// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/writer/msl/generator_impl.h" #include #include #include #include #include #include #include "src/tint/ast/alias.h" #include "src/tint/ast/bool_literal_expression.h" #include "src/tint/ast/call_statement.h" #include "src/tint/ast/disable_validation_attribute.h" #include "src/tint/ast/fallthrough_statement.h" #include "src/tint/ast/float_literal_expression.h" #include "src/tint/ast/id_attribute.h" #include "src/tint/ast/interpolate_attribute.h" #include "src/tint/ast/module.h" #include "src/tint/ast/variable_decl_statement.h" #include "src/tint/ast/void.h" #include "src/tint/sem/array.h" #include "src/tint/sem/atomic.h" #include "src/tint/sem/bool.h" #include "src/tint/sem/call.h" #include "src/tint/sem/depth_multisampled_texture.h" #include "src/tint/sem/depth_texture.h" #include "src/tint/sem/f32.h" #include "src/tint/sem/function.h" #include "src/tint/sem/i32.h" #include "src/tint/sem/matrix.h" #include "src/tint/sem/member_accessor_expression.h" #include "src/tint/sem/module.h" #include "src/tint/sem/multisampled_texture.h" #include "src/tint/sem/pointer.h" #include "src/tint/sem/reference.h" #include "src/tint/sem/sampled_texture.h" #include "src/tint/sem/storage_texture.h" #include "src/tint/sem/struct.h" #include "src/tint/sem/type_constructor.h" #include "src/tint/sem/type_conversion.h" #include "src/tint/sem/u32.h" #include "src/tint/sem/variable.h" #include "src/tint/sem/vector.h" #include "src/tint/sem/void.h" #include "src/tint/transform/array_length_from_uniform.h" #include "src/tint/transform/builtin_polyfill.h" #include "src/tint/transform/canonicalize_entry_point_io.h" #include "src/tint/transform/disable_uniformity_analysis.h" #include "src/tint/transform/expand_compound_assignment.h" #include "src/tint/transform/manager.h" #include "src/tint/transform/module_scope_var_to_entry_point_param.h" #include "src/tint/transform/promote_initializers_to_const_var.h" #include "src/tint/transform/promote_side_effects_to_decl.h" #include "src/tint/transform/remove_phonies.h" #include "src/tint/transform/simplify_pointers.h" #include "src/tint/transform/unshadow.h" #include "src/tint/transform/unwind_discard_functions.h" #include "src/tint/transform/vectorize_scalar_matrix_constructors.h" #include "src/tint/transform/wrap_arrays_in_structs.h" #include "src/tint/transform/zero_init_workgroup_memory.h" #include "src/tint/utils/defer.h" #include "src/tint/utils/map.h" #include "src/tint/utils/scoped_assignment.h" #include "src/tint/writer/float_to_string.h" #include "src/tint/writer/generate_external_texture_bindings.h" namespace tint::writer::msl { namespace { bool last_is_break_or_fallthrough(const ast::BlockStatement* stmts) { return IsAnyOf(stmts->Last()); } class ScopedBitCast { public: ScopedBitCast(GeneratorImpl* generator, std::ostream& stream, const sem::Type* curr_type, const sem::Type* target_type) : s(stream) { auto* target_vec_type = target_type->As(); // If we need to promote from scalar to vector, bitcast the scalar to the // vector element type. if (curr_type->is_scalar() && target_vec_type) { target_type = target_vec_type->type(); } // Bit cast s << "as_type<"; generator->EmitType(s, target_type, ""); s << ">("; } ~ScopedBitCast() { s << ")"; } private: std::ostream& s; }; } // namespace SanitizedResult::SanitizedResult() = default; SanitizedResult::~SanitizedResult() = default; SanitizedResult::SanitizedResult(SanitizedResult&&) = default; SanitizedResult Sanitize(const Program* in, const Options& options) { transform::Manager manager; transform::DataMap data; manager.Add(); { // Builtin polyfills transform::BuiltinPolyfill::Builtins polyfills; polyfills.extract_bits = transform::BuiltinPolyfill::Level::kClampParameters; polyfills.first_leading_bit = true; polyfills.first_trailing_bit = true; polyfills.insert_bits = transform::BuiltinPolyfill::Level::kClampParameters; data.Add(polyfills); manager.Add(); } // Build the config for the internal ArrayLengthFromUniform transform. auto& array_length_from_uniform = options.array_length_from_uniform; transform::ArrayLengthFromUniform::Config array_length_from_uniform_cfg( array_length_from_uniform.ubo_binding); if (!array_length_from_uniform.bindpoint_to_size_index.empty()) { // If |array_length_from_uniform| bindings are provided, use that config. array_length_from_uniform_cfg.bindpoint_to_size_index = array_length_from_uniform.bindpoint_to_size_index; } else { // If the binding map is empty, use the deprecated |buffer_size_ubo_index| // and automatically choose indices using the binding numbers. array_length_from_uniform_cfg = transform::ArrayLengthFromUniform::Config( sem::BindingPoint{0, options.buffer_size_ubo_index}); // Use the SSBO binding numbers as the indices for the buffer size lookups. for (auto* var : in->AST().GlobalVariables()) { auto* global = in->Sem().Get(var); if (global && global->StorageClass() == ast::StorageClass::kStorage) { array_length_from_uniform_cfg.bindpoint_to_size_index.emplace( global->BindingPoint(), global->BindingPoint().binding); } } } // Build the configs for the internal CanonicalizeEntryPointIO transform. auto entry_point_io_cfg = transform::CanonicalizeEntryPointIO::Config( transform::CanonicalizeEntryPointIO::ShaderStyle::kMsl, options.fixed_sample_mask, options.emit_vertex_point_size); if (options.generate_external_texture_bindings) { auto new_bindings_map = GenerateExternalTextureBindings(in); data.Add(new_bindings_map); } manager.Add(); manager.Add(); if (!options.disable_workgroup_init) { // ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as // ZeroInitWorkgroupMemory may inject new builtin parameters. manager.Add(); } manager.Add(); manager.Add(); manager.Add(); manager.Add(); manager.Add(); manager.Add(); manager.Add(); manager.Add(); manager.Add(); // ArrayLengthFromUniform must come after SimplifyPointers, as // it assumes that the form of the array length argument is &var.array. manager.Add(); manager.Add(); data.Add(std::move(array_length_from_uniform_cfg)); data.Add(std::move(entry_point_io_cfg)); auto out = manager.Run(in, data); SanitizedResult result; result.program = std::move(out.program); if (!result.program.IsValid()) { return result; } if (auto* res = out.data.Get()) { result.used_array_length_from_uniform_indices = std::move(res->used_size_indices); } result.needs_storage_buffer_sizes = !result.used_array_length_from_uniform_indices.empty(); return result; } GeneratorImpl::GeneratorImpl(const Program* program) : TextGenerator(program) {} GeneratorImpl::~GeneratorImpl() = default; bool GeneratorImpl::Generate() { line() << "#include "; line(); line() << "using namespace metal;"; auto helpers_insertion_point = current_buffer_->lines.size(); auto* mod = builder_.Sem().Module(); for (auto* decl : mod->DependencyOrderedDeclarations()) { bool ok = Switch( decl, // [&](const ast::Struct* str) { TINT_DEFER(line()); return EmitTypeDecl(TypeOf(str)); }, [&](const ast::Alias*) { return true; // folded away by the writer }, [&](const ast::Variable* var) { if (var->is_const) { TINT_DEFER(line()); return EmitProgramConstVariable(var); } // These are pushed into the entry point by sanitizer transforms. TINT_ICE(Writer, diagnostics_) << "module-scope variables should have been handled by the MSL " "sanitizer"; return false; }, [&](const ast::Function* func) { TINT_DEFER(line()); if (func->IsEntryPoint()) { return EmitEntryPointFunction(func); } return EmitFunction(func); }, [&](const ast::Enable*) { // Do nothing for enabling extension in MSL return true; }, [&](Default) { // These are pushed into the entry point by sanitizer transforms. TINT_ICE(Writer, diagnostics_) << "unhandled type: " << decl->TypeInfo().name; return false; }); if (!ok) { return false; } } if (!invariant_define_name_.empty()) { // 'invariant' attribute requires MSL 2.1 or higher. // WGSL can ignore the invariant attribute on pre MSL 2.1 devices. // See: https://github.com/gpuweb/gpuweb/issues/893#issuecomment-745537465 line(&helpers_) << "#if __METAL_VERSION__ >= 210"; line(&helpers_) << "#define " << invariant_define_name_ << " @invariant"; line(&helpers_) << "#else"; line(&helpers_) << "#define " << invariant_define_name_; line(&helpers_) << "#endif"; line(&helpers_); } if (!helpers_.lines.empty()) { current_buffer_->Insert("", helpers_insertion_point++, 0); current_buffer_->Insert(helpers_, helpers_insertion_point++, 0); } return true; } bool GeneratorImpl::EmitTypeDecl(const sem::Type* ty) { if (auto* str = ty->As()) { if (!EmitStructType(current_buffer_, str)) { return false; } } else { diagnostics_.add_error(diag::System::Writer, "unknown alias type: " + ty->FriendlyName(builder_.Symbols())); return false; } return true; } bool GeneratorImpl::EmitIndexAccessor(std::ostream& out, const ast::IndexAccessorExpression* expr) { bool paren_lhs = !expr->object->IsAnyOf(); if (paren_lhs) { out << "("; } if (!EmitExpression(out, expr->object)) { return false; } if (paren_lhs) { out << ")"; } out << "["; if (!EmitExpression(out, expr->index)) { return false; } out << "]"; return true; } bool GeneratorImpl::EmitBitcast(std::ostream& out, const ast::BitcastExpression* expr) { out << "as_type<"; if (!EmitType(out, TypeOf(expr)->UnwrapRef(), "")) { return false; } out << ">("; if (!EmitExpression(out, expr->expr)) { return false; } out << ")"; return true; } bool GeneratorImpl::EmitAssign(const ast::AssignmentStatement* stmt) { auto out = line(); if (!EmitExpression(out, stmt->lhs)) { return false; } out << " = "; if (!EmitExpression(out, stmt->rhs)) { return false; } out << ";"; return true; } bool GeneratorImpl::EmitBinary(std::ostream& out, const ast::BinaryExpression* expr) { auto emit_op = [&] { out << " "; switch (expr->op) { case ast::BinaryOp::kAnd: out << "&"; break; case ast::BinaryOp::kOr: out << "|"; break; case ast::BinaryOp::kXor: out << "^"; break; case ast::BinaryOp::kLogicalAnd: out << "&&"; break; case ast::BinaryOp::kLogicalOr: out << "||"; break; case ast::BinaryOp::kEqual: out << "=="; break; case ast::BinaryOp::kNotEqual: out << "!="; break; case ast::BinaryOp::kLessThan: out << "<"; break; case ast::BinaryOp::kGreaterThan: out << ">"; break; case ast::BinaryOp::kLessThanEqual: out << "<="; break; case ast::BinaryOp::kGreaterThanEqual: out << ">="; break; case ast::BinaryOp::kShiftLeft: out << "<<"; break; case ast::BinaryOp::kShiftRight: // TODO(dsinclair): MSL is based on C++14, and >> in C++14 has // implementation-defined behaviour for negative LHS. We may have to // generate extra code to implement WGSL-specified behaviour for // negative LHS. out << R"(>>)"; break; case ast::BinaryOp::kAdd: out << "+"; break; case ast::BinaryOp::kSubtract: out << "-"; break; case ast::BinaryOp::kMultiply: out << "*"; break; case ast::BinaryOp::kDivide: out << "/"; break; case ast::BinaryOp::kModulo: out << "%"; break; case ast::BinaryOp::kNone: diagnostics_.add_error(diag::System::Writer, "missing binary operation type"); return false; } out << " "; return true; }; auto signed_type_of = [&](const sem::Type* ty) -> const sem::Type* { if (ty->is_integer_scalar()) { return builder_.create(); } else if (auto* v = ty->As()) { return builder_.create(builder_.create(), v->Width()); } return {}; }; auto unsigned_type_of = [&](const sem::Type* ty) -> const sem::Type* { if (ty->is_integer_scalar()) { return builder_.create(); } else if (auto* v = ty->As()) { return builder_.create(builder_.create(), v->Width()); } return {}; }; auto* lhs_type = TypeOf(expr->lhs)->UnwrapRef(); auto* rhs_type = TypeOf(expr->rhs)->UnwrapRef(); // Handle fmod if (expr->op == ast::BinaryOp::kModulo && lhs_type->is_float_scalar_or_vector()) { out << "fmod"; ScopedParen sp(out); if (!EmitExpression(out, expr->lhs)) { return false; } out << ", "; if (!EmitExpression(out, expr->rhs)) { return false; } return true; } // Handle +/-/* of signed values if ((expr->IsAdd() || expr->IsSubtract() || expr->IsMultiply()) && lhs_type->is_signed_scalar_or_vector() && rhs_type->is_signed_scalar_or_vector()) { // If lhs or rhs is a vector, use that type (support implicit scalar to // vector promotion) auto* target_type = lhs_type->Is() ? lhs_type : (rhs_type->Is() ? rhs_type : lhs_type); // WGSL defines behaviour for signed overflow, MSL does not. For these // cases, bitcast operands to unsigned, then cast result to signed. ScopedBitCast outer_int_cast(this, out, target_type, signed_type_of(target_type)); ScopedParen sp(out); { ScopedBitCast lhs_uint_cast(this, out, lhs_type, unsigned_type_of(target_type)); if (!EmitExpression(out, expr->lhs)) { return false; } } if (!emit_op()) { return false; } { ScopedBitCast rhs_uint_cast(this, out, rhs_type, unsigned_type_of(target_type)); if (!EmitExpression(out, expr->rhs)) { return false; } } return true; } // Handle left bit shifting a signed value // TODO(crbug.com/tint/1077): This may not be necessary. The MSL spec // seems to imply that left shifting a signed value is treated the same as // left shifting an unsigned value, but we need to make sure. if (expr->IsShiftLeft() && lhs_type->is_signed_scalar_or_vector()) { // Shift left: discards top bits, so convert first operand to unsigned // first, then convert result back to signed ScopedBitCast outer_int_cast(this, out, lhs_type, signed_type_of(lhs_type)); ScopedParen sp(out); { ScopedBitCast lhs_uint_cast(this, out, lhs_type, unsigned_type_of(lhs_type)); if (!EmitExpression(out, expr->lhs)) { return false; } } if (!emit_op()) { return false; } if (!EmitExpression(out, expr->rhs)) { return false; } return true; } // Handle '&' and '|' of booleans. if ((expr->IsAnd() || expr->IsOr()) && lhs_type->Is()) { out << "bool"; ScopedParen sp(out); if (!EmitExpression(out, expr->lhs)) { return false; } if (!emit_op()) { return false; } if (!EmitExpression(out, expr->rhs)) { return false; } return true; } // Emit as usual ScopedParen sp(out); if (!EmitExpression(out, expr->lhs)) { return false; } if (!emit_op()) { return false; } if (!EmitExpression(out, expr->rhs)) { return false; } return true; } bool GeneratorImpl::EmitBreak(const ast::BreakStatement*) { line() << "break;"; return true; } bool GeneratorImpl::EmitCall(std::ostream& out, const ast::CallExpression* expr) { auto* call = program_->Sem().Get(expr); auto* target = call->Target(); return Switch( target, [&](const sem::Function* func) { return EmitFunctionCall(out, call, func); }, [&](const sem::Builtin* builtin) { return EmitBuiltinCall(out, call, builtin); }, [&](const sem::TypeConversion* conv) { return EmitTypeConversion(out, call, conv); }, [&](const sem::TypeConstructor* ctor) { return EmitTypeConstructor(out, call, ctor); }, [&](Default) { TINT_ICE(Writer, diagnostics_) << "unhandled call target: " << target->TypeInfo().name; return false; }); } bool GeneratorImpl::EmitFunctionCall(std::ostream& out, const sem::Call* call, const sem::Function*) { auto* ident = call->Declaration()->target.name; out << program_->Symbols().NameFor(ident->symbol) << "("; bool first = true; for (auto* arg : call->Arguments()) { if (!first) { out << ", "; } first = false; if (!EmitExpression(out, arg->Declaration())) { return false; } } out << ")"; return true; } bool GeneratorImpl::EmitBuiltinCall(std::ostream& out, const sem::Call* call, const sem::Builtin* builtin) { auto* expr = call->Declaration(); if (builtin->IsAtomic()) { return EmitAtomicCall(out, expr, builtin); } if (builtin->IsTexture()) { return EmitTextureCall(out, call, builtin); } auto name = generate_builtin_name(builtin); switch (builtin->Type()) { case sem::BuiltinType::kDot: return EmitDotCall(out, expr, builtin); case sem::BuiltinType::kModf: return EmitModfCall(out, expr, builtin); case sem::BuiltinType::kFrexp: return EmitFrexpCall(out, expr, builtin); case sem::BuiltinType::kDegrees: return EmitDegreesCall(out, expr, builtin); case sem::BuiltinType::kRadians: return EmitRadiansCall(out, expr, builtin); case sem::BuiltinType::kPack2x16float: case sem::BuiltinType::kUnpack2x16float: { if (builtin->Type() == sem::BuiltinType::kPack2x16float) { out << "as_type(half2("; } else { out << "float2(as_type("; } if (!EmitExpression(out, expr->args[0])) { return false; } out << "))"; return true; } // TODO(crbug.com/tint/661): Combine sequential barriers to a single // instruction. case sem::BuiltinType::kStorageBarrier: { out << "threadgroup_barrier(mem_flags::mem_device)"; return true; } case sem::BuiltinType::kWorkgroupBarrier: { out << "threadgroup_barrier(mem_flags::mem_threadgroup)"; return true; } case sem::BuiltinType::kLength: { auto* sem = builder_.Sem().Get(expr->args[0]); if (sem->Type()->UnwrapRef()->is_scalar()) { // Emulate scalar overload using fabs(x). name = "fabs"; } break; } case sem::BuiltinType::kDistance: { auto* sem = builder_.Sem().Get(expr->args[0]); if (sem->Type()->UnwrapRef()->is_scalar()) { // Emulate scalar overload using fabs(x - y); out << "fabs"; ScopedParen sp(out); if (!EmitExpression(out, expr->args[0])) { return false; } out << " - "; if (!EmitExpression(out, expr->args[1])) { return false; } return true; } break; } default: break; } if (name.empty()) { return false; } out << name << "("; bool first = true; for (auto* arg : expr->args) { if (!first) { out << ", "; } first = false; if (!EmitExpression(out, arg)) { return false; } } out << ")"; return true; } bool GeneratorImpl::EmitTypeConversion(std::ostream& out, const sem::Call* call, const sem::TypeConversion* conv) { if (!EmitType(out, conv->Target(), "")) { return false; } out << "("; if (!EmitExpression(out, call->Arguments()[0]->Declaration())) { return false; } out << ")"; return true; } bool GeneratorImpl::EmitTypeConstructor(std::ostream& out, const sem::Call* call, const sem::TypeConstructor* ctor) { auto* type = ctor->ReturnType(); if (type->IsAnyOf()) { out << "{"; } else { if (!EmitType(out, type, "")) { return false; } out << "("; } int i = 0; for (auto* arg : call->Arguments()) { if (i > 0) { out << ", "; } if (auto* struct_ty = type->As()) { // Emit field designators for structures to account for padding members. auto* member = struct_ty->Members()[i]->Declaration(); auto name = program_->Symbols().NameFor(member->symbol); out << "." << name << "="; } if (!EmitExpression(out, arg->Declaration())) { return false; } i++; } if (type->IsAnyOf()) { out << "}"; } else { out << ")"; } return true; } bool GeneratorImpl::EmitAtomicCall(std::ostream& out, const ast::CallExpression* expr, const sem::Builtin* builtin) { auto call = [&](const std::string& name, bool append_memory_order_relaxed) { out << name; { ScopedParen sp(out); for (size_t i = 0; i < expr->args.size(); i++) { auto* arg = expr->args[i]; if (i > 0) { out << ", "; } if (!EmitExpression(out, arg)) { return false; } } if (append_memory_order_relaxed) { out << ", memory_order_relaxed"; } } return true; }; switch (builtin->Type()) { case sem::BuiltinType::kAtomicLoad: return call("atomic_load_explicit", true); case sem::BuiltinType::kAtomicStore: return call("atomic_store_explicit", true); case sem::BuiltinType::kAtomicAdd: return call("atomic_fetch_add_explicit", true); case sem::BuiltinType::kAtomicSub: return call("atomic_fetch_sub_explicit", true); case sem::BuiltinType::kAtomicMax: return call("atomic_fetch_max_explicit", true); case sem::BuiltinType::kAtomicMin: return call("atomic_fetch_min_explicit", true); case sem::BuiltinType::kAtomicAnd: return call("atomic_fetch_and_explicit", true); case sem::BuiltinType::kAtomicOr: return call("atomic_fetch_or_explicit", true); case sem::BuiltinType::kAtomicXor: return call("atomic_fetch_xor_explicit", true); case sem::BuiltinType::kAtomicExchange: return call("atomic_exchange_explicit", true); case sem::BuiltinType::kAtomicCompareExchangeWeak: { auto* ptr_ty = TypeOf(expr->args[0])->UnwrapRef()->As(); auto sc = ptr_ty->StorageClass(); auto func = utils::GetOrCreate(atomicCompareExchangeWeak_, sc, [&]() -> std::string { auto name = UniqueIdentifier("atomicCompareExchangeWeak"); auto& buf = helpers_; line(&buf) << "template "; { auto f = line(&buf); f << "vec " << name << "("; if (!EmitStorageClass(f, sc)) { return ""; } f << " A* atomic, T compare, T value) {"; } buf.IncrementIndent(); TINT_DEFER({ buf.DecrementIndent(); line(&buf) << "}"; line(&buf); }); line(&buf) << "T prev_value = compare;"; line(&buf) << "bool matched = " "atomic_compare_exchange_weak_explicit(atomic, " "&prev_value, value, memory_order_relaxed, " "memory_order_relaxed);"; line(&buf) << "return {prev_value, matched};"; return name; }); return call(func, false); } default: break; } TINT_UNREACHABLE(Writer, diagnostics_) << "unsupported atomic builtin: " << builtin->Type(); return false; } bool GeneratorImpl::EmitTextureCall(std::ostream& out, const sem::Call* call, const sem::Builtin* builtin) { using Usage = sem::ParameterUsage; auto& signature = builtin->Signature(); auto* expr = call->Declaration(); auto& arguments = call->Arguments(); // Returns the argument with the given usage auto arg = [&](Usage usage) { int idx = signature.IndexOf(usage); return (idx >= 0) ? arguments[idx] : nullptr; }; auto* texture = arg(Usage::kTexture)->Declaration(); if (!texture) { TINT_ICE(Writer, diagnostics_) << "missing texture arg"; return false; } auto* texture_type = TypeOf(texture)->UnwrapRef()->As(); // Helper to emit the texture expression, wrapped in parentheses if the // expression includes an operator with lower precedence than the member // accessor used for the function calls. auto texture_expr = [&]() { bool paren_lhs = !texture->IsAnyOf(); if (paren_lhs) { out << "("; } if (!EmitExpression(out, texture)) { return false; } if (paren_lhs) { out << ")"; } return true; }; // MSL requires that `lod` is a constant 0 for 1D textures. bool level_is_constant_zero = texture_type->dim() == ast::TextureDimension::k1d; switch (builtin->Type()) { case sem::BuiltinType::kTextureDimensions: { std::vector dims; switch (texture_type->dim()) { case ast::TextureDimension::kNone: diagnostics_.add_error(diag::System::Writer, "texture dimension is kNone"); return false; case ast::TextureDimension::k1d: dims = {"width"}; break; case ast::TextureDimension::k2d: case ast::TextureDimension::k2dArray: case ast::TextureDimension::kCube: case ast::TextureDimension::kCubeArray: dims = {"width", "height"}; break; case ast::TextureDimension::k3d: dims = {"width", "height", "depth"}; break; } auto get_dim = [&](const char* name) { if (!texture_expr()) { return false; } out << ".get_" << name << "("; if (level_is_constant_zero) { out << "0"; } else { if (auto* level = arg(Usage::kLevel)) { if (!EmitExpression(out, level->Declaration())) { return false; } } } out << ")"; return true; }; if (dims.size() == 1) { out << "int("; get_dim(dims[0]); out << ")"; } else { EmitType(out, TypeOf(expr)->UnwrapRef(), ""); out << "("; for (size_t i = 0; i < dims.size(); i++) { if (i > 0) { out << ", "; } get_dim(dims[i]); } out << ")"; } return true; } case sem::BuiltinType::kTextureNumLayers: { out << "int("; if (!texture_expr()) { return false; } out << ".get_array_size())"; return true; } case sem::BuiltinType::kTextureNumLevels: { out << "int("; if (!texture_expr()) { return false; } out << ".get_num_mip_levels())"; return true; } case sem::BuiltinType::kTextureNumSamples: { out << "int("; if (!texture_expr()) { return false; } out << ".get_num_samples())"; return true; } default: break; } if (!texture_expr()) { return false; } bool lod_param_is_named = true; switch (builtin->Type()) { case sem::BuiltinType::kTextureSample: case sem::BuiltinType::kTextureSampleBias: case sem::BuiltinType::kTextureSampleLevel: case sem::BuiltinType::kTextureSampleGrad: out << ".sample("; break; case sem::BuiltinType::kTextureSampleCompare: case sem::BuiltinType::kTextureSampleCompareLevel: out << ".sample_compare("; break; case sem::BuiltinType::kTextureGather: out << ".gather("; break; case sem::BuiltinType::kTextureGatherCompare: out << ".gather_compare("; break; case sem::BuiltinType::kTextureLoad: out << ".read("; lod_param_is_named = false; break; case sem::BuiltinType::kTextureStore: out << ".write("; break; default: TINT_UNREACHABLE(Writer, diagnostics_) << "Unhandled texture builtin '" << builtin->str() << "'"; return false; } bool first_arg = true; auto maybe_write_comma = [&] { if (!first_arg) { out << ", "; } first_arg = false; }; for (auto usage : {Usage::kValue, Usage::kSampler, Usage::kCoords, Usage::kArrayIndex, Usage::kDepthRef, Usage::kSampleIndex}) { if (auto* e = arg(usage)) { maybe_write_comma(); // Cast the coordinates to unsigned integers if necessary. bool casted = false; if (usage == Usage::kCoords && e->Type()->UnwrapRef()->is_integer_scalar_or_vector()) { casted = true; switch (texture_type->dim()) { case ast::TextureDimension::k1d: out << "uint("; break; case ast::TextureDimension::k2d: case ast::TextureDimension::k2dArray: out << "uint2("; break; case ast::TextureDimension::k3d: out << "uint3("; break; default: TINT_ICE(Writer, diagnostics_) << "unhandled texture dimensionality"; break; } } if (!EmitExpression(out, e->Declaration())) { return false; } if (casted) { out << ")"; } } } if (auto* bias = arg(Usage::kBias)) { maybe_write_comma(); out << "bias("; if (!EmitExpression(out, bias->Declaration())) { return false; } out << ")"; } if (auto* level = arg(Usage::kLevel)) { maybe_write_comma(); if (lod_param_is_named) { out << "level("; } if (level_is_constant_zero) { out << "0"; } else { if (!EmitExpression(out, level->Declaration())) { return false; } } if (lod_param_is_named) { out << ")"; } } if (builtin->Type() == sem::BuiltinType::kTextureSampleCompareLevel) { maybe_write_comma(); out << "level(0)"; } if (auto* ddx = arg(Usage::kDdx)) { auto dim = texture_type->dim(); switch (dim) { case ast::TextureDimension::k2d: case ast::TextureDimension::k2dArray: