// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/resolver/resolver.h" #include #include #include #include #include #include "src/tint/ast/alias.h" #include "src/tint/ast/assignment_statement.h" #include "src/tint/ast/attribute.h" #include "src/tint/ast/bitcast_expression.h" #include "src/tint/ast/break_statement.h" #include "src/tint/ast/call_statement.h" #include "src/tint/ast/continue_statement.h" #include "src/tint/ast/disable_validation_attribute.h" #include "src/tint/ast/discard_statement.h" #include "src/tint/ast/for_loop_statement.h" #include "src/tint/ast/id_attribute.h" #include "src/tint/ast/if_statement.h" #include "src/tint/ast/internal_attribute.h" #include "src/tint/ast/interpolate_attribute.h" #include "src/tint/ast/loop_statement.h" #include "src/tint/ast/return_statement.h" #include "src/tint/ast/switch_statement.h" #include "src/tint/ast/traverse_expressions.h" #include "src/tint/ast/unary_op_expression.h" #include "src/tint/ast/variable_decl_statement.h" #include "src/tint/ast/while_statement.h" #include "src/tint/ast/workgroup_attribute.h" #include "src/tint/resolver/uniformity.h" #include "src/tint/sem/break_if_statement.h" #include "src/tint/sem/builtin_enum_expression.h" #include "src/tint/sem/call.h" #include "src/tint/sem/for_loop_statement.h" #include "src/tint/sem/function.h" #include "src/tint/sem/function_expression.h" #include "src/tint/sem/if_statement.h" #include "src/tint/sem/index_accessor_expression.h" #include "src/tint/sem/load.h" #include "src/tint/sem/loop_statement.h" #include "src/tint/sem/materialize.h" #include "src/tint/sem/member_accessor_expression.h" #include "src/tint/sem/module.h" #include "src/tint/sem/statement.h" #include "src/tint/sem/struct.h" #include "src/tint/sem/switch_statement.h" #include "src/tint/sem/type_conversion.h" #include "src/tint/sem/type_expression.h" #include "src/tint/sem/type_initializer.h" #include "src/tint/sem/variable.h" #include "src/tint/sem/while_statement.h" #include "src/tint/type/abstract_float.h" #include "src/tint/type/abstract_int.h" #include "src/tint/type/array.h" #include "src/tint/type/atomic.h" #include "src/tint/type/builtin.h" #include "src/tint/type/depth_multisampled_texture.h" #include "src/tint/type/depth_texture.h" #include "src/tint/type/external_texture.h" #include "src/tint/type/multisampled_texture.h" #include "src/tint/type/pointer.h" #include "src/tint/type/reference.h" #include "src/tint/type/sampled_texture.h" #include "src/tint/type/sampler.h" #include "src/tint/type/storage_texture.h" #include "src/tint/utils/compiler_macros.h" #include "src/tint/utils/defer.h" #include "src/tint/utils/math.h" #include "src/tint/utils/reverse.h" #include "src/tint/utils/scoped_assignment.h" #include "src/tint/utils/string.h" #include "src/tint/utils/transform.h" #include "src/tint/utils/vector.h" TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression); TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression); TINT_INSTANTIATE_TYPEINFO(tint::sem::BuiltinEnumExpression); namespace tint::resolver { namespace { constexpr int64_t kMaxArrayElementCount = 65536; constexpr uint32_t kMaxStatementDepth = 127; } // namespace Resolver::Resolver(ProgramBuilder* builder) : builder_(builder), diagnostics_(builder->Diagnostics()), const_eval_(*builder), intrinsic_table_(IntrinsicTable::Create(*builder)), sem_(builder), validator_(builder, sem_, enabled_extensions_, atomic_composite_info_, valid_type_storage_layouts_) {} Resolver::~Resolver() = default; bool Resolver::Resolve() { if (diagnostics_.contains_errors()) { return false; } builder_->Sem().Reserve(builder_->LastAllocatedNodeID()); // Pre-allocate the marked bitset with the total number of AST nodes. marked_.Resize(builder_->ASTNodes().Count()); if (!DependencyGraph::Build(builder_->AST(), builder_->Symbols(), diagnostics_, dependencies_)) { return false; } bool result = ResolveInternal(); if (TINT_UNLIKELY(!result && !diagnostics_.contains_errors())) { TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised"; return false; } // Create the semantic module. auto* mod = builder_->create(std::move(dependencies_.ordered_globals), std::move(enabled_extensions_)); ApplyDiagnosticSeverities(mod); builder_->Sem().SetModule(mod); if (result) { // Run the uniformity analysis, which requires a complete semantic module. if (!enabled_extensions_.Contains(ast::Extension::kChromiumDisableUniformityAnalysis)) { if (!AnalyzeUniformity(builder_, dependencies_)) { return false; } } } return result; } bool Resolver::ResolveInternal() { Mark(&builder_->AST()); // Process all module-scope declarations in dependency order. utils::Vector diagnostic_controls; for (auto* decl : dependencies_.ordered_globals) { Mark(decl); if (!Switch( decl, // [&](const ast::DiagnosticDirective* d) { diagnostic_controls.Push(&d->control); return DiagnosticControl(d->control); }, [&](const ast::Enable* e) { return Enable(e); }, [&](const ast::TypeDecl* td) { return TypeDecl(td); }, [&](const ast::Function* func) { return Function(func); }, [&](const ast::Variable* var) { return GlobalVariable(var); }, [&](const ast::ConstAssert* ca) { return ConstAssert(ca); }, [&](Default) { TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled global declaration: " << decl->TypeInfo().name; return false; })) { return false; } } if (!AllocateOverridableConstantIds()) { return false; } SetShadows(); if (!validator_.DiagnosticControls(diagnostic_controls, "directive")) { return false; } if (!validator_.PipelineStages(entry_points_)) { return false; } if (!validator_.PushConstants(entry_points_)) { return false; } bool result = true; for (auto* node : builder_->ASTNodes().Objects()) { if (TINT_UNLIKELY(!marked_[node->node_id.value])) { TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" << "At: " << node->source << "\n" << "Pointer: " << node; result = false; } } return result; } sem::Variable* Resolver::Variable(const ast::Variable* v, bool is_global) { Mark(v->name); return Switch( v, // [&](const ast::Var* var) { return Var(var, is_global); }, [&](const ast::Let* let) { return Let(let, is_global); }, [&](const ast::Override* override) { return Override(override); }, [&](const ast::Const* const_) { return Const(const_, is_global); }, [&](Default) { TINT_ICE(Resolver, diagnostics_) << "Resolver::GlobalVariable() called with a unknown variable type: " << v->TypeInfo().name; return nullptr; }); } sem::Variable* Resolver::Let(const ast::Let* v, bool is_global) { const type::Type* ty = nullptr; // If the variable has a declared type, resolve it. if (v->type) { ty = Type(v->type); if (!ty) { return nullptr; } } if (!v->initializer) { AddError("'let' declaration must have an initializer", v->source); return nullptr; } auto* rhs = Load(Materialize(ValueExpression(v->initializer), ty)); if (!rhs) { return nullptr; } // If the variable has no declared type, infer it from the RHS if (!ty) { ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS } if (rhs && !validator_.VariableInitializer(v, type::AddressSpace::kNone, ty, rhs)) { return nullptr; } if (!ApplyAddressSpaceUsageToType(type::AddressSpace::kNone, const_cast(ty), v->source)) { AddNote("while instantiating 'let' " + builder_->Symbols().NameFor(v->name->symbol), v->source); return nullptr; } sem::Variable* sem = nullptr; if (is_global) { sem = builder_->create( v, ty, sem::EvaluationStage::kRuntime, type::AddressSpace::kNone, type::Access::kUndefined, /* constant_value */ nullptr, sem::BindingPoint{}, std::nullopt); } else { sem = builder_->create(v, ty, sem::EvaluationStage::kRuntime, type::AddressSpace::kNone, type::Access::kUndefined, current_statement_, /* constant_value */ nullptr); } sem->SetInitializer(rhs); builder_->Sem().Add(v, sem); return sem; } sem::Variable* Resolver::Override(const ast::Override* v) { const type::Type* ty = nullptr; // If the variable has a declared type, resolve it. if (v->type) { ty = Type(v->type); if (!ty) { return nullptr; } } const sem::ValueExpression* rhs = nullptr; // Does the variable have an initializer? if (v->initializer) { // Note: RHS must be a const or override expression, which excludes references. // So there's no need to load or unwrap references