// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dawn_native/CommandAllocator.h" #include "common/Assert.h" #include "common/Math.h" #include #include #include namespace dawn_native { constexpr uint32_t EndOfBlock = UINT_MAX; // std::numeric_limits::max(); constexpr uint32_t AdditionalData = UINT_MAX - 1; // std::numeric_limits::max() - 1; // TODO(cwallez@chromium.org): figure out a way to have more type safety for the iterator CommandIterator::CommandIterator() : mEndOfBlock(EndOfBlock) { Reset(); } CommandIterator::~CommandIterator() { ASSERT(mDataWasDestroyed); if (!IsEmpty()) { for (auto& block : mBlocks) { free(block.block); } } } CommandIterator::CommandIterator(CommandIterator&& other) : mEndOfBlock(EndOfBlock) { if (!other.IsEmpty()) { mBlocks = std::move(other.mBlocks); other.Reset(); } other.DataWasDestroyed(); Reset(); } CommandIterator& CommandIterator::operator=(CommandIterator&& other) { if (!other.IsEmpty()) { mBlocks = std::move(other.mBlocks); other.Reset(); } else { mBlocks.clear(); } other.DataWasDestroyed(); Reset(); return *this; } CommandIterator::CommandIterator(CommandAllocator&& allocator) : mBlocks(allocator.AcquireBlocks()), mEndOfBlock(EndOfBlock) { Reset(); } CommandIterator& CommandIterator::operator=(CommandAllocator&& allocator) { mBlocks = allocator.AcquireBlocks(); Reset(); return *this; } void CommandIterator::Reset() { mCurrentBlock = 0; if (mBlocks.empty()) { // This will case the first NextCommandId call to try to move to the next block and stop // the iteration immediately, without special casing the initialization. mCurrentPtr = reinterpret_cast(&mEndOfBlock); mBlocks.emplace_back(); mBlocks[0].size = sizeof(mEndOfBlock); mBlocks[0].block = mCurrentPtr; } else { mCurrentPtr = AlignPtr(mBlocks[0].block, alignof(uint32_t)); } } void CommandIterator::DataWasDestroyed() { mDataWasDestroyed = true; } bool CommandIterator::IsEmpty() const { return mBlocks[0].block == reinterpret_cast(&mEndOfBlock); } bool CommandIterator::NextCommandId(uint32_t* commandId) { uint8_t* idPtr = AlignPtr(mCurrentPtr, alignof(uint32_t)); ASSERT(idPtr + sizeof(uint32_t) <= mBlocks[mCurrentBlock].block + mBlocks[mCurrentBlock].size); uint32_t id = *reinterpret_cast(idPtr); if (id == EndOfBlock) { mCurrentBlock++; if (mCurrentBlock >= mBlocks.size()) { Reset(); *commandId = EndOfBlock; return false; } mCurrentPtr = AlignPtr(mBlocks[mCurrentBlock].block, alignof(uint32_t)); return NextCommandId(commandId); } mCurrentPtr = idPtr + sizeof(uint32_t); *commandId = id; return true; } void* CommandIterator::NextCommand(size_t commandSize, size_t commandAlignment) { uint8_t* commandPtr = AlignPtr(mCurrentPtr, commandAlignment); ASSERT(commandPtr + sizeof(commandSize) <= mBlocks[mCurrentBlock].block + mBlocks[mCurrentBlock].size); mCurrentPtr = commandPtr + commandSize; return commandPtr; } void* CommandIterator::NextData(size_t dataSize, size_t dataAlignment) { uint32_t id; bool hasId = NextCommandId(&id); ASSERT(hasId); ASSERT(id == AdditionalData); return NextCommand(dataSize, dataAlignment); } // Potential TODO(cwallez@chromium.org): // - Host the size and pointer to next block in the block itself to avoid having an allocation // in the vector // - Assume T's alignof is, say 64bits, static assert it, and make commandAlignment a constant // in Allocate // - Be able to optimize allocation to one block, for command buffers expected to live long to // avoid cache misses // - Better block allocation, maybe have Dawn API to say command buffer is going to have size // close to another