maybe_write_comma(); out << "gradient2d("; break; case ast::TextureDimension::k3d: maybe_write_comma(); out << "gradient3d("; break; case ast::TextureDimension::kCube: case ast::TextureDimension::kCubeArray: maybe_write_comma(); out << "gradientcube("; break; default: { std::stringstream err; err << "MSL does not support gradients for " << dim << " textures"; diagnostics_.add_error(diag::System::Writer, err.str()); return false; } } if (!EmitExpression(out, ddx->Declaration())) { return false; } out << ", "; if (!EmitExpression(out, arg(Usage::kDdy)->Declaration())) { return false; } out << ")"; } bool has_offset = false; if (auto* offset = arg(Usage::kOffset)) { has_offset = true; maybe_write_comma(); if (!EmitExpression(out, offset->Declaration())) { return false; } } if (auto* component = arg(Usage::kComponent)) { maybe_write_comma(); if (!has_offset) { // offset argument may need to be provided if we have a component. switch (texture_type->dim()) { case ast::TextureDimension::k2d: case ast::TextureDimension::k2dArray: out << "int2(0), "; break; default: break; // Other texture dimensions don't have an offset } } auto c = component->ConstantValue().Element(0); switch (c.value) { case 0: out << "component::x"; break; case 1: out << "component::y"; break; case 2: out << "component::z"; break; case 3: out << "component::w"; break; default: TINT_ICE(Writer, diagnostics_) << "invalid textureGather component: " << c; break; } } out << ")"; return true; } bool GeneratorImpl::EmitDotCall(std::ostream& out, const ast::CallExpression* expr, const sem::Builtin* builtin) { auto* vec_ty = builtin->Parameters()[0]->Type()->As(); std::string fn = "dot"; if (vec_ty->type()->is_integer_scalar()) { // MSL does not have a builtin for dot() with integer vector types. // Generate the helper function if it hasn't been created already fn = utils::GetOrCreate(int_dot_funcs_, vec_ty->Width(), [&]() -> std::string { TextBuffer b; TINT_DEFER(helpers_.Append(b)); auto fn_name = UniqueIdentifier("tint_dot" + std::to_string(vec_ty->Width())); auto v = "vecWidth()) + ">"; line(&b) << "template"; line(&b) << "T " << fn_name << "(" << v << " a, " << v << " b) {"; { auto l = line(&b); l << " return "; for (uint32_t i = 0; i < vec_ty->Width(); i++) { if (i > 0) { l << " + "; } l << "a[" << i << "]*b[" << i << "]"; } l << ";"; } line(&b) << "}"; return fn_name; }); } out << fn << "("; if (!EmitExpression(out, expr->args[0])) { return false; } out << ", "; if (!EmitExpression(out, expr->args[1])) { return false; } out << ")"; return true; } bool GeneratorImpl::EmitModfCall(std::ostream& out, const ast::CallExpression* expr, const sem::Builtin* builtin) { return CallBuiltinHelper( out, expr, builtin, [&](TextBuffer* b, const std::vector& params) { auto* ty = builtin->Parameters()[0]->Type(); auto in = params[0]; std::string width; if (auto* vec = ty->As()) { width = std::to_string(vec->Width()); } // Emit the builtin return type unique to this overload. This does not // exist in the AST, so it will not be generated in Generate(). if (!EmitStructType(&helpers_, builtin->ReturnType()->As())) { return false; } line(b) << "float" << width << " whole;"; line(b) << "float" << width << " fract = modf(" << in << ", whole);"; line(b) << "return {fract, whole};"; return true; }); } bool GeneratorImpl::EmitFrexpCall(std::ostream& out, const ast::CallExpression* expr, const sem::Builtin* builtin) { return CallBuiltinHelper( out, expr, builtin, [&](TextBuffer* b, const std::vector& params) { auto* ty = builtin->Parameters()[0]->Type(); auto in = params[0]; std::string width; if (auto* vec = ty->As()) { width = std::to_string(vec->Width()); } // Emit the builtin return type unique to this overload. This does not // exist in the AST, so it will not be generated in Generate(). if (!EmitStructType(&helpers_, builtin->ReturnType()->As())) { return false; } line(b) << "int" << width << " exp;"; line(b) << "float" << width << " sig = frexp(" << in << ", exp);"; line(b) << "return {sig, exp};"; return true; }); } bool GeneratorImpl::EmitDegreesCall(std::ostream& out, const ast::CallExpression* expr, const sem::Builtin* builtin) { return CallBuiltinHelper(out, expr, builtin, [&](TextBuffer* b, const std::vector& params) { line(b) << "return " << params[0] << " * " << std::setprecision(20) << sem::kRadToDeg << ";"; return true; }); } bool GeneratorImpl::EmitRadiansCall(std::ostream& out, const ast::CallExpression* expr, const sem::Builtin* builtin) { return CallBuiltinHelper(out, expr, builtin, [&](TextBuffer* b, const std::vector& params) { line(b) << "return " << params[0] << " * " << std::setprecision(20) << sem::kDegToRad << ";"; return true; }); } std::string GeneratorImpl::generate_builtin_name(const sem::Builtin* builtin) { std::string out = ""; switch (builtin->Type()) { case sem::BuiltinType::kAcos: case sem::BuiltinType::kAll: case sem::BuiltinType::kAny: case sem::BuiltinType::kAsin: case sem::BuiltinType::kAtan: case sem::BuiltinType::kAtan2: case sem::BuiltinType::kCeil: case sem::BuiltinType::kCos: case sem::BuiltinType::kCosh: case sem::BuiltinType::kCross: case sem::BuiltinType::kDeterminant: case sem::BuiltinType::kDistance: case sem::BuiltinType::kDot: case sem::BuiltinType::kExp: case sem::BuiltinType::kExp2: case sem::BuiltinType::kFloor: case sem::BuiltinType::kFma: case sem::BuiltinType::kFract: case sem::BuiltinType::kFrexp: case sem::BuiltinType::kLength: case sem::BuiltinType::kLdexp: case sem::BuiltinType::kLog: case sem::BuiltinType::kLog2: case sem::BuiltinType::kMix: case sem::BuiltinType::kModf: case sem::BuiltinType::kNormalize: case sem::BuiltinType::kPow: case sem::BuiltinType::kReflect: case sem::BuiltinType::kRefract: case sem::BuiltinType::kSelect: case sem::BuiltinType::kSin: case sem::BuiltinType::kSinh: case sem::BuiltinType::kSqrt: case sem::BuiltinType::kStep: case sem::BuiltinType::kTan: case sem::BuiltinType::kTanh: case sem::BuiltinType::kTranspose: case sem::BuiltinType::kTrunc: case sem::BuiltinType::kSign: case sem::BuiltinType::kClamp: out += builtin->str(); break; case sem::BuiltinType::kAbs: if (builtin->ReturnType()->is_float_scalar_or_vector()) { out += "fabs"; } else { out += "abs"; } break; case sem::BuiltinType::kCountLeadingZeros: out += "clz"; break; case sem::BuiltinType::kCountOneBits: out += "popcount"; break; case sem::BuiltinType::kCountTrailingZeros: out += "ctz"; break; case sem::BuiltinType::kDpdx: case sem::BuiltinType::kDpdxCoarse: case sem::BuiltinType::kDpdxFine: out += "dfdx"; break; case sem::BuiltinType::kDpdy: case sem::BuiltinType::kDpdyCoarse: case sem::BuiltinType::kDpdyFine: out += "dfdy"; break; case sem::BuiltinType::kExtractBits: out += "extract_bits"; break; case sem::BuiltinType::kInsertBits: out += "insert_bits"; break; case sem::BuiltinType::kFwidth: case sem::BuiltinType::kFwidthCoarse: case sem::BuiltinType::kFwidthFine: out += "fwidth"; break; case sem::BuiltinType::kMax: if (builtin->ReturnType()->is_float_scalar_or_vector()) { out += "fmax"; } else { out += "max"; } break; case sem::BuiltinType::kMin: if (builtin->ReturnType()->is_float_scalar_or_vector()) { out += "fmin"; } else { out += "min"; } break; case sem::BuiltinType::kFaceForward: out += "faceforward"; break; case sem::BuiltinType::kPack4x8snorm: out += "pack_float_to_snorm4x8"; break; case sem::BuiltinType::kPack4x8unorm: out += "pack_float_to_unorm4x8"; break; case sem::BuiltinType::kPack2x16snorm: out += "pack_float_to_snorm2x16"; break; case sem::BuiltinType::kPack2x16unorm: out += "pack_float_to_unorm2x16"; break; case sem::BuiltinType::kReverseBits: out += "reverse_bits"; break; case sem::BuiltinType::kRound: out += "rint"; break; case sem::BuiltinType::kSmoothstep: case sem::BuiltinType::kSmoothStep: out += "smoothstep"; break; case sem::BuiltinType::kInverseSqrt: out += "rsqrt"; break; case sem::BuiltinType::kUnpack4x8snorm: out += "unpack_snorm4x8_to_float"; break; case sem::BuiltinType::kUnpack4x8unorm: out += "unpack_unorm4x8_to_float"; break; case sem::BuiltinType::kUnpack2x16snorm: out += "unpack_snorm2x16_to_float"; break; case sem::BuiltinType::kUnpack2x16unorm: out += "unpack_unorm2x16_to_float"; break; case sem::BuiltinType::kArrayLength: diagnostics_.add_error( diag::System::Writer, "Unable to translate builtin: " + std::string(builtin->str()) + "\nDid you forget to pass array_length_from_uniform generator " "options?"); return ""; default: diagnostics_.add_error(diag::System::Writer, "Unknown import method: " + std::string(builtin->str())); return ""; } return out; } bool GeneratorImpl::EmitCase(const