// Copyright 2021 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "gmock/gmock.h" #include "src/tint/resolver/resolver_test_helper.h" #include "src/tint/sem/value_constructor.h" #include "src/tint/sem/value_conversion.h" #include "src/tint/type/reference.h" #include "src/tint/utils/string_stream.h" using namespace tint::number_suffixes; // NOLINT namespace tint::resolver { namespace { using ::testing::HasSubstr; // Helpers and typedefs using builder::alias; using builder::alias1; using builder::alias2; using builder::alias3; using builder::CreatePtrs; using builder::CreatePtrsFor; using builder::DataType; using builder::mat2x2; using builder::mat2x3; using builder::mat3x2; using builder::mat3x3; using builder::mat4x4; using builder::vec2; using builder::vec3; using builder::vec4; class ResolverValueConstructorValidationTest : public resolver::TestHelper, public testing::Test {}; namespace InferTypeTest { struct Params { builder::ast_type_func_ptr create_rhs_ast_type; builder::ast_expr_from_double_func_ptr create_rhs_ast_value; builder::sem_type_func_ptr create_rhs_sem_type; }; template constexpr Params ParamsFor() { return Params{DataType::AST, DataType::ExprFromDouble, DataType::Sem}; } TEST_F(ResolverValueConstructorValidationTest, InferTypeTest_Simple) { // var a = 1i; // var b = a; auto* a = Var("a", Expr(1_i)); auto* b = Var("b", Expr("a")); auto* a_ident = Expr("a"); auto* b_ident = Expr("b"); WrapInFunction(a, b, Assign(a_ident, "a"), Assign(b_ident, "b")); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(a_ident)->Is()); EXPECT_TRUE(TypeOf(a_ident)->As()->StoreType()->Is()); EXPECT_EQ(TypeOf(a_ident)->As()->AddressSpace(), builtin::AddressSpace::kFunction); ASSERT_TRUE(TypeOf(b_ident)->Is()); EXPECT_TRUE(TypeOf(b_ident)->As()->StoreType()->Is()); EXPECT_EQ(TypeOf(b_ident)->As()->AddressSpace(), builtin::AddressSpace::kFunction); } using InferTypeTest_FromConstructorExpression = ResolverTestWithParam; TEST_P(InferTypeTest_FromConstructorExpression, All) { // e.g. for vec3 // { // var a = vec3(0.0, 0.0, 0.0) // } auto& params = GetParam(); Enable(builtin::Extension::kF16); auto* initializer_expr = params.create_rhs_ast_value(*this, 0); auto* a = Var("a", initializer_expr); // Self-assign 'a' to force the expression to be resolved so we can test its // type below auto* a_ident = Expr("a"); WrapInFunction(Decl(a), Assign(a_ident, "a")); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* got = TypeOf(a_ident); auto* expected = create(params.create_rhs_sem_type(*this), builtin::AddressSpace::kFunction, builtin::Access::kReadWrite); ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n" << "expected: " << FriendlyName(expected) << "\n"; } static constexpr Params from_constructor_expression_cases[] = { ParamsFor(), ParamsFor(), ParamsFor(), ParamsFor(), ParamsFor(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), }; INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, InferTypeTest_FromConstructorExpression, testing::ValuesIn(from_constructor_expression_cases)); using InferTypeTest_FromArithmeticExpression = ResolverTestWithParam; TEST_P(InferTypeTest_FromArithmeticExpression, All) { // e.g. for vec3 // { // var a = vec3(2.0, 2.0, 2.0) * 3.0; // } auto& params = GetParam(); auto* arith_lhs_expr = params.create_rhs_ast_value(*this, 2); auto* arith_rhs_expr = params.create_rhs_ast_value(*this, 3); auto* initializer_expr = Mul(arith_lhs_expr, arith_rhs_expr); auto* a = Var("a", initializer_expr); // Self-assign 'a' to force the expression to be resolved so we can test its // type below auto* a_ident = Expr("a"); WrapInFunction(Decl(a), Assign(a_ident, "a")); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* got = TypeOf(a_ident); auto* expected = create(params.create_rhs_sem_type(*this), builtin::AddressSpace::kFunction, builtin::Access::kReadWrite); ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n" << "expected: " << FriendlyName(expected) << "\n"; } static constexpr Params from_arithmetic_expression_cases[] = { ParamsFor(), ParamsFor(), ParamsFor(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>>(), ParamsFor>>(), }; INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, InferTypeTest_FromArithmeticExpression, testing::ValuesIn(from_arithmetic_expression_cases)); using InferTypeTest_FromCallExpression = ResolverTestWithParam; TEST_P(InferTypeTest_FromCallExpression, All) { // e.g. for vec3 // // fn foo() -> vec3 { // return vec3(); // } // // fn bar() // { // var a = foo(); // } auto& params = GetParam(); Enable(builtin::Extension::kF16); Func("foo", utils::Empty, params.create_rhs_ast_type(*this), utils::Vector{Return(Call(params.create_rhs_ast_type(*this)))}, {}); auto* a = Var("a", Call("foo")); // Self-assign 'a' to force the expression to be resolved so we can test its // type below auto* a_ident = Expr("a"); WrapInFunction(Decl(a), Assign(a_ident, "a")); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* got = TypeOf(a_ident); auto* expected = create(params.create_rhs_sem_type(*this), builtin::AddressSpace::kFunction, builtin::Access::kReadWrite); ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n" << "expected: " << FriendlyName(expected) << "\n"; } static constexpr Params from_call_expression_cases[] = { ParamsFor(), ParamsFor(), ParamsFor(), ParamsFor(), ParamsFor(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), ParamsFor>>(), }; INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, InferTypeTest_FromCallExpression, testing::ValuesIn(from_call_expression_cases)); } // namespace InferTypeTest namespace ConversionConstructTest { enum class Kind { Construct, Conversion, }; struct Params { Kind kind; builder::ast_type_func_ptr lhs_type; builder::ast_type_func_ptr rhs_type; builder::ast_expr_from_double_func_ptr rhs_value_expr; }; template constexpr Params ParamsFor(Kind kind) { return Params{kind, DataType::AST, DataType::AST, DataType::ExprFromDouble}; } static constexpr Params valid_cases[] = { // Identity ParamsFor(Kind::Construct), // ParamsFor(Kind::Construct), // ParamsFor(Kind::Construct), // ParamsFor(Kind::Construct), // ParamsFor(Kind::Construct), // ParamsFor, vec3>(Kind::Construct), // ParamsFor, vec3>(Kind::Construct), // ParamsFor, vec3>(Kind::Construct), // ParamsFor, vec3>(Kind::Construct), // ParamsFor, vec3>(Kind::Construct), // ParamsFor, mat3x3>(Kind::Construct), // ParamsFor, mat2x3>(Kind::Construct), // ParamsFor, mat3x2>(Kind::Construct), // ParamsFor, mat3x3>(Kind::Construct), // ParamsFor, mat2x3>(Kind::Construct), // ParamsFor, mat3x2>(Kind::Construct), // // Splat ParamsFor, bool>(Kind::Construct), // ParamsFor, i32>(Kind::Construct), // ParamsFor, u32>(Kind::Construct), // ParamsFor, f32>(Kind::Construct), // ParamsFor, f16>(Kind::Construct), // // Conversion ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, vec3>(Kind::Conversion), // ParamsFor, mat3x3>(Kind::Conversion), // ParamsFor, mat2x3>(Kind::Conversion), // ParamsFor, mat3x2>(Kind::Conversion), // ParamsFor, mat3x3>(Kind::Conversion), // ParamsFor, mat2x3>(Kind::Conversion), // ParamsFor, mat3x2>(Kind::Conversion), // }; using ConversionConstructorValidTest = ResolverTestWithParam; TEST_P(ConversionConstructorValidTest, All) { auto& params = GetParam(); Enable(builtin::Extension::kF16); // var a : = (()); auto lhs_type1 = params.lhs_type(*this); auto lhs_type2 = params.lhs_type(*this); auto rhs_type = params.rhs_type(*this); auto* rhs_value_expr = params.rhs_value_expr(*this, 0); utils::StringStream ss; ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "(" << FriendlyName(rhs_type) << "())"; SCOPED_TRACE(ss.str()); auto* arg = Call(rhs_type, rhs_value_expr); auto* tc = Call(lhs_type2, arg); auto* a = Var("a", lhs_type1, tc); // Self-assign 'a' to force the expression to be resolved so we can test its // type below auto* a_ident = Expr("a"); WrapInFunction(Decl(a), Assign(a_ident, "a")); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); switch (params.kind) { case Kind::Construct: { auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_EQ(ctor->Parameters()[0]->Type(), TypeOf(arg)); break; } case Kind::Conversion: { auto* conv = call->Target()->As(); ASSERT_NE(conv, nullptr); EXPECT_EQ(call->Type(), conv->ReturnType()); ASSERT_EQ(conv->Parameters().Length(), 1u); EXPECT_EQ(conv->Parameters()[0]->Type(), TypeOf(arg)); break; } } } INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, ConversionConstructorValidTest, testing::ValuesIn(valid_cases)); constexpr CreatePtrs all_types[] = { CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // }; using ConversionConstructorInvalidTest = ResolverTestWithParam>; TEST_P(ConversionConstructorInvalidTest, All) { auto& params = GetParam(); auto& lhs_params = std::get<0>(params); auto& rhs_params = std::get<1>(params); // Skip test for valid cases for (auto& v : valid_cases) { if (v.lhs_type == lhs_params.ast && v.rhs_type == rhs_params.ast && v.rhs_value_expr == rhs_params.expr_from_double) { return; } } // Skip non-conversions if (lhs_params.ast == rhs_params.ast) { return; } // var a : = (()); auto lhs_type1 = lhs_params.ast(*this); auto lhs_type2 = lhs_params.ast(*this); auto rhs_type = rhs_params.ast(*this); auto* rhs_value_expr = rhs_params.expr_from_double(*this, 0); utils::StringStream ss; ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "(" << FriendlyName(rhs_type) << "())"; SCOPED_TRACE(ss.str()); Enable(builtin::Extension::kF16); auto* a = Var("a", lhs_type1, Call(lhs_type2, Call(rhs_type, rhs_value_expr))); // Self-assign 'a' to force the expression to be resolved so we can test its // type below auto* a_ident = Expr("a"); WrapInFunction(Decl(a), Assign(a_ident, "a")); ASSERT_FALSE(r()->Resolve()); } INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, ConversionConstructorInvalidTest, testing::Combine(testing::ValuesIn(all_types), testing::ValuesIn(all_types))); TEST_F(ResolverValueConstructorValidationTest, ConversionConstructorInvalid_TooManyConstructors) { auto* a = Var("a", ty.f32(), Call(Source{{12, 34}}, ty.f32(), Expr(1_f), Expr(2_f))); WrapInFunction(a); ASSERT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for f32(f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, ConversionConstructorInvalid_InvalidConstructor) { auto* a = Var("a", ty.f32(), Call(Source{{12, 34}}, ty.f32(), Call(ty.array()))); WrapInFunction(a); ASSERT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for f32(array)")); } } // namespace ConversionConstructTest namespace ArrayConstructor { TEST_F(ResolverValueConstructorValidationTest, Array_ZeroValue_Pass) { // array(); auto* tc = array(); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 0u); } TEST_F(ResolverValueConstructorValidationTest, Array_U32U32U32) { // array(0u, 10u, 20u); auto* tc = array(0_u, 10_u, 20_u); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, InferredArray_U32U32U32) { // array(0u, 10u, 20u); auto* tc = array(Source{{12, 34}}, 0_u, 10_u, 20_u); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Array_U32AIU32) { // array(0u, 10, 20u); auto* tc = array(0_u, 10_a, 20_u); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, InferredArray_U32AIU32) { // array(0u, 10u, 20u); auto* tc = array(Source{{12, 34}}, 0_u, 10_a, 20_u); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, ArrayU32_AIAIAI) { // array(0, 10, 20); auto* tc = array(0_a, 10_a, 20_a); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, InferredArray_AIAIAI) { // const c = array(0, 10, 20); auto* tc = array(Source{{12, 34}}, 0_a, 10_a, 20_a); WrapInFunction(Decl(Const("C", tc))); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayU32_VecI32_VecAI) { // array(vec2(10i), vec2(20)); auto* tc = array(Source{{12, 34}}, // Call(ty.vec(2), 20_i), // Call(ty.vec(2), 20_a)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); ASSERT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[0]->Type()->As()->type()->Is()); ASSERT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->As()->type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayU32_VecAI_VecF32) { // array(vec2(20), vec2(10f)); auto* tc = array(Source{{12, 34}}, // Call(ty.vec(2), 20_a), // Call(ty.vec(2), 20_f)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); EXPECT_TRUE(call->Type()->Is()); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); ASSERT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[0]->Type()->As()->type()->Is()); ASSERT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->As()->type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_U32F32) { // array(0u, 1.0f, 20u); auto* tc = array(0_u, Expr(Source{{12, 34}}, 1_f), 20_u); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: 'f32' cannot be used to construct an array of 'u32')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_U32F32) { // array(0u, 1.0f, 20u); auto* tc = array(Source{{12, 34}}, 0_u, 1_f, 20_u); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'u32' note: argument 1 is of type 'f32')"); } TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_F32I32) { // array(1i); auto* tc = array(Expr(Source{{12, 34}}, 1_i)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: 'i32' cannot be used to construct an array of 'f32')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_F32I32) { // array(1f, 1i); auto* tc = array(Source{{12, 34}}, 1_f, 1_i); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'f32' note: argument 1 is of type 'i32')"); } TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_U32I32) { // array(1i, 0u, 0u, 0u, 0u, 0u); auto* tc = array(Expr(Source{{12, 34}}, 1_i), 0_u, 0_u, 0_u, 0_u); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: 'i32' cannot be used to construct an array of 'u32')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_U32I32) { // array(1i, 0u, 0u, 0u, 0u, 0u); auto* tc = array(Source{{12, 34}}, 1_i, 0_u, 0_u, 0_u, 0_u); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'i32' note: argument 1 is of type 'u32')"); } TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_I32Vec2) { // array(1i, vec2()); auto* tc = array(1_i, vec2(Source{{12, 34}})); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: 'vec2' cannot be used to construct an array of 'i32')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_I32Vec2) { // array(1i, vec2()); auto* tc = array(Source{{12, 34}}, 1_i, vec2()); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'i32' note: argument 1 is of type 'vec2')"); } TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_Vec3i32_Vec3u32) { // array, 2u>(vec3(), vec3()); auto* t = array(ty.vec3(), 2_u, vec3(Source{{12, 34}}), vec3()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: 'vec3' cannot be used to construct an array of 'vec3')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_Vec3i32_Vec3u32) { // array(vec3(), vec3()); auto* t = array(Source{{12, 34}}, vec3(), vec3()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'vec3' note: argument 1 is of type 'vec3')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_Vec3i32_Vec3AF) { // array(vec3(), vec3(1.0)); auto* t = array(Source{{12, 34}}, vec3(), Call("vec3", 1._a)); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'vec3' note: argument 1 is of type 'vec3')"); } TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_Vec3i32_Vec3bool) { // array, 2u>(vec3(), vec3()); auto* t = array(ty.vec3(), 2_u, vec3(), vec3()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(error: 'vec3' cannot be used to construct an array of 'vec3')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_Vec3i32_Vec3bool) { // array(vec3(), vec3()); auto* t = array(Source{{12, 34}}, vec3(), vec3()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'vec3' note: argument 1 is of type 