// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SRC_TINT_RESOLVER_RESOLVER_H_ #define SRC_TINT_RESOLVER_RESOLVER_H_ #include #include #include #include #include #include #include "src/tint/program_builder.h" #include "src/tint/resolver/dependency_graph.h" #include "src/tint/resolver/intrinsic_table.h" #include "src/tint/resolver/sem_helper.h" #include "src/tint/resolver/validator.h" #include "src/tint/scope_stack.h" #include "src/tint/sem/binding_point.h" #include "src/tint/sem/block_statement.h" #include "src/tint/sem/constant.h" #include "src/tint/sem/function.h" #include "src/tint/sem/struct.h" #include "src/tint/utils/unique_vector.h" // Forward declarations namespace tint::ast { class IndexAccessorExpression; class BinaryExpression; class BitcastExpression; class CallExpression; class CallStatement; class CaseStatement; class ForLoopStatement; class Function; class IdentifierExpression; class LoopStatement; class MemberAccessorExpression; class ReturnStatement; class SwitchStatement; class UnaryOpExpression; class Variable; } // namespace tint::ast namespace tint::sem { class Array; class Atomic; class BlockStatement; class Builtin; class CaseStatement; class ForLoopStatement; class IfStatement; class LoopStatement; class Statement; class SwitchStatement; class TypeConstructor; } // namespace tint::sem namespace tint::resolver { /// Resolves types for all items in the given tint program class Resolver { public: /// Constructor /// @param builder the program builder explicit Resolver(ProgramBuilder* builder); /// Destructor ~Resolver(); /// @returns error messages from the resolver std::string error() const { return diagnostics_.str(); } /// @returns true if the resolver was successful bool Resolve(); /// @param type the given type /// @returns true if the given type is a plain type bool IsPlain(const sem::Type* type) const { return validator_.IsPlain(type); } /// @param type the given type /// @returns true if the given type is a fixed-footprint type bool IsFixedFootprint(const sem::Type* type) const { return validator_.IsFixedFootprint(type); } /// @param type the given type /// @returns true if the given type is storable bool IsStorable(const sem::Type* type) const { return validator_.IsStorable(type); } /// @param type the given type /// @returns true if the given type is host-shareable bool IsHostShareable(const sem::Type* type) const { return validator_.IsHostShareable(type); } /// @returns the validator for testing const Validator* GetValidatorForTesting() const { return &validator_; } private: /// Describes the context in which a variable is declared enum class VariableKind { kParameter, kLocal, kGlobal }; Validator::ValidTypeStorageLayouts valid_type_storage_layouts_; /// Structure holding semantic information about a block (i.e. scope), such as /// parent block and variables declared in the block. /// Used to validate variable scoping rules. struct BlockInfo { enum class Type { kGeneric, kLoop, kLoopContinuing, kSwitchCase }; BlockInfo(const ast::BlockStatement* block, Type type, BlockInfo* parent); ~BlockInfo(); template BlockInfo* FindFirstParent(Pred&& pred) { BlockInfo* curr = this; while (curr && !pred(curr)) { curr = curr->parent; } return curr; } BlockInfo* FindFirstParent(BlockInfo::Type ty) { return FindFirstParent([ty](auto* block_info) { return block_info->type == ty; }); } ast::BlockStatement const* const block; const Type type; BlockInfo* const parent; std::vector decls; // first_continue is set to the index of the first variable in decls // declared after the first continue statement in a loop block, if any. constexpr static size_t kNoContinue = size_t(~0); size_t first_continue = kNoContinue; }; // Structure holding information for a TypeDecl struct TypeDeclInfo { ast::TypeDecl const* const ast; sem::Type* const sem; }; /// Resolves the program, without creating final the semantic nodes. /// @returns true on success, false on error bool ResolveInternal(); /// Creates the nodes and adds them to the sem::Info mappings of the /// ProgramBuilder. void CreateSemanticNodes() const; /// Retrieves information for the requested import. /// @param src the source of the import /// @param path the import path /// @param name the method name to get information on /// @param params the parameters to the method call /// @param id out parameter for the external call ID. Must not be a nullptr. /// @returns the