + colVel * params.rule2Scale + cVel * params.rule3Scale; // clamp velocity for a more pleasing simulation. vVel = normalize(vVel) * clamp(length(vVel), 0.0, 0.1); // kinematic update vPos += vVel * params.deltaT; // Wrap around boundary if (vPos.x < -1.0) vPos.x = 1.0; if (vPos.x > 1.0) vPos.x = -1.0; if (vPos.y < -1.0) vPos.y = 1.0; if (vPos.y > 1.0) vPos.y = -1.0; particlesB[index].pos = vPos; // Write back particlesB[index].vel = vVel; } )"); nxt::BindGroupLayout bgl = device.CreateBindGroupLayoutBuilder() .SetBindingsType(nxt::ShaderStageBit::Compute, nxt::BindingType::UniformBuffer, 0, 1) .SetBindingsType(nxt::ShaderStageBit::Compute, nxt::BindingType::StorageBuffer, 1, 2) .GetResult(); nxt::PipelineLayout pl = device.CreatePipelineLayoutBuilder() .SetBindGroupLayout(0, bgl) .GetResult(); updatePipeline = device.CreatePipelineBuilder() .SetLayout(pl) .SetStage(nxt::ShaderStage::Compute, module, "main") .GetResult(); nxt::BufferView updateParamsView = updateParams.CreateBufferViewBuilder() .SetExtent(0, sizeof(SimParams)) .GetResult(); std::array views; for (uint32_t i = 0; i < 2; ++i) { views[i] = particleBuffers[i].CreateBufferViewBuilder() .SetExtent(0, kNumParticles * sizeof(Particle)) .GetResult(); } for (uint32_t i = 0; i < 2; ++i) { updateBGs[i] = device.CreateBindGroupBuilder() .SetLayout(bgl) .SetUsage(nxt::BindGroupUsage::Frozen) .SetBufferViews(0, 1, &updateParamsView) .SetBufferViews(1, 1, &views[i]) .SetBufferViews(2, 1, &views[(i + 1) % 2]) .GetResult(); } } void initCommandBuffers() { static const uint32_t zeroOffsets[1] = {0}; for (int i = 0; i < 2; ++i) { auto& bufferSrc = particleBuffers[i]; auto& bufferDst = particleBuffers[(i + 1) % 2]; commandBuffers[i] = device.CreateCommandBufferBuilder() .SetPipeline(updatePipeline) .TransitionBufferUsage(bufferSrc, nxt::BufferUsageBit::Storage) .TransitionBufferUsage(bufferDst, nxt::BufferUsageBit::Storage) .SetBindGroup(0, updateBGs[i]) .Dispatch(kNumParticles, 1, 1) .BeginRenderPass(renderpass, framebuffer) .SetPipeline(renderPipeline) .TransitionBufferUsage(bufferDst, nxt::BufferUsageBit::Vertex) .SetVertexBuffers(0, 1, &bufferDst, zeroOffsets) .SetVertexBuffers(1, 1, &modelBuffer, zeroOffsets) .DrawArrays(3, kNumParticles, 0, 0) .EndRenderPass() .GetResult(); } } void init() { device = CreateCppNXTDevice(); queue = device.CreateQueueBuilder().GetResult(); initBuffers(); initRender(); initSim(); initCommandBuffers(); } void frame() { queue.Submit(1, &commandBuffers[pingpong]); DoSwapBuffers(); pingpong = (pingpong + 1) % 2; } int main(int argc, const char* argv[]) { if (!InitUtils(argc, argv)) { return 1; } init(); while (!ShouldQuit()) { frame(); USleep(16000); } // TODO release stuff }