'vec3')"); } TEST_F(ResolverValueConstructorValidationTest, ArrayOfArray_SubElemSizeMismatch) { // array, 2u>(array(), array()); auto* t = array(Source{{12, 34}}, ty.array(), 2_i, array(), array()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(error: 'array' cannot be used to construct an array of 'array')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayOfArray_SubElemSizeMismatch) { // array, 2u>(array(), array()); auto* t = array(Source{{12, 34}}, array(), array()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'array' note: argument 1 is of type 'array')"); } TEST_F(ResolverValueConstructorValidationTest, ArrayOfArray_SubElemTypeMismatch) { // array, 2u>(array(), array()); auto* t = array(Source{{12, 34}}, ty.array(), 2_i, array(), array()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(error: 'array' cannot be used to construct an array of 'array')"); } TEST_F(ResolverValueConstructorValidationTest, InferredArrayOfArray_SubElemTypeMismatch) { // array, 2u>(array(), array()); auto* t = array(Source{{12, 34}}, array(), array()); WrapInFunction(t); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), R"(12:34 error: cannot infer common array element type from constructor arguments note: argument 0 is of type 'array' note: argument 1 is of type 'array')"); } TEST_F(ResolverValueConstructorValidationTest, Array_TooFewElements) { // array(1i, 2i, 3i); SetSource(Source::Location({12, 34})); auto* tc = array(Expr(1_i), Expr(2_i), Expr(3_i)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: array constructor has too few elements: expected 4, found 3"); } TEST_F(ResolverValueConstructorValidationTest, Array_TooManyElements) { // array(1i, 2i, 3i, 4i, 5i); SetSource(Source::Location({12, 34})); auto* tc = array(Expr(1_i), Expr(2_i), Expr(3_i), Expr(4_i), Expr(5_i)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: array constructor has too many " "elements: expected 4, " "found 5"); } TEST_F(ResolverValueConstructorValidationTest, Array_Runtime) { // array(1i); auto* tc = array(Source{{12, 34}}, Expr(1_i)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: cannot construct a runtime-sized array"); } TEST_F(ResolverValueConstructorValidationTest, Array_RuntimeZeroValue) { // array(); auto* tc = array(Source{{12, 34}}); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: cannot construct a runtime-sized array"); } } // namespace ArrayConstructor namespace ScalarConstructor { TEST_F(ResolverValueConstructorValidationTest, I32_Success) { auto* expr = Call(Expr(123_i)); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, U32_Success) { auto* expr = Call(Expr(123_u)); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, F32_Success) { auto* expr = Call(Expr(1.23_f)); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, F16_Success) { Enable(builtin::Extension::kF16); auto* expr = Call(Expr(1.5_h)); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Convert_f32_to_i32_Success) { auto* expr = Call(1.23_f); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Convert_i32_to_u32_Success) { auto* expr = Call(123_i); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Convert_u32_to_f16_Success) { Enable(builtin::Extension::kF16); auto* expr = Call(123_u); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Convert_f16_to_f32_Success) { Enable(builtin::Extension::kF16); auto* expr = Call(123_h); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr)->Is()); auto* call = Sem().Get(expr); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } } // namespace ScalarConstructor namespace VectorConstructor { TEST_F(ResolverValueConstructorValidationTest, Vec2F32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec2(Source{{12, 34}}, 1_i, 2_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(i32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2F16_Error_ScalarArgumentTypeMismatch) { Enable(builtin::Extension::kF16); WrapInFunction(vec2(Source{{12, 34}}, 1_h, 2_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(f16, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2U32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec2(Source{{12, 34}}, 1_u, 2_i)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(u32, i32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2I32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec2(Source{{12, 34}}, 1_u, 2_i)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(u32, i32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2Bool_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec2(Source{{12, 34}}, true, 1_i)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(bool, i32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_Vec3ArgumentCardinalityTooLarge) { WrapInFunction(vec2(Source{{12, 34}}, vec3())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(vec3)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_Vec4ArgumentCardinalityTooLarge) { WrapInFunction(vec2(Source{{12, 34}}, vec4())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(vec4)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_TooManyArgumentsScalar) { WrapInFunction(vec2(Source{{12, 34}}, 1_f, 2_f, 3_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(f32, f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_TooManyArgumentsVector) { WrapInFunction(vec2(Source{{12, 34}}, vec2(), vec2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(vec2, vec2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_TooManyArgumentsVectorAndScalar) { WrapInFunction(vec2(Source{{12, 34}}, vec2(), 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(vec2, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_InvalidArgumentType) { WrapInFunction(vec2(Source{{12, 34}}, mat2x2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(mat2x2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Success_ZeroValue) { auto* tc = vec2(); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 0u); } TEST_F(ResolverValueConstructorValidationTest, Vec2F32_Success_Scalar) { auto* tc = vec2(1_f, 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec2F16_Success_Scalar) { Enable(builtin::Extension::kF16); auto* tc = vec2(1_h, 1_h); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec2U32_Success_Scalar) { auto* tc = vec2(1_u, 1_u); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec2I32_Success_Scalar) { auto* tc = vec2(1_i, 1_i); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec2Bool_Success_Scalar) { auto* tc = vec2(true, false); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Success_Identity) { auto* tc = vec2(vec2()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec2_Success_Vec2TypeConversion) { auto* tc = vec2(vec2()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 2u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3F32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec3(Source{{12, 34}}, 1_f, 2_f, 3_i)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(f32, f32, i32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3F16_Error_ScalarArgumentTypeMismatch) { Enable(builtin::Extension::kF16); WrapInFunction(vec3(Source{{12, 34}}, 1_h, 2_h, 3_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(f16, f16, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3U32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec3(Source{{12, 34}}, 1_u, 2_i, 3_u)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(u32, i32, u32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3I32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec3(Source{{12, 34}}, 1_i, 2_u, 3_i)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(i32, u32, i32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3Bool_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec3(Source{{12, 34}}, false, 1_i, true)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(bool, i32, bool)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_Vec4ArgumentCardinalityTooLarge) { WrapInFunction(vec3(Source{{12, 