return type of `name` in `path` or nullptr on error. sem::Type* GetImportData(const Source& src, const std::string& path, const std::string& name, const ast::ExpressionList& params, uint32_t* id); ////////////////////////////////////////////////////////////////////////////// // AST and Type traversal methods ////////////////////////////////////////////////////////////////////////////// // Expression resolving methods // Returns the semantic node pointer on success, nullptr on failure. sem::Expression* IndexAccessor(const ast::IndexAccessorExpression*); sem::Expression* Binary(const ast::BinaryExpression*); sem::Expression* Bitcast(const ast::BitcastExpression*); sem::Call* Call(const ast::CallExpression*); sem::Expression* Expression(const ast::Expression*); sem::Function* Function(const ast::Function*); sem::Call* FunctionCall(const ast::CallExpression*, sem::Function* target, const std::vector args, sem::Behaviors arg_behaviors); sem::Expression* Identifier(const ast::IdentifierExpression*); sem::Call* BuiltinCall(const ast::CallExpression*, sem::BuiltinType, const std::vector args, const std::vector arg_tys); sem::Expression* Literal(const ast::LiteralExpression*); sem::Expression* MemberAccessor(const ast::MemberAccessorExpression*); sem::Expression* UnaryOp(const ast::UnaryOpExpression*); // Statement resolving methods // Each return true on success, false on failure. sem::Statement* AssignmentStatement(const ast::AssignmentStatement*); sem::BlockStatement* BlockStatement(const ast::BlockStatement*); sem::Statement* BreakStatement(const ast::BreakStatement*); sem::Statement* CallStatement(const ast::CallStatement*); sem::CaseStatement* CaseStatement(const ast::CaseStatement*); sem::Statement* CompoundAssignmentStatement(const ast::CompoundAssignmentStatement*); sem::Statement* ContinueStatement(const ast::ContinueStatement*); sem::Statement* DiscardStatement(const ast::DiscardStatement*); sem::Statement* FallthroughStatement(const ast::FallthroughStatement*); sem::ForLoopStatement* ForLoopStatement(const ast::ForLoopStatement*); sem::GlobalVariable* GlobalVariable(const ast::Variable*); sem::Statement* Parameter(const ast::Variable*); sem::IfStatement* IfStatement(const ast::IfStatement*); sem::Statement* IncrementDecrementStatement(const ast::IncrementDecrementStatement*); sem::LoopStatement* LoopStatement(const ast::LoopStatement*); sem::Statement* ReturnStatement(const ast::ReturnStatement*); sem::Statement* Statement(const ast::Statement*); sem::SwitchStatement* SwitchStatement(const ast::SwitchStatement* s); sem::Statement* VariableDeclStatement(const ast::VariableDeclStatement*); bool Statements(const ast::StatementList&); /// Resolves the WorkgroupSize for the given function, assigning it to /// current_function_ bool WorkgroupSize(const ast::Function*); /// @returns the sem::Type for the ast::Type `ty`, building it if it /// hasn't been constructed already. If an error is raised, nullptr is /// returned. /// @param ty the ast::Type sem::Type* Type(const ast::Type* ty); /// @param named_type the named type to resolve /// @returns the resolved semantic type sem::Type* TypeDecl(const ast::TypeDecl* named_type); /// Builds and returns the semantic information for the array `arr`. /// This method does not mark the ast::Array node, nor attach the generated /// semantic information to the AST node. /// @returns the semantic Array information, or nullptr if an error is /// raised. /// @param arr the Array to get semantic information for sem::Array* Array(const ast::Array* arr); /// Builds and returns the semantic information for the alias `alias`. /// This method does not mark the ast::Alias node, nor attach the generated /// semantic information to the AST node. /// @returns the aliased type, or nullptr if an error is raised. sem::Type* Alias(const ast::Alias* alias); /// Builds and returns the semantic information for the structure `str`. /// This method does not mark the ast::Struct node, nor attach the generated /// semantic information to the AST node. /// @returns the semantic Struct information, or nullptr if an error is /// raised. sem::Struct* Structure(const ast::Struct* str); /// @returns the semantic info for the variable `var`. If an error is /// raised, nullptr is returned. /// @note this method does not resolve the attributes as these are /// context-dependent (global, local, parameter) /// @param var the variable