here. ExprEvalStageConstraint constraint{sem::EvaluationStage::kOverride, "override initializer"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); rhs = Materialize(ValueExpression(v->initializer), ty); if (!rhs) { return nullptr; } // If the variable has no declared type, infer it from the RHS if (!ty) { ty = rhs->Type(); } } else if (!ty) { AddError("override declaration requires a type or initializer", v->source); return nullptr; } if (rhs && !validator_.VariableInitializer(v, type::AddressSpace::kNone, ty, rhs)) { return nullptr; } if (!ApplyAddressSpaceUsageToType(type::AddressSpace::kNone, const_cast(ty), v->source)) { AddNote("while instantiating 'override' " + builder_->Symbols().NameFor(v->name->symbol), v->source); return nullptr; } auto* sem = builder_->create( v, ty, sem::EvaluationStage::kOverride, type::AddressSpace::kNone, type::Access::kUndefined, /* constant_value */ nullptr, sem::BindingPoint{}, std::nullopt); sem->SetInitializer(rhs); if (auto* id_attr = ast::GetAttribute(v->attributes)) { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@id"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* materialized = Materialize(ValueExpression(id_attr->expr)); if (!materialized) { return nullptr; } if (!materialized->Type()->IsAnyOf()) { AddError("@id must be an i32 or u32 value", id_attr->source); return nullptr; } auto const_value = materialized->ConstantValue(); auto value = const_value->ValueAs(); if (value < 0) { AddError("@id value must be non-negative", id_attr->source); return nullptr; } if (value > std::numeric_limits::max()) { AddError("@id value must be between 0 and " + std::to_string(std::numeric_limits::max()), id_attr->source); return nullptr; } auto o = OverrideId{static_cast(value)}; sem->SetOverrideId(o); // Track the constant IDs that are specified in the shader. override_ids_.Add(o, sem); } builder_->Sem().Add(v, sem); return sem; } sem::Variable* Resolver::Const(const ast::Const* c, bool is_global) { const type::Type* ty = nullptr; // If the variable has a declared type, resolve it. if (c->type) { ty = Type(c->type); if (!ty) { return nullptr; } } if (!c->initializer) { AddError("'const' declaration must have an initializer", c->source); return nullptr; } const sem::ValueExpression* rhs = nullptr; { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "const initializer"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); rhs = ValueExpression(c->initializer); if (!rhs) { return nullptr; } } // Note: RHS must be a const expression, which excludes references. // So there's no need to load or unwrap references here. if (ty) { // If an explicit type was specified, materialize to that type rhs = Materialize(rhs, ty); if (!rhs) { return nullptr; } } else { // If no type was specified, infer it from the RHS ty = rhs->Type(); } if (!validator_.VariableInitializer(c, type::AddressSpace::kNone, ty, rhs)) { return nullptr; } if (!ApplyAddressSpaceUsageToType(type::AddressSpace::kNone, const_cast(ty), c->source)) { AddNote("while instantiating 'const' " + builder_->Symbols().NameFor(c->name->symbol), c->source); return nullptr; } const auto value = rhs->ConstantValue(); auto* sem = is_global ? static_cast(builder_->create( c, ty, sem::EvaluationStage::kConstant, type::AddressSpace::kNone, type::Access::kUndefined, value, sem::BindingPoint{}, std::nullopt)) : static_cast(builder_->create( c, ty, sem::EvaluationStage::kConstant, type::AddressSpace::kNone, type::Access::kUndefined, current_statement_, value)); sem->SetInitializer(rhs); builder_->Sem().Add(c, sem); return sem; } sem::Variable* Resolver::Var(const ast::Var* var, bool is_global) { const type::Type* storage_ty = nullptr; // If the variable has a declared type, resolve it. if (auto ty = var->type) { storage_ty = Type(ty); if (!storage_ty) { return nullptr; } } const sem::ValueExpression* rhs = nullptr; // Does the variable have a initializer? if (var->initializer) { ExprEvalStageConstraint constraint{ is_global ? sem::EvaluationStage::kOverride : sem::EvaluationStage::kRuntime, "var initializer", }; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); rhs = Load(Materialize(ValueExpression(var->initializer), storage_ty)); if (!rhs) { return nullptr; } // If the variable has no declared type, infer it from the RHS if (!storage_ty) { storage_ty = rhs->Type(); } } if (!storage_ty) { AddError("var declaration requires a type or initializer", var->source); return nullptr; } auto address_space = var->declared_address_space; if (address_space == type::AddressSpace::kNone) { // No declared address space. Infer from usage / type. if (!is_global) { address_space = type::AddressSpace::kFunction; } else if (storage_ty->UnwrapRef()->is_handle()) { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // If the store type is a texture type or a sampler type, then the // variable declaration must not have a address space attribute. The // address space will always be handle. address_space = type::AddressSpace::kHandle; } } if (!is_global && address_space != type::AddressSpace::kFunction && validator_.IsValidationEnabled(var->attributes, ast::DisabledValidation::kIgnoreAddressSpace)) { AddError("function-scope 'var' declaration must use 'function' address space", var->source); return nullptr; } auto access = var->declared_access; if (access == type::Access::kUndefined) { access = DefaultAccessForAddressSpace(address_space); } if (rhs && !validator_.VariableInitializer(var, address_space, storage_ty, rhs)) { return nullptr; } auto* var_ty = builder_->create(storage_ty, address_space, access); if (!ApplyAddressSpaceUsageToType(address_space, var_ty, var->type ? var->type->source : var->source)) { AddNote("while instantiating 'var' " + builder_->Symbols().NameFor(var->name->symbol), var->source); return nullptr; } sem::Variable* sem = nullptr; if (is_global) { sem::BindingPoint binding_point; if (var->HasBindingPoint()) { uint32_t binding = 0; { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@binding"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* attr = ast::GetAttribute(var->attributes); auto* materialized = Materialize(ValueExpression(attr->expr)); if (!materialized) { return nullptr; } if (!materialized->Type()->IsAnyOf()) { AddError("@binding must be an i32 or u32 value", attr->source); return nullptr; } auto const_value = materialized->ConstantValue(); auto value = const_value->ValueAs(); if (value < 0) { AddError("@binding value must be non-negative", attr->source); return nullptr; } binding = u32(value); } uint32_t group = 0; { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@group"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* attr = ast::GetAttribute(var->attributes); auto* materialized = Materialize(ValueExpression(attr->expr)); if (!materialized) { return nullptr; } if (!materialized->Type()->IsAnyOf()) { AddError("@group must be an i32 or u32 value", attr->source); return nullptr; } auto const_value = materialized->ConstantValue(); auto value = const_value->ValueAs(); if (value < 0) { AddError("@group value must be non-negative", attr->source); return nullptr; } group = u32(value); } binding_point = {group, binding}; } std::optional location; if (auto* attr = ast::GetAttribute(var->attributes)) { auto value = LocationAttribute(attr); if (!value) { return nullptr; } location = value.Get(); } sem = builder_->create( var, var_ty, sem::EvaluationStage::kRuntime, address_space, access, /* constant_value */ nullptr, binding_point, location); } else { sem = builder_->create(var, var_ty, sem::EvaluationStage::kRuntime, address_space, access, current_statement_, /* constant_value */ nullptr); } sem->SetInitializer(rhs); builder_->Sem().Add(var, sem); return sem; } sem::Parameter* Resolver::Parameter(const ast::Parameter* param, uint32_t index) { Mark(param->name); auto add_note = [&] { AddNote("while instantiating parameter " + builder_->Symbols().NameFor(param->name->symbol), param->source); }; for (auto* attr : param->attributes) { Mark(attr); } if (!validator_.NoDuplicateAttributes(param->attributes)) { return nullptr; } type::Type* ty = Type(param->type); if (!ty) { return nullptr; } if (!ApplyAddressSpaceUsageToType(type::AddressSpace::kNone, ty, param->type->source)) { add_note(); return