34}}, vec4())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(vec4)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooFewArgumentsScalar) { WrapInFunction(vec3(Source{{12, 34}}, 1_f, 2_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsScalar) { WrapInFunction(vec3(Source{{12, 34}}, 1_f, 2_f, 3_f, 4_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(f32, f32, f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooFewArgumentsVec2) { WrapInFunction(vec3(Source{{12, 34}}, vec2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(vec2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsVec2) { WrapInFunction(vec3(Source{{12, 34}}, vec2(), vec2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(vec2, vec2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsVec2AndScalar) { WrapInFunction(vec3(Source{{12, 34}}, vec2(), 1_f, 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(vec2, f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsVec3) { WrapInFunction(vec3(Source{{12, 34}}, vec3(), 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(vec3, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_InvalidArgumentType) { WrapInFunction(vec3(Source{{12, 34}}, mat2x2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(mat2x2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_ZeroValue) { auto* tc = vec3(); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 0u); } TEST_F(ResolverValueConstructorValidationTest, Vec3F32_Success_Scalar) { auto* tc = vec3(1_f, 1_f, 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3F16_Success_Scalar) { Enable(builtin::Extension::kF16); auto* tc = vec3(1_h, 1_h, 1_h); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3U32_Success_Scalar) { auto* tc = vec3(1_u, 1_u, 1_u); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3I32_Success_Scalar) { auto* tc = vec3(1_i, 1_i, 1_i); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3Bool_Success_Scalar) { auto* tc = vec3(true, false, true); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 3u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_Vec2AndScalar) { auto* tc = vec3(vec2(), 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_ScalarAndVec2) { auto* tc = vec3(1_f, vec2()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 2u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_Identity) { auto* tc = vec3(vec3()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_Vec3TypeConversion) { auto* tc = vec3(vec3()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 3u); auto* call = Sem().Get(tc); ASSERT_NE(call, nullptr); auto* ctor = call->Target()->As(); ASSERT_NE(ctor, nullptr); EXPECT_EQ(call->Type(), ctor->ReturnType()); ASSERT_EQ(ctor->Parameters().Length(), 1u); EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is()); } TEST_F(ResolverValueConstructorValidationTest, Vec4F32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec4(Source{{12, 34}}, 1_f, 1_f, 1_i, 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(f32, f32, i32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4F16_Error_ScalarArgumentTypeMismatch) { Enable(builtin::Extension::kF16); WrapInFunction(vec4(Source{{12, 34}}, 1_h, 1_h, 1_f, 1_h)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(f16, f16, f32, f16)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4U32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec4(Source{{12, 34}}, 1_u, 1_u, 1_i, 1_u)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(u32, u32, i32, u32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4I32_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec4(Source{{12, 34}}, 1_i, 1_i, 1_u, 1_i)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(i32, i32, u32, i32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4Bool_Error_ScalarArgumentTypeMismatch) { WrapInFunction(vec4(Source{{12, 34}}, true, false, 1_i, true)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(bool, bool, i32, bool)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooFewArgumentsScalar) { WrapInFunction(vec4(Source{{12, 34}}, 1_f, 2_f, 3_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(f32, f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsScalar) { WrapInFunction(vec4(Source{{12, 34}}, 1_f, 2_f, 3_f, 4_f, 5_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(f32, f32, f32, f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooFewArgumentsVec2AndScalar) { WrapInFunction(vec4(Source{{12, 34}}, vec2(), 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec2, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2AndScalars) { WrapInFunction(vec4(Source{{12, 34}}, vec2(), 1_f, 2_f, 3_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec2, f32, f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2Vec2Scalar) { WrapInFunction(vec4(Source{{12, 34}}, vec2(), vec2(), 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec2, vec2, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2Vec2Vec2) { WrapInFunction(vec4(Source{{12, 34}}, vec2(), vec2(), vec2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr( "12:34 error: no matching constructor for vec4(vec2, vec2, vec2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooFewArgumentsVec3) { WrapInFunction(vec4(Source{{12, 34}}, vec3())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec3)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec3AndScalars) { WrapInFunction(vec4(Source{{12, 34}}, vec3(), 1_f, 2_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec3, f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec3AndVec2) { WrapInFunction(vec4(Source{{12, 34}}, vec3(), vec2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec3, vec2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2AndVec3) { WrapInFunction(vec4(Source{{12, 34}}, vec2(), vec3())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec2, vec3)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec3AndVec3) { WrapInFunction(vec4(Source{{12, 34}}, vec3(), vec3())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(vec3, vec3)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_InvalidArgumentType) { WrapInFunction(vec4(Source{{12, 34}}, mat2x2())); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec4(mat2x2)")); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ZeroValue) { auto* tc = vec4(); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4F32_Success_Scalar) { auto* tc = vec4(1_f, 1_f, 1_f, 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4F16_Success_Scalar) { Enable(builtin::Extension::kF16); auto* tc = vec4(1_h, 1_h, 1_h, 1_h); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4U32_Success_Scalar) { auto* tc = vec4(1_u, 1_u, 1_u, 1_u); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4I32_Success_Scalar) { auto* tc = vec4(1_i, 1_i, 1_i, 1_i); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4Bool_Success_Scalar) { auto* tc = vec4(true, false, true, false); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec2ScalarScalar) { auto* tc = vec4(vec2(), 1_f, 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ScalarVec2Scalar) { auto* tc = vec4(1_f, vec2(), 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ScalarScalarVec2) { auto* tc = vec4(1_f, 1_f, vec2()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec2AndVec2) { auto* tc = vec4(vec2(), vec2()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec3AndScalar) { auto* tc = vec4(vec3(), 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ScalarAndVec3) { auto* tc = vec4(1_f, vec3()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Identity) { auto* tc = vec4(vec4()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec4TypeConversion) { auto* tc = vec4(vec4()); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, NestedVectorConstructors_InnerError) { WrapInFunction(vec4(vec4(1_f, 