ast::CaseStatement* stmt) { if (stmt->IsDefault()) { line() << "default: {"; } else { for (auto* selector : stmt->selectors) { auto out = line(); out << "case "; if (!EmitLiteral(out, selector)) { return false; } out << ":"; if (selector == stmt->selectors.back()) { out << " {"; } } } { ScopedIndent si(this); for (auto* s : stmt->body->statements) { if (!EmitStatement(s)) { return false; } } if (!last_is_break_or_fallthrough(stmt->body)) { line() << "break;"; } } line() << "}"; return true; } bool GeneratorImpl::EmitContinue(const ast::ContinueStatement*) { if (!emit_continuing_()) { return false; } line() << "continue;"; return true; } bool GeneratorImpl::EmitZeroValue(std::ostream& out, const sem::Type* type) { return Switch( type, [&](const sem::Bool*) { out << "false"; return true; }, [&](const sem::F16*) { // Placeholder for emitting f16 zero value diagnostics_.add_error(diag::System::Writer, "Type f16 is not completely implemented yet"); return false; }, [&](const sem::F32*) { out << "0.0f"; return true; }, [&](const sem::I32*) { out << "0"; return true; }, [&](const sem::U32*) { out << "0u"; return true; }, [&](const sem::Vector* vec) { // return EmitZeroValue(out, vec->type()); }, [&](const sem::Matrix* mat) { if (!EmitType(out, mat, "")) { return false; } out << "("; TINT_DEFER(out << ")"); return EmitZeroValue(out, mat->type()); }, [&](const sem::Array* arr) { out << "{"; TINT_DEFER(out << "}"); return EmitZeroValue(out, arr->ElemType()); }, [&](const sem::Struct*) { out << "{}"; return true; }, [&](Default) { diagnostics_.add_error( diag::System::Writer, "Invalid type for zero emission: " + type->FriendlyName(builder_.Symbols())); return false; }); } bool GeneratorImpl::EmitLiteral(std::ostream& out, const ast::LiteralExpression* lit) { return Switch( lit, [&](const ast::BoolLiteralExpression* l) { out << (l->value ? "true" : "false"); return true; }, [&](const ast::FloatLiteralExpression* l) { if (std::isinf(l->value)) { out << (l->value >= 0 ? "INFINITY" : "-INFINITY"); } else if (std::isnan(l->value)) { out << "NAN"; } else { out << FloatToString(static_cast(l->value)) << "f"; } return true; }, [&](const ast::IntLiteralExpression* i) { switch (i->suffix) { case ast::IntLiteralExpression::Suffix::kNone: case ast::IntLiteralExpression::Suffix::kI: { // MSL (and C++) parse `-2147483648` as a `long` because it parses // unary minus and `2147483648` as separate tokens, and the latter // doesn't fit into an (32-bit) `int`. WGSL, OTOH, parses this as an // `i32`. To avoid issues with `long` to `int` casts, emit // `(2147483647 - 1)` instead, which ensures the expression type is // `int`. const auto int_min = std::numeric_limits::min(); if (i->value == int_min) { out << "(" << int_min + 1 << " - 1)"; } else { out << i->value; } return true; } case ast::IntLiteralExpression::Suffix::kU: { out << i->value << "u"; return true; } } diagnostics_.add_error(diag::System::Writer, "unknown integer literal suffix type"); return false; }, [&](Default) { diagnostics_.add_error(diag::System::Writer, "unknown literal type"); return false; }); } bool GeneratorImpl::EmitExpression(std::ostream& out, const ast::Expression* expr) { return Switch( expr, [&](const ast::IndexAccessorExpression* a) { // return EmitIndexAccessor(out, a); }, [&](const ast::BinaryExpression* b) { // return EmitBinary(out, b); }, [&](const ast::BitcastExpression* b) { // return EmitBitcast(out, b); }, [&](const ast::CallExpression* c) { // return EmitCall(out, c); }, [&](const ast::IdentifierExpression* i) { // return EmitIdentifier(out, i); }, [&](const ast::LiteralExpression* l) { // return EmitLiteral(out, l); }, [&](const ast::MemberAccessorExpression* m) { // return EmitMemberAccessor(out, m); }, [&](const ast::UnaryOpExpression* u) { // return EmitUnaryOp(out, u); }, [&](Default) { // diagnostics_.add_error(diag::System::Writer, "unknown expression type: " + std::string(expr->TypeInfo().name)); return false; }); } void GeneratorImpl::EmitStage(std::ostream& out, ast::PipelineStage stage) { switch (stage) { case ast::PipelineStage::kFragment: out << "fragment"; break; case ast::PipelineStage::kVertex: out << "vertex"; break; case ast::PipelineStage::kCompute: out << "kernel"; break; case ast::PipelineStage::kNone: break; } return; } bool GeneratorImpl::EmitFunction(const ast::Function* func) { auto* func_sem = program_->Sem().Get(func); { auto out = line(); if (!EmitType(out, func_sem->ReturnType(), "")) { return false; } out << " " << program_->Symbols().NameFor(func->symbol) << "("; bool first = true; for (auto* v : func->params) { if (!first) { out << ", "; } first = false; auto* type = program_->Sem().Get(v)->Type(); std::string param_name = "const " + program_->Symbols().NameFor(v->symbol); if (!EmitType(out, type, param_name)) { return false; } // Parameter name is output as part of the type for arrays and pointers. if (!type->Is() && !type->Is()) { out << " " << program_->Symbols().NameFor(v->symbol); } } out << ") {"; } if (!EmitStatementsWithIndent(func->body->statements)) { return false; } line() << "}"; return true; } std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const { switch (builtin) { case ast::Builtin::kPosition: return "position"; case ast::Builtin::kVertexIndex: return "vertex_id"; case ast::Builtin::kInstanceIndex: return "instance_id"; case ast::Builtin::kFrontFacing: return "front_facing"; case ast::Builtin::kFragDepth: return "depth(any)"; case ast::Builtin::kLocalInvocationId: return "thread_position_in_threadgroup"; case ast::Builtin::kLocalInvocationIndex: return "thread_index_in_threadgroup"; case ast::Builtin::kGlobalInvocationId: return "thread_position_in_grid"; case ast::Builtin::kWorkgroupId: return "threadgroup_position_in_grid"; case ast::Builtin::kNumWorkgroups: return "threadgroups_per_grid"; case ast::Builtin::kSampleIndex: return "sample_id"; case ast::Builtin::kSampleMask: return "sample_mask"; case ast::Builtin::kPointSize: return "point_size"; default: break; } return ""; } std::string GeneratorImpl::interpolation_to_attribute(ast::InterpolationType type, ast::InterpolationSampling sampling) const { std::string attr; switch (sampling) { case ast::InterpolationSampling::kCenter: attr = "center_"; break; case ast::InterpolationSampling::kCentroid: attr = "centroid_"; break; case ast::InterpolationSampling::kSample: attr = "sample_"; break; case ast::InterpolationSampling::kNone: break; } switch (type) { case ast::InterpolationType::kPerspective: attr += "perspective"; break; case ast::InterpolationType::kLinear: attr += "no_perspective"; break; case ast::InterpolationType::kFlat: attr += "flat"; break; } return attr; } bool GeneratorImpl::EmitEntryPointFunction(const ast::Function* func) { auto func_name = program_->Symbols().NameFor(func->symbol); // Returns the binding index of a variable, requiring that the group // attribute have a value of zero. const uint32_t kInvalidBindingIndex = std::numeric_limits::max(); auto get_binding_index = [&](const ast::Variable* var) -> uint32_t { auto bp = var->BindingPoint(); if (bp.group == nullptr || bp.binding == nullptr) { TINT_ICE(Writer, diagnostics_) << "missing binding attributes for entry point parameter"; return kInvalidBindingIndex; } if (bp.group->value != 0) { TINT_ICE(Writer, diagnostics_) << "encountered non-zero resource group index (use " "BindingRemapper to fix)"; return kInvalidBindingIndex; } return bp.binding->value; }; { auto out = line(); EmitStage(out, func->PipelineStage()); out << " " << func->return_type->FriendlyName(program_->Symbols()); out << " " << func_name << "("; // Emit entry point parameters. bool first = true; for (auto* var : func->params) { if (!first) { out << ", "; } first = false; auto* type = program_->Sem().Get(var)->Type()->UnwrapRef(); auto param_name = program_->Symbols().NameFor(var->symbol); if (!EmitType(out, type, param_name)) { return false; } // Parameter name is output as part of the type for arrays and pointers. if (!type->Is() && !type->Is()) { out << " " << param_name; } if (type->Is()) { out << " [[stage_in]]"; } else if (type->is_handle()) { uint32_t binding = get_binding_index(var); if (binding == kInvalidBindingIndex) { return false; } if (var->type->Is()) { out << " [[sampler(" << binding << ")]]"; } else if (var->type->Is()) { out << " [[texture(" << binding << ")]]"; } else { TINT_ICE(Writer, diagnostics_) << "invalid handle type entry point parameter"; return false; } } else if (auto* ptr = var->type->As()) { auto sc = ptr->storage_class; if (sc == ast::StorageClass::kWorkgroup) { auto& allocations = workgroup_allocations_[func_name]; out << " [[threadgroup(" << allocations.size() << ")]]"; allocations.push_back(program_->Sem().Get(ptr->type)->Size()); } else if (sc == ast::StorageClass::kStorage || sc == ast::StorageClass::kUniform) { uint32_t binding = get_binding_index(var); if (binding == kInvalidBindingIndex) { return false; } out << " [[buffer(" << binding << ")]]"; } else { TINT_ICE(Writer, diagnostics_) << "invalid pointer storage class for entry point parameter"; return false; } } else { auto& attrs = var->attributes; bool builtin_found = false; for (auto* attr : attrs) { auto* builtin = attr->As(); if (!builtin) { continue; } builtin_found = true; auto name = builtin_to_attribute(builtin->builtin); if (name.empty()) { diagnostics_.add_error(diag::System::Writer, "unknown builtin"); return false; } out << " [[" << name << "]]"; } if (!builtin_found) { TINT_ICE(Writer, diagnostics_) << "Unsupported entry point parameter"; } } } out << ") {"; } { ScopedIndent si(this); if (!EmitStatements(func->body->statements)) { return false; } if (!Is(func->body->Last())) { ast::ReturnStatement ret(ProgramID{}, Source{}); if (!EmitStatement(&ret)) { return false; } } } line() << "}"; return true; } bool GeneratorImpl::EmitIdentifier(std::ostream& out, const ast::IdentifierExpression* expr) { out << program_->Symbols().NameFor(expr->symbol); return true; } bool GeneratorImpl::EmitLoop(const ast::LoopStatement* stmt) { auto emit_continuing = [this, stmt]() { if (stmt->continuing && !stmt->continuing->Empty()) { if (!EmitBlock(stmt->continuing)) { return false; } } return true; }; TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); line() << "while (true) {"; { ScopedIndent si(this); if (!EmitStatements(stmt->body->statements)) { return false; } if (!emit_continuing_()) { return false; } } line() << "}"; return true; } bool GeneratorImpl::EmitForLoop(const ast::ForLoopStatement* stmt) { TextBuffer init_buf; if (auto* init = stmt->initializer) { TINT_SCOPED_ASSIGNMENT(current_buffer_, &init_buf); if (!EmitStatement(init)) { return false; } } TextBuffer cond_pre; std::stringstream cond_buf; if (auto* cond = stmt->condition) { TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre); if (!EmitExpression(cond_buf, cond)) { return false; } } TextBuffer cont_buf; if (auto* cont = stmt->continuing) { TINT_SCOPED_ASSIGNMENT(current_buffer_, &cont_buf); if (!EmitStatement(cont)) { return false; } } // If the for-loop has a multi-statement conditional and / or continuing, // then we cannot emit this as a regular for-loop in MSL. Instead we need to // generate a `while(true)` loop. bool emit_as_loop = cond_pre.lines.size() > 0 || cont_buf.lines.size() > 1; // If the for-loop has multi-statement initializer, or is going to be // emitted as a `while(true)` loop, then declare the initializer // statement(s) before the loop in a new block. bool nest_in_block = init_buf.lines.size() > 1 || (stmt->initializer && emit_as_loop); if (nest_in_block) { line() << "{"; increment_indent(); current_buffer_->Append(init_buf); init_buf.lines.clear(); // Don't emit the initializer again in the 'for' } TINT_DEFER({ if (nest_in_block) { decrement_indent(); line() << "}"; } }); if (emit_as_loop) { auto emit_continuing = [&]() { current_buffer_->Append(cont_buf); return true; }; TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); line() << "while (true) {"; increment_indent(); TINT_DEFER({ decrement_indent(); line() << "}"; }); if (stmt->condition) { current_buffer_->Append(cond_pre); line() << "if (!(" << cond_buf.str() << ")) { break; }"; } if (!EmitStatements(stmt->body->statements)) { return false; } if (!emit_continuing_()) { return false; } } else { // For-loop can be generated. { auto out = line(); out << "for"; { ScopedParen sp(out); if (!init_buf.lines.empty()) { out << init_buf.lines[0].content << " "; } else { out << "; "; } out << cond_buf.str() << "; "; if (!cont_buf.lines.empty()) { out << TrimSuffix(cont_buf.lines[0].content, ";"); } } out << " {"; } { auto emit_continuing = [] { return true; }; TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); if (!EmitStatementsWithIndent(stmt->body->statements)) { return false; } } line() << "}"; } return true; } bool GeneratorImpl::EmitDiscard(const ast::DiscardStatement*) { // TODO(dsinclair): Verify this is correct when the discard semantics are // defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361) line() << "discard_fragment();"; return true; } bool GeneratorImpl::EmitIf(const ast::IfStatement* stmt) { { auto out = line(); out << "if ("; if (!EmitExpression(out, stmt->condition)) { return false; } out << ") {"; } if (!EmitStatementsWithIndent(stmt->body->statements)) { return false; } if (stmt->else_statement) { line() << "} else {"; if (auto* block = stmt->else_statement->As()) { if (!EmitStatementsWithIndent(block->statements)) { return false; } } else { if (!EmitStatementsWithIndent({stmt->else_statement})) { return false; } } } line() << "}"; return true; } bool GeneratorImpl::EmitMemberAccessor(std::ostream& out, const ast::MemberAccessorExpression* expr) { auto write_lhs = [&] { bool paren_lhs = !expr->structure->IsAnyOf(); if (paren_lhs) { out << "("; } if (!EmitExpression(out, expr->structure)) { return false; } if (paren_lhs) { out << ")"; } return true; }; auto& sem = program_->Sem(); if (auto* swizzle = sem.Get(expr)->As()) { // Metal 1.x does not support swizzling of packed vector types. // For single element swizzles, we can use the index operator. // For multi-element swizzles, we need to cast to a regular vector type // first. Note that we do not currently allow assignments to swizzles, so // the casting which will convert the l-value to r-value is fine. if (swizzle->Indices().size() == 1) { if (!write_lhs()) { return false; } out << "[" << swizzle->Indices()[0] << "]"; } else { if (!EmitType(out, sem.Get(expr->structure)->Type()->UnwrapRef(), "")) { return false; } out << "("; if (!write_lhs()) { return false; } out << ")." << program_->Symbols().NameFor(expr->member->symbol); } } else { if (!write_lhs()) { return false; } out << "."; if (!EmitExpression(out, expr->member)) { return false; } } return true; } bool GeneratorImpl::EmitReturn(const ast::ReturnStatement* stmt) { auto out = line(); out << "return"; if (stmt->value) { out << " "; if (!EmitExpression(out, stmt->value)) { return false; } } out << ";"; return true; } bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) { line() << "{"; if (!EmitStatementsWithIndent(stmt->statements)) { return false; } line() << "}"; return true; } bool GeneratorImpl::EmitStatement(const ast::Statement* stmt) { return Switch( stmt, [&](const ast::AssignmentStatement* a) { // return EmitAssign(a); }, [&](const ast::BlockStatement* b) { // return EmitBlock(b); }, [&](const ast::BreakStatement* b) { // return EmitBreak(b); }, [&](const ast::CallStatement* c) { // auto out = line(); if (!EmitCall(out, c->expr)) { // return false; } out << ";"; return true; }, [&](const ast::ContinueStatement* c) { // return EmitContinue(c); }, [&](const ast::DiscardStatement* d) { // return EmitDiscard(d); }, [&](const ast::FallthroughStatement*) { // line() << "/* fallthrough */"; return true; }, [&](const ast::IfStatement* i) { // return EmitIf(i); }, [&](const ast::LoopStatement* l) { // return EmitLoop(l); }, [&](const ast::ForLoopStatement* l) { // return EmitForLoop(l); }, [&](const ast::ReturnStatement* r) { // return EmitReturn(r); }, [&](const ast::SwitchStatement* s) { // return EmitSwitch(s); }, [&](const ast::VariableDeclStatement* v) { // auto* var = program_->Sem().Get(v->variable); return EmitVariable(var); }, [&](Default) { diagnostics_.add_error(diag::System::Writer, "unknown statement type: " + std::string(stmt->TypeInfo().name)); return false; }); } bool GeneratorImpl::EmitStatements(const ast::StatementList& stmts) { for (auto* s : stmts) { if (!EmitStatement(s)) { return false; } } return true; } bool GeneratorImpl::EmitStatementsWithIndent(const ast::StatementList& stmts) { ScopedIndent si(this); return EmitStatements(stmts); } bool GeneratorImpl::EmitSwitch(const ast::SwitchStatement* stmt) { { auto out = line(); out << "switch("; if (!EmitExpression(out, stmt->condition)) { return false; } out << ") {"; } { ScopedIndent si(this); for (auto* s : stmt->body) { if (!EmitCase(s)) { return false; } } } line() << "}"; return true; } bool GeneratorImpl::EmitType(std::ostream& out, const sem::Type* type, const std::string& name, bool* name_printed /* = nullptr */) { if (name_printed) { *name_printed = false; } return Switch( type, [&](const