CommandAllocator::CommandAllocator() : mCurrentPtr(reinterpret_cast(&mDummyEnum[0])), mEndPtr(reinterpret_cast(&mDummyEnum[1])) { } CommandAllocator::~CommandAllocator() { ASSERT(mBlocks.empty()); } CommandBlocks&& CommandAllocator::AcquireBlocks() { ASSERT(mCurrentPtr != nullptr && mEndPtr != nullptr); ASSERT(IsPtrAligned(mCurrentPtr, alignof(uint32_t))); ASSERT(mCurrentPtr + sizeof(uint32_t) <= mEndPtr); *reinterpret_cast(mCurrentPtr) = EndOfBlock; mCurrentPtr = nullptr; mEndPtr = nullptr; return std::move(mBlocks); } uint8_t* CommandAllocator::Allocate(uint32_t commandId, size_t commandSize, size_t commandAlignment) { ASSERT(mCurrentPtr != nullptr); ASSERT(mEndPtr != nullptr); ASSERT(commandId != EndOfBlock); // It should always be possible to allocate one id, for EndOfBlock tagging, ASSERT(IsPtrAligned(mCurrentPtr, alignof(uint32_t))); ASSERT(mEndPtr >= mCurrentPtr); ASSERT(static_cast(mEndPtr - mCurrentPtr) >= sizeof(uint32_t)); // The memory after the ID will contain the following: // - the current ID // - padding to align the command, maximum kMaxSupportedAlignment // - the command of size commandSize // - padding to align the next ID, maximum alignof(uint32_t) // - the next ID of size sizeof(uint32_t) // // To avoid checking for overflows at every step of the computations we compute an upper // bound of the space that will be needed in addition to the command data. static constexpr size_t kWorstCaseAdditionalSize = sizeof(uint32_t) + kMaxSupportedAlignment + alignof(uint32_t) + sizeof(uint32_t); // This can't overflow because by construction mCurrentPtr always has space for the next ID. size_t remainingSize = static_cast(mEndPtr - mCurrentPtr); // The good case were we have enough space for the command data and upper bound of the // extra required space. if ((remainingSize >= kWorstCaseAdditionalSize) && (remainingSize - kWorstCaseAdditionalSize >= commandSize)) { uint32_t* idAlloc = reinterpret_cast(mCurrentPtr); *idAlloc = commandId; uint8_t* commandAlloc = AlignPtr(mCurrentPtr + sizeof(uint32_t), commandAlignment); mCurrentPtr = AlignPtr(commandAlloc + commandSize, alignof(uint32_t)); return commandAlloc; } // When there is not enough space, we signal the EndOfBlock, so that the iterator knows to // move to the next one. EndOfBlock on the last block means the end of the commands. uint32_t* idAlloc = reinterpret_cast(mCurrentPtr); *idAlloc = EndOfBlock; // We'll request a block that can contain at least the command ID, the command and an // additional ID to contain the EndOfBlock tag. size_t requestedBlockSize = commandSize + kWorstCaseAdditionalSize; // The computation of the request could overflow. if (DAWN_UNLIKELY(requestedBlockSize <= commandSize)) { return nullptr; } if (DAWN_UNLIKELY(!GetNewBlock(requestedBlockSize))) { return nullptr; } return Allocate(commandId, commandSize, commandAlignment); } uint8_t* CommandAllocator::AllocateData(size_t commandSize, size_t commandAlignment) { return Allocate(AdditionalData, commandSize, commandAlignment); } bool CommandAllocator::GetNewBlock(size_t minimumSize) { // Allocate blocks doubling sizes each time, to a maximum of 16k (or at least minimumSize). mLastAllocationSize = std::max(minimumSize, std::min(mLastAllocationSize * 2, size_t(16384))); uint8_t* block = reinterpret_cast(malloc(mLastAllocationSize)); if (DAWN_UNLIKELY(block == nullptr)) { return false; } mBlocks.push_back({mLastAllocationSize, block}); mCurrentPtr = AlignPtr(block, alignof(uint32_t)); mEndPtr = block + mLastAllocationSize; return true; } } // namespace dawn_native