to create or return the `VariableInfo` for /// @param kind what kind of variable we are declaring /// @param index the index of the parameter, if this variable is a parameter sem::Variable* Variable(const ast::Variable* var, VariableKind kind, uint32_t index = 0); /// Records the storage class usage for the given type, and any transient /// dependencies of the type. Validates that the type can be used for the /// given storage class, erroring if it cannot. /// @param sc the storage class to apply to the type and transitent types /// @param ty the type to apply the storage class on /// @param usage the Source of the root variable declaration that uses the /// given type and storage class. Used for generating sensible error /// messages. /// @returns true on success, false on error bool ApplyStorageClassUsageToType(ast::StorageClass sc, sem::Type* ty, const Source& usage); /// @param storage_class the storage class /// @returns the default access control for the given storage class ast::Access DefaultAccessForStorageClass(ast::StorageClass storage_class); /// Allocate constant IDs for pipeline-overridable constants. void AllocateOverridableConstantIds(); /// Set the shadowing information on variable declarations. /// @note this method must only be called after all semantic nodes are built. void SetShadows(); /// StatementScope() does the following: /// * Creates the AST -> SEM mapping. /// * Assigns `sem` to #current_statement_ /// * Assigns `sem` to #current_compound_statement_ if `sem` derives from /// sem::CompoundStatement. /// * Assigns `sem` to #current_block_ if `sem` derives from /// sem::BlockStatement. /// * Then calls `callback`. /// * Before returning #current_statement_, #current_compound_statement_, and /// #current_block_ are restored to their original values. /// @returns `sem` if `callback` returns true, otherwise `nullptr`. template SEM* StatementScope(const ast::Statement* ast, SEM* sem, F&& callback); /// Mark records that the given AST node has been visited, and asserts that /// the given node has not already been seen. Diamonds in the AST are /// illegal. /// @param node the AST node. /// @returns true on success, false on error bool Mark(const ast::Node* node); /// Adds the given error message to the diagnostics void AddError(const std::string& msg, const Source& source) const; /// Adds the given warning message to the diagnostics void AddWarning(const std::string& msg, const Source& source) const; /// Adds the given note message to the diagnostics void AddNote(const std::string& msg, const Source& source) const; ////////////////////////////////////////////////////////////////////////////// /// Constant value evaluation methods ////////////////////////////////////////////////////////////////////////////// /// Cast `Value` to `target_type` /// @return the casted value sem::Constant ConstantCast(const sem::Constant& value, const sem::Type* target_elem_type); sem::Constant EvaluateConstantValue(const ast::Expression* expr, const sem::Type* type); sem::Constant EvaluateConstantValue(const ast::LiteralExpression* literal, const sem::Type* type); sem::Constant EvaluateConstantValue(const ast::CallExpression* call, const sem::Type* type); /// @returns true if the symbol is the name of a builtin function. bool IsBuiltin(Symbol) const; struct TypeConstructorSig { const sem::Type* type; const std::vector parameters; TypeConstructorSig(const sem::Type* ty, const std::vector params); TypeConstructorSig(const TypeConstructorSig&); ~TypeConstructorSig(); bool operator==(const TypeConstructorSig&) const; /// Hasher provides a hash function for the TypeConstructorSig struct Hasher { /// @param sig the TypeConstructorSig to create a hash for /// @return the hash value std::size_t operator()(const TypeConstructorSig& sig) const; }; }; ProgramBuilder* const builder_; diag::List& diagnostics_; std::unique_ptr const intrinsic_table_; DependencyGraph dependencies_; SemHelper sem_; Validator validator_; std::vector entry_points_; std::unordered_map atomic_composite_info_; std::unordered_set marked_; std::unordered_map constant_ids_; std::unordered_map type_ctors_; sem::Function* current_function_ = nullptr; sem::Statement* current_statement_ = nullptr; sem::CompoundStatement* current_compound_statement_ = nullptr; sem::BlockStatement* current_block_ = nullptr; }; } // namespace tint::resolver #endif // SRC_TINT_RESOLVER_RESOLVER_H_