1_f, // vec3(Source{{12, 34}}, 1_f, 1_f)), 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(f32, f32)")); } TEST_F(ResolverValueConstructorValidationTest, NestedVectorConstructors_Success) { auto* tc = vec4(vec3(vec2(1_f, 1_f), 1_f), 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, Vector_Alias_Argument_Error) { auto* alias = Alias("UnsignedInt", ty.u32()); GlobalVar("uint_var", ty.Of(alias), builtin::AddressSpace::kPrivate); auto* tc = vec2(Source{{12, 34}}, "uint_var"); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(u32)")); } TEST_F(ResolverValueConstructorValidationTest, Vector_Alias_Argument_Success) { auto* f32_alias = Alias("Float32", ty.f32()); auto* vec2_alias = Alias("VectorFloat2", ty.vec2()); GlobalVar("my_f32", ty.Of(f32_alias), builtin::AddressSpace::kPrivate); GlobalVar("my_vec2", ty.Of(vec2_alias), builtin::AddressSpace::kPrivate); auto* tc = vec3("my_vec2", "my_f32"); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValueConstructorValidationTest, Vector_ElementTypeAlias_Error) { auto* f32_alias = Alias("Float32", ty.f32()); // vec2(1.0f, 1u) auto vec_type = ty.vec(ty.Of(f32_alias), 2); WrapInFunction(Call(Source{{12, 34}}, vec_type, 1_f, 1_u)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2(f32, u32)")); } TEST_F(ResolverValueConstructorValidationTest, Vector_ElementTypeAlias_Success) { auto* f32_alias = Alias("Float32", ty.f32()); // vec2(1.0f, 1.0f) auto vec_type = ty.vec(ty.Of(f32_alias), 2); auto* tc = Call(Source{{12, 34}}, vec_type, 1_f, 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValueConstructorValidationTest, Vector_ArgumentElementTypeAlias_Error) { auto* f32_alias = Alias("Float32", ty.f32()); // vec3(vec(), 1.0f) auto vec_type = ty.vec(ty.Of(f32_alias), 2); WrapInFunction(vec3(Source{{12, 34}}, Call(vec_type), 1_f)); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3(vec2, f32)")); } TEST_F(ResolverValueConstructorValidationTest, Vector_ArgumentElementTypeAlias_Success) { auto* f32_alias = Alias("Float32", ty.f32()); // vec3(vec(), 1.0f) auto vec_type = ty.vec(ty.Of(f32_alias), 2); auto* tc = vec3(Call(Source{{12, 34}}, vec_type), 1_f); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValueConstructorValidationTest, InferVec2ElementTypeFromScalars) { Enable(builtin::Extension::kF16); auto* vec2_bool = vec2(true, false); auto* vec2_i32 = vec2(1_i, 2_i); auto* vec2_u32 = vec2(1_u, 2_u); auto* vec2_f32 = vec2(1_f, 2_f); auto* vec2_f16 = vec2(1_h, 2_h); WrapInFunction(vec2_bool, vec2_i32, vec2_u32, vec2_f32, vec2_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec2_bool)->Is()); ASSERT_TRUE(TypeOf(vec2_i32)->Is()); ASSERT_TRUE(TypeOf(vec2_u32)->Is()); ASSERT_TRUE(TypeOf(vec2_f32)->Is()); ASSERT_TRUE(TypeOf(vec2_f16)->Is()); EXPECT_TRUE(TypeOf(vec2_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec2_bool)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_i32)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_u32)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_f32)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_f16)->As()->Width(), 2u); } TEST_F(ResolverValueConstructorValidationTest, InferVec2ElementTypeFromVec2) { Enable(builtin::Extension::kF16); auto* vec2_bool = vec2(vec2(true, false)); auto* vec2_i32 = vec2(vec2(1_i, 2_i)); auto* vec2_u32 = vec2(vec2(1_u, 2_u)); auto* vec2_f32 = vec2(vec2(1_f, 2_f)); auto* vec2_f16 = vec2(vec2(1_h, 2_h)); WrapInFunction(vec2_bool, vec2_i32, vec2_u32, vec2_f32, vec2_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec2_bool)->Is()); ASSERT_TRUE(TypeOf(vec2_i32)->Is()); ASSERT_TRUE(TypeOf(vec2_u32)->Is()); ASSERT_TRUE(TypeOf(vec2_f32)->Is()); ASSERT_TRUE(TypeOf(vec2_f16)->Is()); EXPECT_TRUE(TypeOf(vec2_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec2_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec2_bool)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_i32)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_u32)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_f32)->As()->Width(), 2u); EXPECT_EQ(TypeOf(vec2_f16)->As()->Width(), 2u); } TEST_F(ResolverValueConstructorValidationTest, InferVec3ElementTypeFromScalars) { Enable(builtin::Extension::kF16); auto* vec3_bool = vec3(Expr(true), Expr(false), Expr(true)); auto* vec3_i32 = vec3(Expr(1_i), Expr(2_i), Expr(3_i)); auto* vec3_u32 = vec3(Expr(1_u), Expr(2_u), Expr(3_u)); auto* vec3_f32 = vec3(Expr(1_f), Expr(2_f), Expr(3_f)); auto* vec3_f16 = vec3(Expr(1_h), Expr(2_h), Expr(3_h)); WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec3_bool)->Is()); ASSERT_TRUE(TypeOf(vec3_i32)->Is()); ASSERT_TRUE(TypeOf(vec3_u32)->Is()); ASSERT_TRUE(TypeOf(vec3_f32)->Is()); ASSERT_TRUE(TypeOf(vec3_f16)->Is()); EXPECT_TRUE(TypeOf(vec3_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec3_bool)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_i32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_u32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_f32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_f16)->As()->Width(), 3u); } TEST_F(ResolverValueConstructorValidationTest, InferVec3ElementTypeFromVec3) { Enable(builtin::Extension::kF16); auto* vec3_bool = vec3(vec3(true, false, true)); auto* vec3_i32 = vec3(vec3(1_i, 2_i, 3_i)); auto* vec3_u32 = vec3(vec3(1_u, 2_u, 3_u)); auto* vec3_f32 = vec3(vec3(1_f, 2_f, 3_f)); auto* vec3_f16 = vec3(vec3(1_h, 2_h, 3_h)); WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec3_bool)->Is()); ASSERT_TRUE(TypeOf(vec3_i32)->Is()); ASSERT_TRUE(TypeOf(vec3_u32)->Is()); ASSERT_TRUE(TypeOf(vec3_f32)->Is()); ASSERT_TRUE(TypeOf(vec3_f16)->Is()); EXPECT_TRUE(TypeOf(vec3_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec3_bool)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_i32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_u32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_f32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_f16)->As()->Width(), 3u); } TEST_F(ResolverValueConstructorValidationTest, InferVec3ElementTypeFromScalarAndVec2) { Enable(builtin::Extension::kF16); auto* vec3_bool = vec3(Expr(true), vec2(false, true)); auto* vec3_i32 = vec3(Expr(1_i), vec2(2_i, 3_i)); auto* vec3_u32 = vec3(Expr(1_u), vec2(2_u, 3_u)); auto* vec3_f32 = vec3(Expr(1_f), vec2(2_f, 3_f)); auto* vec3_f16 = vec3(Expr(1_h), vec2(2_h, 3_h)); WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec3_bool)->Is()); ASSERT_TRUE(TypeOf(vec3_i32)->Is()); ASSERT_TRUE(TypeOf(vec3_u32)->Is()); ASSERT_TRUE(TypeOf(vec3_f32)->Is()); ASSERT_TRUE(TypeOf(vec3_f16)->Is()); EXPECT_TRUE(TypeOf(vec3_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec3_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec3_bool)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_i32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_u32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_f32)->As()->Width(), 3u); EXPECT_EQ(TypeOf(vec3_f16)->As()->Width(), 3u); } TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromScalars) { Enable(builtin::Extension::kF16); auto* vec4_bool = vec4(Expr(true), Expr(false), Expr(true), Expr(false)); auto* vec4_i32 = vec4(Expr(1_i), Expr(2_i), Expr(3_i), Expr(4_i)); auto* vec4_u32 = vec4(Expr(1_u), Expr(2_u), Expr(3_u), Expr(4_u)); auto* vec4_f32 = vec4(Expr(1_f), Expr(2_f), Expr(3_f), Expr(4_f)); auto* vec4_f16 = vec4(Expr(1_h), Expr(2_h), Expr(3_h), Expr(4_h)); WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec4_bool)->Is()); ASSERT_TRUE(TypeOf(vec4_i32)->Is()); ASSERT_TRUE(TypeOf(vec4_u32)->Is()); ASSERT_TRUE(TypeOf(vec4_f32)->Is()); ASSERT_TRUE(TypeOf(vec4_f16)->Is()); EXPECT_TRUE(TypeOf(vec4_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec4_bool)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_i32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_u32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f16)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromVec4) { Enable(builtin::Extension::kF16); auto* vec4_bool = vec4(vec4(true, false, true, false)); auto* vec4_i32 = vec4(vec4(1_i, 2_i, 3_i, 4_i)); auto* vec4_u32 = vec4(vec4(1_u, 2_u, 3_u, 4_u)); auto* vec4_f32 = vec4(vec4(1_f, 2_f, 3_f, 4_f)); auto* vec4_f16 = vec4(vec4(1_h, 2_h, 3_h, 4_h)); WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec4_bool)->Is()); ASSERT_TRUE(TypeOf(vec4_i32)->Is()); ASSERT_TRUE(TypeOf(vec4_u32)->Is()); ASSERT_TRUE(TypeOf(vec4_f32)->Is()); ASSERT_TRUE(TypeOf(vec4_f16)->Is()); EXPECT_TRUE(TypeOf(vec4_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec4_bool)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_i32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_u32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f16)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromScalarAndVec3) { Enable(builtin::Extension::kF16); auto* vec4_bool = vec4(Expr(true), vec3(false, true, false)); auto* vec4_i32 = vec4(Expr(1_i), vec3(2_i, 3_i, 4_i)); auto* vec4_u32 = vec4(Expr(1_u), vec3(2_u, 3_u, 4_u)); auto* vec4_f32 = vec4(Expr(1_f), vec3(2_f, 3_f, 4_f)); auto* vec4_f16 = vec4(Expr(1_h), vec3(2_h, 3_h, 4_h)); WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec4_bool)->Is()); ASSERT_TRUE(TypeOf(vec4_i32)->Is()); ASSERT_TRUE(TypeOf(vec4_u32)->Is()); ASSERT_TRUE(TypeOf(vec4_f32)->Is()); ASSERT_TRUE(TypeOf(vec4_f16)->Is()); EXPECT_TRUE(TypeOf(vec4_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec4_bool)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_i32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_u32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f16)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromVec2AndVec2) { Enable(builtin::Extension::kF16); auto* vec4_bool = vec4(vec2(true, false), vec2(true, false)); auto* vec4_i32 = vec4(vec2(1_i, 2_i), vec2(3_i, 4_i)); auto* vec4_u32 = vec4(vec2(1_u, 2_u), vec2(3_u, 4_u)); auto* vec4_f32 = vec4(vec2(1_f, 2_f), vec2(3_f, 4_f)); auto* vec4_f16 = vec4(vec2(1_h, 2_h), vec2(3_h, 4_h)); WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(vec4_bool)->Is()); ASSERT_TRUE(TypeOf(vec4_i32)->Is()); ASSERT_TRUE(TypeOf(vec4_u32)->Is()); ASSERT_TRUE(TypeOf(vec4_f32)->Is()); ASSERT_TRUE(TypeOf(vec4_f16)->Is()); EXPECT_TRUE(TypeOf(vec4_bool)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_i32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_u32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f32)->As()->type()->Is()); EXPECT_TRUE(TypeOf(vec4_f16)->As()->type()->Is()); EXPECT_EQ(TypeOf(vec4_bool)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_i32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_u32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f32)->As()->Width(), 4u); EXPECT_EQ(TypeOf(vec4_f16)->As()->Width(), 4u); } TEST_F(ResolverValueConstructorValidationTest, CannotInferVectorElementTypeWithoutArgs) { WrapInFunction(Call(Source{{12, 34}}, "vec3")); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec3()")); } TEST_F(ResolverValueConstructorValidationTest, CannotInferVec2ElementTypeFromScalarsMismatch) { WrapInFunction(Call(Source{{1, 1}}, "vec2", // Expr(Source{{1, 2}}, 1_i), // Expr(Source{{1, 3}}, 2_u))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec2(i32, u32)")); } TEST_F(ResolverValueConstructorValidationTest, CannotInferVec3ElementTypeFromScalarsMismatch) { WrapInFunction(Call(Source{{1, 1}}, "vec3", // Expr(Source{{1, 2}}, 1_i), // Expr(Source{{1, 3}}, 2_u), // Expr(Source{{1, 4}}, 3_i))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec3(i32, u32, i32)")); } TEST_F(ResolverValueConstructorValidationTest, CannotInferVec3ElementTypeFromScalarAndVec2Mismatch) { WrapInFunction(Call(Source{{1, 1}}, "vec3", // Expr(Source{{1, 2}}, 1_i), // Call(Source{{1, 3}}, ty.vec2(), 2_f, 3_f))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec3(i32, vec2)")); } TEST_F(ResolverValueConstructorValidationTest, CannotInferVec4ElementTypeFromScalarsMismatch) { WrapInFunction(Call(Source{{1, 1}}, "vec4", // Expr(Source{{1, 2}}, 1_i), // Expr(Source{{1, 3}}, 2_i), // Expr(Source{{1, 4}}, 3_f), // Expr(Source{{1, 5}}, 4_i))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec4(i32, i32, f32, i32)")); } TEST_F(ResolverValueConstructorValidationTest, CannotInferVec4ElementTypeFromScalarAndVec3Mismatch) { WrapInFunction(Call(Source{{1, 1}}, "vec4", // Expr(Source{{1, 2}}, 1_i), // Call(Source{{1, 3}}, ty.vec3(), 2_u, 3_u, 4_u))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec4(i32, vec3)")); } TEST_F(ResolverValueConstructorValidationTest, CannotInferVec4ElementTypeFromVec2AndVec2Mismatch) { WrapInFunction(Call(Source{{1, 1}}, "vec4", // Call(Source{{1, 2}}, ty.vec2(), 3_i, 4_i), // Call(Source{{1, 3}}, ty.vec2(), 3_u, 4_u))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec4(vec2, vec2)")); } } // namespace VectorConstructor namespace MatrixConstructor { struct MatrixParams { using name_func_ptr = std::string (*)(); uint32_t rows; uint32_t columns; name_func_ptr get_element_type_name; builder::ast_type_func_ptr create_element_ast_type; builder::ast_expr_from_double_func_ptr create_element_ast_value; builder::ast_type_func_ptr create_column_ast_type; builder::ast_type_func_ptr create_mat_ast_type; }; template constexpr MatrixParams MatrixParamsFor() { return MatrixParams{ R, C, DataType::Name, DataType::AST, DataType::ExprFromDouble, DataType>::AST, DataType>::AST, }; } static std::string MatrixStr(const MatrixParams& param) { return "mat" + std::to_string(param.columns) + "x" + std::to_string(param.rows) + "<" + param.get_element_type_name() + ">"; } using MatrixConstructorTest = ResolverTestWithParam; TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooFewArguments) { // matNxM(vecM(), ...); with N - 1 arguments // matNxM(vecM(), ...); with N - 1 arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); const std::string element_type_name = param.get_element_type_name(); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns - 1; i++) { ast::Type vec_type = param.create_column_ast_type(*this); args.Push(Call(vec_type)); if (i > 0) { args_tys << ", "; } args_tys << "vec" << param.rows << "<" + element_type_name + ">"; } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ElementConstructor_Error_TooFewArguments) { // matNxM(f32,...,f32); with N*M - 1 arguments // matNxM(f16,...,f16); with N*M - 1 arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); const std::string element_type_name = param.get_element_type_name(); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns * param.rows - 1; i++) { args.Push(Call(param.create_element_ast_type(*this))); if (i > 0) { args_tys << ", "; } args_tys << element_type_name; } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooManyArguments) { // matNxM(vecM(), ...); with N + 1 arguments // matNxM(vecM(), ...); with N + 1 arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); const std::string element_type_name = param.get_element_type_name(); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns + 1; i++) { ast::Type vec_type = param.create_column_ast_type(*this); args.Push(Call(vec_type)); if (i > 0) { args_tys << ", "; } args_tys << "vec" << param.rows << "<" + element_type_name + ">"; } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ElementConstructor_Error_TooManyArguments) { // matNxM(f32,...,f32); with N*M + 1 arguments // matNxM(f16,...,f16); with N*M + 1 arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); const std::string element_type_name = param.get_element_type_name(); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns * param.rows + 1; i++) { args.Push(Call(param.create_element_ast_type(*this))); if (i > 0) { args_tys << ", "; } args_tys << element_type_name; } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ColumnConstructor_Error_InvalidArgumentType) { // matNxM(vec, vec, ...); N