nullptr; } if (auto* ptr = ty->As()) { // For MSL, we push module-scope variables into the entry point as pointer // parameters, so we also need to handle their store type. if (!ApplyAddressSpaceUsageToType( ptr->AddressSpace(), const_cast(ptr->StoreType()), param->source)) { add_note(); return nullptr; } } sem::BindingPoint binding_point; if (param->HasBindingPoint()) { { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@binding value"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* attr = ast::GetAttribute(param->attributes); auto* materialized = Materialize(ValueExpression(attr->expr)); if (!materialized) { return nullptr; } binding_point.binding = materialized->ConstantValue()->ValueAs(); } { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@group value"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* attr = ast::GetAttribute(param->attributes); auto* materialized = Materialize(ValueExpression(attr->expr)); if (!materialized) { return nullptr; } binding_point.group = materialized->ConstantValue()->ValueAs(); } } std::optional location; if (auto* attr = ast::GetAttribute(param->attributes)) { auto value = LocationAttribute(attr); if (!value) { return nullptr; } location = value.Get(); } auto* sem = builder_->create( param, index, ty, type::AddressSpace::kNone, type::Access::kUndefined, sem::ParameterUsage::kNone, binding_point, location); builder_->Sem().Add(param, sem); return sem; } utils::Result Resolver::LocationAttribute(const ast::LocationAttribute* attr) { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@location value"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* materialized = Materialize(ValueExpression(attr->expr)); if (!materialized) { return utils::Failure; } if (!materialized->Type()->IsAnyOf()) { AddError("@location must be an i32 or u32 value", attr->source); return utils::Failure; } auto const_value = materialized->ConstantValue(); auto value = const_value->ValueAs(); if (value < 0) { AddError("@location value must be non-negative", attr->source); return utils::Failure; } return static_cast(value); } type::Access Resolver::DefaultAccessForAddressSpace(type::AddressSpace address_space) { // https://gpuweb.github.io/gpuweb/wgsl/#storage-class switch (address_space) { case type::AddressSpace::kStorage: case type::AddressSpace::kUniform: case type::AddressSpace::kHandle: return type::Access::kRead; default: break; } return type::Access::kReadWrite; } bool Resolver::AllocateOverridableConstantIds() { constexpr size_t kLimit = std::numeric_limits::max(); // The next pipeline constant ID to try to allocate. OverrideId next_id; bool ids_exhausted = false; auto increment_next_id = [&] { if (next_id.value == kLimit) { ids_exhausted = true; } else { next_id.value = next_id.value + 1; } }; // Allocate constant IDs in global declaration order, so that they are // deterministic. // TODO(crbug.com/tint/1192): If a transform changes the order or removes an // unused constant, the allocation may change on the next Resolver pass. for (auto* decl : builder_->AST().GlobalDeclarations()) { auto* override = decl->As(); if (!override) { continue; } auto* sem = sem_.Get(override); OverrideId id; if (ast::HasAttribute(override->attributes)) { id = sem->OverrideId(); } else { // No ID was specified, so allocate the next available ID. while (!ids_exhausted && override_ids_.Contains(next_id)) { increment_next_id(); } if (ids_exhausted) { AddError( "number of 'override' variables exceeded limit of " + std::to_string(kLimit), decl->source); return false; } id = next_id; increment_next_id(); } const_cast(sem)->SetOverrideId(id); } return true; } void Resolver::SetShadows() { for (auto it : dependencies_.shadows) { CastableBase* b = sem_.Get(it.value); if (TINT_UNLIKELY(!b)) { TINT_ICE(Resolver, diagnostics_) << "AST node '" << it.value->TypeInfo().name << "' had no semantic info\n" << "At: " << it.value->source << "\n" << "Pointer: " << it.value; } Switch( sem_.Get(it.key), // [&](sem::LocalVariable* local) { local->SetShadows(b); }, [&](sem::Parameter* param) { param->SetShadows(b); }); } } sem::GlobalVariable* Resolver::GlobalVariable(const