sem::Atomic* atomic) { if (atomic->Type()->Is()) { out << "atomic_int"; return true; } if (atomic->Type()->Is()) { out << "atomic_uint"; return true; } TINT_ICE(Writer, diagnostics_) << "unhandled atomic type " << atomic->Type()->FriendlyName(builder_.Symbols()); return false; }, [&](const sem::Array* ary) { const sem::Type* base_type = ary; std::vector sizes; while (auto* arr = base_type->As()) { if (arr->IsRuntimeSized()) { sizes.push_back(1); } else { sizes.push_back(arr->Count()); } base_type = arr->ElemType(); } if (!EmitType(out, base_type, "")) { return false; } if (!name.empty()) { out << " " << name; if (name_printed) { *name_printed = true; } } for (uint32_t size : sizes) { out << "[" << size << "]"; } return true; }, [&](const sem::Bool*) { out << "bool"; return true; }, [&](const sem::F16*) { diagnostics_.add_error(diag::System::Writer, "Type f16 is not completely implemented yet"); return false; }, [&](const sem::F32*) { out << "float"; return true; }, [&](const sem::I32*) { out << "int"; return true; }, [&](const sem::Matrix* mat) { if (!EmitType(out, mat->type(), "")) { return false; } out << mat->columns() << "x" << mat->rows(); return true; }, [&](const sem::Pointer* ptr) { if (ptr->Access() == ast::Access::kRead) { out << "const "; } if (!EmitStorageClass(out, ptr->StorageClass())) { return false; } out << " "; if (ptr->StoreType()->Is()) { std::string inner = "(*" + name + ")"; if (!EmitType(out, ptr->StoreType(), inner)) { return false; } if (name_printed) { *name_printed = true; } } else { if (!EmitType(out, ptr->StoreType(), "")) { return false; } out << "* " << name; if (name_printed) { *name_printed = true; } } return true; }, [&](const sem::Sampler*) { out << "sampler"; return true; }, [&](const sem::Struct* str) { // The struct type emits as just the name. The declaration would be // emitted as part of emitting the declared types. out << StructName(str); return true; }, [&](const sem::Texture* tex) { if (tex->Is()) { TINT_ICE(Writer, diagnostics_) << "Multiplanar external texture transform was not run."; return false; } if (tex->IsAnyOf()) { out << "depth"; } else { out << "texture"; } switch (tex->dim()) { case ast::TextureDimension::k1d: out << "1d"; break; case ast::TextureDimension::k2d: out << "2d"; break; case ast::TextureDimension::k2dArray: out << "2d_array"; break; case ast::TextureDimension::k3d: out << "3d"; break; case ast::TextureDimension::kCube: out << "cube"; break; case ast::TextureDimension::kCubeArray: out << "cube_array"; break; default: diagnostics_.add_error(diag::System::Writer, "Invalid texture dimensions"); return false; } if (tex->IsAnyOf()) { out << "_ms"; } out << "<"; TINT_DEFER(out << ">"); return Switch( tex, [&](const sem::DepthTexture*) { out << "float, access::sample"; return true; }, [&](const sem::DepthMultisampledTexture*) { out << "float, access::read"; return true; }, [&](const sem::StorageTexture* storage) { if (!EmitType(out, storage->type(), "")) { return false; } std::string access_str; if (storage->access() == ast::Access::kRead) { out << ", access::read"; } else if (storage->access() == ast::Access::kWrite) { out << ", access::write"; } else { diagnostics_.add_error(diag::System::Writer, "Invalid access control for storage texture"); return false; } return true; }, [&](const sem::MultisampledTexture* ms) { if (!EmitType(out, ms->type(), "")) { return false; } out << ", access::read"; return true; }, [&](const sem::SampledTexture* sampled) { if (!EmitType(out, sampled->type(), "")) { return false; } out << ", access::sample"; return true; }, [&](Default) { diagnostics_.add_error(diag::System::Writer, "invalid texture type"); return false; }); }, [&](const sem::U32*) { out << "uint"; return true; }, [&](const sem::Vector* vec) { if (!EmitType(out, vec->type(), "")) { return false; } out << vec->Width(); return true; }, [&](const sem::Void*) { out << "void"; return true; }, [&](Default) { diagnostics_.add_error( diag::System::Writer, "unknown type in EmitType: " + type->FriendlyName(builder_.Symbols())); return false; }); } bool GeneratorImpl::EmitTypeAndName(std::ostream& out, const sem::Type* type, const std::string& name) { bool name_printed = false; if (!EmitType(out, type, name, &name_printed)) { return false; } if (!name_printed) { out << " " << name; } return true; } bool GeneratorImpl::EmitStorageClass(std::ostream& out, ast::StorageClass sc) { switch (sc) { case ast::StorageClass::kFunction: case ast::StorageClass::kPrivate: case ast::StorageClass::kHandle: out << "thread"; return true; case ast::StorageClass::kWorkgroup: out << "threadgroup"; return true; case ast::StorageClass::kStorage: out << "device"; return true; case ast::StorageClass::kUniform: out << "constant"; return true; default: break; } TINT_ICE(Writer, diagnostics_) << "unhandled storage class: " << sc; return false; } bool GeneratorImpl::EmitPackedType(std::ostream& out, const sem::Type* type, const std::string& name) { auto* vec = type->As(); if (vec && vec->Width() == 3) { out << "packed_"; if (!EmitType(out, vec, "")) { return false; } if (vec->is_float_vector() && !matrix_packed_vector_overloads_) { // Overload operators for matrix-vector arithmetic where the vector // operand is packed, as these overloads to not exist in the metal // namespace. TextBuffer b; TINT_DEFER(helpers_.Append(b)); line(&b) << R"(template inline vec operator*(matrix lhs, packed_vec rhs) { return lhs * vec(rhs); } template inline vec operator*(packed_vec lhs, matrix rhs) { return vec(lhs) * rhs; } )"; matrix_packed_vector_overloads_ = true; } return true; } return EmitType(out, type, name); } bool GeneratorImpl::EmitStructType(TextBuffer* b, const sem::Struct* str) { line(b) << "struct " << StructName(str) << " {"; bool is_host_shareable = str->IsHostShareable(); // Emits a `/* 0xnnnn */` byte offset comment for a struct member. auto add_byte_offset_comment = [&](std::ostream& out, uint32_t offset) { std::ios_base::fmtflags saved_flag_state(out.flags()); out << "/* 0x" << std::hex << std::setfill('0') << std::setw(4) << offset << " */ "; out.flags(saved_flag_state); }; auto add_padding = [&](uint32_t size, uint32_t msl_offset) { std::string name; do { name = UniqueIdentifier("tint_pad"); } while (str->FindMember(program_->Symbols().Get(name))); auto out = line(b); add_byte_offset_comment(out, msl_offset); out << "int8_t " << name << "[" << size << "];"; }; b->IncrementIndent(); uint32_t msl_offset = 0; for (auto* mem : str->Members()) { auto out = line(b); auto mem_name = program_->Symbols().NameFor(mem->Name()); auto wgsl_offset = mem->Offset(); if (is_host_shareable) { if (wgsl_offset < msl_offset) { // Unimplementable layout TINT_ICE(Writer, diagnostics_) << "Structure member WGSL offset (" << wgsl_offset << ") is behind MSL offset (" << msl_offset << ")"; return false; } // Generate padding if required if (auto padding = wgsl_offset - msl_offset) { add_padding(padding, msl_offset); msl_offset += padding; } add_byte_offset_comment(out, msl_offset); if (!EmitPackedType(out, mem->Type(), mem_name)) { return false; } } else { if (!EmitType(out, mem->Type(), mem_name)) { return false; } } auto* ty = mem->Type(); // Array member name will be output with the type if (!ty->Is()) { out << " " << mem_name; } // Emit attributes if (auto* decl = mem->Declaration()) { for (auto* attr : decl->attributes) { bool ok = Switch( attr, [&](const ast::BuiltinAttribute* builtin) { auto name = builtin_to_attribute(builtin->builtin); if (name.empty()) { diagnostics_.add_error(diag::System::Writer, "unknown builtin"); return false; } out << " [[" << name << "]]"; return true; }, [&](const ast::LocationAttribute* loc) { auto& pipeline_stage_uses = str->PipelineStageUses(); if (pipeline_stage_uses.size() != 1) { TINT_ICE(Writer, diagnostics_) << "invalid entry point IO struct uses"; return false; } if (pipeline_stage_uses.count(sem::PipelineStageUsage::kVertexInput)) { out << " [[attribute(" + std::to_string(loc->value) + ")]]"; } else if (pipeline_stage_uses.count( sem::PipelineStageUsage::kVertexOutput)) { out << " [[user(locn" + std::to_string(loc->value) + ")]]"; } else if (pipeline_stage_uses.count( sem::PipelineStageUsage::kFragmentInput)) { out << " [[user(locn" + std::to_string(loc->value) + ")]]"; } else if (pipeline_stage_uses.count( sem::PipelineStageUsage::kFragmentOutput)) { out << " [[color(" + std::to_string(loc->value) + ")]]"; } else { TINT_ICE(Writer, diagnostics_) << "invalid use of location decoration"; return false; } return true; }, [&](const ast::InterpolateAttribute* interpolate) { auto name = interpolation_to_attribute(interpolate->type, interpolate->sampling); if (name.empty()) { diagnostics_.add_error(diag::System::Writer, "unknown interpolation attribute"); return false; } out << " [[" << name << "]]"; return true; }, [&](const ast::InvariantAttribute*) { if (invariant_define_name_.empty()) { invariant_define_name_ = UniqueIdentifier("TINT_INVARIANT"); } out << " " << invariant_define_name_; return true; }, [&](const ast::StructMemberOffsetAttribute*) { return true; }, [&](const ast::StructMemberAlignAttribute*) { return true; }, [&](const ast::StructMemberSizeAttribute*) { return true; }, [&](Default) { TINT_ICE(Writer, diagnostics_) << "unhandled struct member attribute: " << attr->Name(); return false; }); if (!ok) { return false; } } } out << ";"; if (is_host_shareable) { // Calculate new MSL offset auto size_align = MslPackedTypeSizeAndAlign(ty); if (msl_offset % size_align.align) { TINT_ICE(Writer, diagnostics_) << "Misaligned MSL structure member " << ty->FriendlyName(program_->Symbols()) << " " << mem_name; return false; } msl_offset += size_align.size; } } if (is_host_shareable && str->Size() != msl_offset) { add_padding(str->Size() - msl_offset, msl_offset); } b->DecrementIndent(); line(b) << "};"; return true; } bool GeneratorImpl::EmitUnaryOp(std::ostream& out, const ast::UnaryOpExpression* expr) { // Handle `-e` when `e` is signed, so that we ensure that if `e` is the // largest negative value, it returns `e`. auto* expr_type = TypeOf(expr->expr)->UnwrapRef(); if (expr->op == ast::UnaryOp::kNegation && expr_type->is_signed_scalar_or_vector()) { auto fn = utils::GetOrCreate(unary_minus_funcs_, expr_type, [&]() -> std::string { // e.g.: // int tint_unary_minus(const int v) { // return (v == -2147483648) ? v : -v; // } TextBuffer b; TINT_DEFER(helpers_.Append(b)); auto fn_name = UniqueIdentifier("tint_unary_minus"); { auto decl = line(&b); if (!EmitTypeAndName(decl, expr_type, fn_name)) { return ""; } decl << "(const "; if (!EmitType(decl, expr_type, "")) { return ""; } decl << " v) {"; } { ScopedIndent si(&b); const auto largest_negative_value = std::to_string(std::numeric_limits::min()); line(&b) << "return select(-v, v, v == " << largest_negative_value << ");"; } line(&b) << "}"; line(&b); return fn_name; }); out << fn << "("; if (!EmitExpression(out, expr->expr)) { return false; } out << ")"; return true; } switch (expr->op) { case ast::UnaryOp::kAddressOf: out << "&"; break; case ast::UnaryOp::kComplement: out << "~"; break; case ast::UnaryOp::kIndirection: out << "*"; break; case ast::UnaryOp::kNot: out << "!"; break; case ast::UnaryOp::kNegation: out << "-"; break; } out << "("; if (!EmitExpression(out, expr->expr)) { return false; } out << ")"; return true; } bool GeneratorImpl::EmitVariable(const sem::Variable* var) { auto* decl = var->Declaration(); for (auto* attr : decl->attributes) { if (!attr->Is()) { TINT_ICE(Writer, diagnostics_) << "unexpected variable attribute"; return false; } } auto out = line(); switch (var->StorageClass()) { case ast::StorageClass::kFunction: case ast::StorageClass::kHandle: case ast::StorageClass::kNone: break; case ast::StorageClass::kPrivate: out << "thread "; break; case ast::StorageClass::kWorkgroup: out << "threadgroup "; break; default: TINT_ICE(Writer, diagnostics_) << "unhandled variable storage class"; return false; } auto* type = var->Type()->UnwrapRef(); std::string name = program_->Symbols().NameFor(decl->symbol); if (decl->is_const) { name = "const " + name; } if (!EmitType(out, type, name)) { return false; } // Variable name is output as part of the type for arrays and pointers. if (!type->Is() && !type->Is()) { out << " " << name; } if (decl->constructor != nullptr) { out << " = "; if (!EmitExpression(out, decl->constructor)) { return false; } } else if (var->StorageClass() == ast::StorageClass::kPrivate || var->StorageClass() == ast::StorageClass::kFunction || var->StorageClass() == ast::StorageClass::kNone) { out << " = "; if (!EmitZeroValue(out, type)) { return false; } } out << ";"; return true; } bool GeneratorImpl::EmitProgramConstVariable(const ast::Variable* var) { for (auto* d : var->attributes) { if (!d->Is()) { diagnostics_.add_error(diag::System::Writer, "Decorated const values not valid"); return false; } } if (!var->is_const) { diagnostics_.add_error(diag::System::Writer, "Expected a const value"); return false; } auto out = line(); out << "constant "; auto* type = program_->Sem().Get(var)->Type()->UnwrapRef(); if (!EmitType(out, type, program_->Symbols().NameFor(var->symbol))) { return false; } if (!type->Is()) { out << " " << program_->Symbols().NameFor(var->symbol); } auto* global = program_->Sem().Get(var); if (global && global->IsOverridable()) { out << " [[function_constant(" << global->ConstantId() << ")]]"; } else if (var->constructor != nullptr) { out << " = "; if (!EmitExpression(out, var->constructor)) { return false; } } out << ";"; return true; } GeneratorImpl::SizeAndAlign GeneratorImpl::MslPackedTypeSizeAndAlign(const sem::Type* ty) { return Switch( ty, // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // 2.1 Scalar Data Types [&](const sem::U32*) { return SizeAndAlign{4, 4}; }, [&](const sem::I32*) { return SizeAndAlign{4, 4}; }, [&](const sem::F32*) { return SizeAndAlign{4, 4}; }, [&](const sem::Vector* vec) { auto num_els = vec->Width(); auto* el_ty = vec->type(); if (el_ty->IsAnyOf()) { // Use a packed_vec type for 3-element vectors only. if (num_els == 3) { // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // 2.2.3 Packed Vector Types return SizeAndAlign{num_els * 4, 4}; } else { // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // 2.2 Vector Data Types return SizeAndAlign{num_els * 4, num_els * 4}; } } TINT_UNREACHABLE(Writer, diagnostics_) << "Unhandled vector element type " << el_ty->TypeInfo().name; return SizeAndAlign{}; }, [&](const sem::Matrix* mat) { // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // 2.3 Matrix Data Types auto cols = mat->columns(); auto rows = mat->rows(); auto* el_ty = mat->type(); if (el_ty->IsAnyOf()) { static constexpr SizeAndAlign table[] = { /* float2x2 */ {16, 8}, /* float2x3 */ {32, 16}, /* float2x4 */ {32, 16}, /* float3x2 */ {24, 8}, /* float3x3 */ {48, 16}, /* float3x4 */ {48, 16}, /* float4x2 */ {32, 8}, /* float4x3 */ {64, 16}, /* float4x4 */ {64, 16}, }; if (cols >= 2 && cols <= 4 && rows >= 2 && rows <= 4) { return table[(3 * (cols - 2)) + (rows - 2)]; } } TINT_UNREACHABLE(Writer, diagnostics_) << "Unhandled matrix element type " << el_ty->TypeInfo().name; return SizeAndAlign{}; }, [&](const sem::Array* arr) { if (!arr->IsStrideImplicit()) { TINT_ICE(Writer, diagnostics_) << "arrays with explicit strides not " "exist past the SPIR-V reader"; return SizeAndAlign{}; } auto num_els = std::max(arr->Count(), 1); return SizeAndAlign{arr->Stride() * num_els, arr->Align()}; }, [&](const sem::Struct* str) { // TODO(crbug.com/tint/650): There's an assumption here that MSL's // default structure size and alignment matches WGSL's. We need to // confirm this. return SizeAndAlign{str->Size(), str->Align()}; }, [&](const sem::Atomic* atomic) { return MslPackedTypeSizeAndAlign(atomic->Type()); }, [&](Default) { TINT_UNREACHABLE(Writer, diagnostics_) << "Unhandled type " << ty->TypeInfo().name; return SizeAndAlign{}; }); } template bool GeneratorImpl::CallBuiltinHelper(std::ostream& out, const ast::CallExpression* call, const sem::Builtin* builtin, F&& build) { // Generate the helper function if it hasn't been created already auto fn = utils::GetOrCreate(builtins_, builtin, [&]() -> std::string { TextBuffer b; TINT_DEFER(helpers_.Append(b)); auto fn_name = UniqueIdentifier(std::string("tint_") + sem::str(builtin->Type())); std::vector parameter_names; { auto decl = line(&b); if (!EmitTypeAndName(decl, builtin->ReturnType(), fn_name)) { return ""; } { ScopedParen sp(decl); for (auto* param : builtin->Parameters()) { if (!parameter_names.empty()) { decl << ", "; } auto param_name = "param_" + std::to_string(parameter_names.size()); if (!EmitTypeAndName(decl, param->Type(), param_name)) { return ""; } parameter_names.emplace_back(std::move(param_name)); } } decl << " {"; } { ScopedIndent si(&b); if (!build(&b, parameter_names)) { return ""; } } line(&b) << "}"; line(&b); return fn_name; }); if (fn.empty()) { return false; } // Call the helper out << fn; { ScopedParen sp(out); bool first = true; for (auto* arg : call->args) { if (!first) { out << ", "; } first = false; if (!EmitExpression(out, arg)) { return false; } } } return true; } } // namespace tint::writer::msl