arguments // matNxM(vec, vec, ...); N arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { auto vec_type = ty.vec(param.rows); args.Push(Call(vec_type)); if (i > 0) { args_tys << ", "; } args_tys << "vec" << param.rows << ""; } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ElementConstructor_Error_InvalidArgumentType) { // matNxM(u32, u32, ...); N*M arguments // matNxM(u32, u32, ...); N*M arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { args.Push(Expr(1_u)); if (i > 0) { args_tys << ", "; } args_tys << "u32"; } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooFewRowsInVectorArgument) { // matNxM(vecM(),...,vecM-1()); // matNxM(vecM(),...,vecM-1()); const auto param = GetParam(); // Skip the test if parameters would have resulted in an invalid vec1 type. if (param.rows == 2) { return; } Enable(builtin::Extension::kF16); const std::string element_type_name = param.get_element_type_name(); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { ast::Type valid_vec_type = param.create_column_ast_type(*this); args.Push(Call(valid_vec_type)); if (i > 0) { args_tys << ", "; } args_tys << "vec" << param.rows << "<" + element_type_name + ">"; } const size_t kInvalidLoc = 2 * (param.columns - 1); auto invalid_vec_type = ty.vec(param.create_element_ast_type(*this), param.rows - 1); args.Push(Call(Source{{12, kInvalidLoc}}, invalid_vec_type)); args_tys << ", vec" << (param.rows - 1) << "<" + element_type_name + ">"; ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooManyRowsInVectorArgument) { // matNxM(vecM(),...,vecM+1()); // matNxM(vecM(),...,vecM+1()); const auto param = GetParam(); // Skip the test if parameters would have resulted in an invalid vec5 type. if (param.rows == 4) { return; } Enable(builtin::Extension::kF16); const std::string element_type_name = param.get_element_type_name(); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { ast::Type valid_vec_type = param.create_column_ast_type(*this); args.Push(Call(valid_vec_type)); if (i > 0) { args_tys << ", "; } args_tys << "vec" << param.rows << "<" + element_type_name + ">"; } auto invalid_vec_type = ty.vec(param.create_element_ast_type(*this), param.rows + 1); args.Push(Call(invalid_vec_type)); args_tys << ", vec" << (param.rows + 1) << "<" + element_type_name + ">"; ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ZeroValue_Success) { // matNxM(); // matNxM(); const auto param = GetParam(); Enable(builtin::Extension::kF16); ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{{12, 40}}, matrix_type); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, WithColumns_Success) { // matNxM(vecM(), ...); with N arguments // matNxM(vecM(), ...); with N arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { ast::Type vec_type = param.create_column_ast_type(*this); args.Push(Call(vec_type)); } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(matrix_type, std::move(args)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, WithElements_Success) { // matNxM(f32,...,f32); with N*M arguments // matNxM(f16,...,f16); with N*M arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::Vector args; for (uint32_t i = 0; i < param.columns * param.rows; i++) { args.Push(Call(param.create_element_ast_type(*this))); } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(matrix_type, std::move(args)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, ElementTypeAlias_Error) { // matNxM(vecM(), ...); with N arguments // matNxM(vecM(), ...); with N arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this)); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { auto vec_type = ty.vec(ty.u32(), param.rows); args.Push(Call(vec_type)); if (i > 0) { args_tys << ", "; } args_tys << "vec" << param.rows << ""; } auto matrix_type = ty.mat(ty.Of(elem_type_alias), param.columns, param.rows); auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ElementTypeAlias_Success) { // matNxM(vecM(), ...); with N arguments // matNxM(vecM(), ...); with N arguments const auto param = GetParam(); Enable(builtin::Extension::kF16); auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this)); utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { ast::Type vec_type = param.create_column_ast_type(*this); args.Push(Call(vec_type)); } auto matrix_type = ty.mat(ty.Of(elem_type_alias), param.columns, param.rows); auto* tc = Call(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValueConstructorValidationTest, MatrixConstructor_ArgumentTypeAlias_Error) { auto* alias = Alias("VectorUnsigned2", ty.vec2()); auto* tc = Call(Source{{12, 34}}, ty.mat2x2(), Call(ty.Of(alias)), vec2()); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT( r()->error(), HasSubstr("12:34 error: no matching constructor for mat2x2(vec2, vec2)")); } TEST_P(MatrixConstructorTest, ArgumentTypeAlias_Success) { const auto param = GetParam(); Enable(builtin::Extension::kF16); ast::Type matrix_type = param.create_mat_ast_type(*this); ast::Type vec_type = param.create_column_ast_type(*this); auto* vec_alias = Alias("ColVectorAlias", vec_type); utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { args.Push(Call(ty.Of(vec_alias))); } auto* tc = Call(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, ArgumentElementTypeAlias_Error) { const auto param = GetParam(); Enable(builtin::Extension::kF16); ast::Type matrix_type = param.create_mat_ast_type(*this); auto* u32_type_alias = Alias("UnsignedInt", ty.u32()); utils::StringStream args_tys; utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { auto vec_type = ty.vec(ty.Of(u32_type_alias), param.rows); args.Push(Call(vec_type)); if (i > 0) { args_tys << ", "; } args_tys << "vec" << param.rows << ""; } auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " + MatrixStr(param) + "(" + args_tys.str() + ")")); } TEST_P(MatrixConstructorTest, ArgumentElementTypeAlias_Success) { const auto param = GetParam(); Enable(builtin::Extension::kF16); auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this)); utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { auto vec_type = ty.vec(ty.Of(elem_type_alias), param.rows); args.Push(Call(vec_type)); } ast::Type matrix_type = param.create_mat_ast_type(*this); auto* tc = Call(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, InferElementTypeFromVectors) { const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { args.Push(Call(param.create_column_ast_type(*this))); } auto matrix_type = ty.mat(param.columns, param.rows); auto* tc = Call(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, InferElementTypeFromScalars) { const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::Vector args; for (uint32_t i = 0; i < param.rows * param.columns; i++) { args.Push(param.create_element_ast_value(*this, static_cast(i))); } auto matrix_type = ty.mat(param.columns, param.rows); WrapInFunction(Call(Source{{12, 34}}, matrix_type, std::move(args))); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, CannotInferElementTypeFromVectors_Mismatch) { const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::StringStream err; err << "12:34 error: no matching constructor for mat" << param.columns << "x" << param.rows << "("; utils::Vector args; for (uint32_t i = 0; i < param.columns; i++) { if (i > 0) { err << ", "; } if (i == 1) { // Odd one out args.Push(Call(ty.vec(param.rows))); err << "vec" << param.rows << ""; } else { args.Push(Call(param.create_column_ast_type(*this))); err << "vec" << param.rows << "<" + param.get_element_type_name() + ">"; } } auto matrix_type = ty.mat(param.columns, param.rows); WrapInFunction(Call(Source{{12, 34}}, matrix_type, std::move(args))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr(err.str())); } TEST_P(MatrixConstructorTest, CannotInferElementTypeFromScalars_Mismatch) { const auto param = GetParam(); Enable(builtin::Extension::kF16); utils::StringStream err; err << "12:34 error: no matching constructor for mat" << param.columns << "x" << param.rows << "("; utils::Vector args; for (uint32_t i = 0; i < param.rows * param.columns; i++) { if (i > 0) { err << ", "; } if (i == 3) { args.Push(Expr(static_cast(i))); // The odd one out err << "i32"; } else { args.Push(param.create_element_ast_value(*this, static_cast(i))); err << param.get_element_type_name(); } } err << ")"; auto matrix_type = ty.mat(param.columns, param.rows); WrapInFunction(Call(Source{{12, 34}}, matrix_type, std::move(args))); EXPECT_FALSE(r()->Resolve()); EXPECT_THAT(r()->error(), HasSubstr(err.str())); } INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, MatrixConstructorTest, testing::Values(MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor(), MatrixParamsFor())); } // namespace MatrixConstructor namespace StructConstructor { using builder::CreatePtrs; using builder::CreatePtrsFor; using builder::mat2x2; using builder::mat3x3; using builder::mat4x4; using builder::vec2; using builder::vec3; using builder::vec4; constexpr CreatePtrs all_types[] = { CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>(), // CreatePtrsFor>() // }; auto number_of_members = testing::Values(2u, 32u, 64u); using StructConstructorInputsTest = ResolverTestWithParam>; // number of struct members TEST_P(StructConstructorInputsTest, TooFew) { auto& param = GetParam(); auto& str_params = std::get<0>(param); uint32_t N = std::get<1>(param); Enable(builtin::Extension::kF16); utils::Vector members; utils::Vector values; for (uint32_t i = 0; i < N; i++) { ast::Type struct_type = str_params.ast(*this); members.Push(Member("member_" + std::to_string(i), struct_type)); if (i < N - 1) { auto* ctor_value_expr = str_params.expr_from_double(*this, 0); values.Push(ctor_value_expr); } } auto* s = Structure("s", members); auto* tc = Call(Source{{12, 34}}, ty.Of(s), values); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: structure constructor has too few inputs: expected " + std::to_string(N) + ", found " + std::to_string(N - 1)); } TEST_P(StructConstructorInputsTest, TooMany) { auto& param = GetParam(); auto& str_params = std::get<0>(param); uint32_t N = std::get<1>(param); Enable(builtin::Extension::kF16); utils::Vector members; utils::Vector values; for (uint32_t i = 0; i < N + 1; i++) { if (i < N) { ast::Type struct_type = str_params.ast(*this); members.Push(Member("member_" + std::to_string(i), struct_type)); } auto* ctor_value_expr = str_params.expr_from_double(*this, 0); values.Push(ctor_value_expr); } auto* s = Structure("s", members); auto* tc = Call(Source{{12, 34}}, ty.Of(s), values); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: structure constructor has too many inputs: expected " + std::to_string(N) + ", found " + std::to_string(N + 1)); } INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, StructConstructorInputsTest, testing::Combine(testing::ValuesIn(all_types), number_of_members)); using StructConstructorTypeTest = ResolverTestWithParam>; // number of struct members TEST_P(StructConstructorTypeTest, AllTypes) { auto& param = GetParam(); auto& str_params = std::get<0>(param); auto& ctor_params = std::get<1>(param); uint32_t N = std::get<2>(param); Enable(builtin::Extension::kF16); if (str_params.ast == ctor_params.ast) { return; } utils::Vector members; utils::Vector values; // make the last value of the constructor to have a different type uint32_t constructor_value_with_different_type = N - 1; for (uint32_t i = 0; i < N; i++) { ast::Type struct_type = str_params.ast(*this); members.Push(Member("member_" + std::to_string(i), struct_type)); auto* ctor_value_expr = (i == constructor_value_with_different_type) ? ctor_params.expr_from_double(*this, 0) : str_params.expr_from_double(*this, 0); values.Push(ctor_value_expr); } auto* s = Structure("s", members); auto* tc = Call(ty.Of(s), values); WrapInFunction(tc); utils::StringStream err; err << "error: type in structure constructor does not match struct member "; err << "type: expected '" << str_params.name() << "', found '" << ctor_params.name() << "'"; EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), err.str()); } INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest, StructConstructorTypeTest, testing::Combine(testing::ValuesIn(all_types), testing::ValuesIn(all_types), number_of_members)); TEST_F(ResolverValueConstructorValidationTest, Struct_Nested) { auto* inner_m = Member("m", ty.i32()); auto* inner_s = Structure("inner_s", utils::Vector{inner_m}); auto* m0 = Member("m0", ty.i32()); auto* m1 = Member("m1", ty.Of(inner_s)); auto* m2 = Member("m2", ty.i32()); auto* s = Structure("s", utils::Vector{m0, m1, m2}); auto* tc = Call(Source{{12, 34}}, ty.Of(s), 1_i, 1_i, 1_i); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "error: type in structure constructor does not match struct member " "type: expected 'inner_s', found 'i32'"); } TEST_F(ResolverValueConstructorValidationTest, Struct) { auto* m = Member("m", ty.i32()); auto* s = Structure("MyInputs", utils::Vector{m}); auto* tc = Call(Source{{12, 34}}, ty.Of(s)); WrapInFunction(tc); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValueConstructorValidationTest, Struct_Empty) { auto* str = Structure("S", utils::Vector{ Member("a", ty.i32()), Member("b", ty.f32()), Member("c", ty.vec3()), }); WrapInFunction(Call(ty.Of(str))); ASSERT_TRUE(r()->Resolve()) << r()->error(); } } // namespace StructConstructor TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_Atomic) { WrapInFunction(Assign(Phony(), Call(Source{{12, 34}}, ty.atomic(ty.i32())))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type is not constructible"); } TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_AtomicArray) { WrapInFunction(Assign(Phony(), Call(Source{{12, 34}}, ty.array(ty.atomic(ty.i32()), 4_i)))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: array constructor has non-constructible element type"); } TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_AtomicStructMember) { auto* str = Structure("S", utils::Vector{Member("a", ty.atomic(ty.i32()))}); WrapInFunction(Assign(Phony(), Call(Source{{12, 34}}, ty.Of(str)))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: structure constructor has non-constructible type"); } TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_Sampler) { WrapInFunction( Assign(Phony(), Call(Source{{12, 34}}, ty.sampler(type::SamplerKind::kSampler)))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type is not constructible"); } TEST_F(ResolverValueConstructorValidationTest, BuilinTypeConstructorAsStatement) { WrapInFunction(CallStmt(vec2(Source{{12, 34}}, 1_f, 2_f))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: value constructor evaluated but not used"); } TEST_F(ResolverValueConstructorValidationTest, StructConstructorAsStatement) { Structure("S", utils::Vector{Member("m", ty.i32())}); WrapInFunction(CallStmt(Call(Source{{12, 34}}, "S", 1_a))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: value constructor evaluated but not used"); } TEST_F(ResolverValueConstructorValidationTest, AliasConstructorAsStatement) { Alias("A", ty.i32()); WrapInFunction(CallStmt(Call(Source{{12, 34}}, "A", 1_i))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: value constructor evaluated but not used"); } TEST_F(ResolverValueConstructorValidationTest, BuilinTypeConversionAsStatement) { WrapInFunction(CallStmt(Call(Source{{12, 34}}, ty.f32(), 1_i))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: value conversion evaluated but not used"); } TEST_F(ResolverValueConstructorValidationTest, AliasConversionAsStatement) { Alias("A", ty.i32()); WrapInFunction(CallStmt(Call(Source{{12, 34}}, "A", 1_f))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: value conversion evaluated but not used"); } } // namespace } // namespace tint::resolver