ast::Variable* v) { utils::UniqueVector transitively_referenced_overrides; TINT_SCOPED_ASSIGNMENT(resolved_overrides_, &transitively_referenced_overrides); auto* sem = As(Variable(v, /* is_global */ true)); if (!sem) { return nullptr; } for (auto* attr : v->attributes) { Mark(attr); } if (!validator_.NoDuplicateAttributes(v->attributes)) { return nullptr; } if (!validator_.GlobalVariable(sem, override_ids_)) { return nullptr; } // Track the pipeline-overridable constants that are transitively referenced by this // variable. for (auto* var : transitively_referenced_overrides) { builder_->Sem().AddTransitivelyReferencedOverride(sem, var); } if (auto* arr = sem->Type()->UnwrapRef()->As()) { auto* refs = builder_->Sem().TransitivelyReferencedOverrides(arr); if (refs) { for (auto* var : *refs) { builder_->Sem().AddTransitivelyReferencedOverride(sem, var); } } } return sem; } sem::Statement* Resolver::ConstAssert(const ast::ConstAssert* assertion) { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "const assertion"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* expr = ValueExpression(assertion->condition); if (!expr) { return nullptr; } auto* cond = expr->ConstantValue(); if (auto* ty = cond->Type(); !ty->Is()) { AddError( "const assertion condition must be a bool, got '" + builder_->FriendlyName(ty) + "'", assertion->condition->source); return nullptr; } if (!cond->ValueAs()) { AddError("const assertion failed", assertion->source); return nullptr; } auto* sem = builder_->create(assertion, current_compound_statement_, current_function_); builder_->Sem().Add(assertion, sem); return sem; } sem::Function* Resolver::Function(const ast::Function* decl) { Mark(decl->name); uint32_t parameter_index = 0; utils::Hashmap parameter_names; utils::Vector parameters; validator_.DiagnosticFilters().Push(); TINT_DEFER(validator_.DiagnosticFilters().Pop()); for (auto* attr : decl->attributes) { Mark(attr); if (auto* dc = attr->As()) { if (!DiagnosticControl(dc->control)) { return nullptr; } } } if (!validator_.NoDuplicateAttributes(decl->attributes)) { return nullptr; } // Resolve all the parameters for (auto* param : decl->params) { Mark(param); { // Check the parameter name is unique for the function if (auto added = parameter_names.Add(param->name->symbol, param->source); !added) { auto name = builder_->Symbols().NameFor(param->name->symbol); AddError("redefinition of parameter '" + name + "'", param->source); AddNote("previous definition is here", *added.value); return nullptr; } } auto* p = Parameter(param, parameter_index++); if (!p) { return nullptr; } if (!validator_.Parameter(decl, p)) { return nullptr; } parameters.Push(p); auto* p_ty = const_cast(p->Type()); if (auto* str = p_ty->As()) { switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(type::PipelineStageUsage::kVertexInput); break; case ast::PipelineStage::kFragment: str->AddUsage(type::PipelineStageUsage::kFragmentInput); break; case ast::PipelineStage::kCompute: str->AddUsage(type::PipelineStageUsage::kComputeInput); break; case ast::PipelineStage::kNone: break; } } } // Resolve the return type type::Type* return_type = nullptr; if (auto ty = decl->return_type) { return_type = Type(ty); if (!return_type) { return nullptr; } } else { return_type = builder_->create(); } // Determine if the return type has a location std::optional return_location; for (auto* attr : decl->return_type_attributes) { Mark(attr); if (auto* loc_attr = attr->As()) { auto value = LocationAttribute(loc_attr); if (!value) { return nullptr; } return_location = value.Get(); } } if (auto* str = return_type->As()) { if (!ApplyAddressSpaceUsageToType(type::AddressSpace::kNone, str, decl->source)) { AddNote("while instantiating return type for " + builder_->Symbols().NameFor(decl->name->symbol), decl->source); return nullptr; } switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(type::PipelineStageUsage::kVertexOutput); break; case ast::PipelineStage::kFragment: str->AddUsage(type::PipelineStageUsage::kFragmentOutput); break; case ast::PipelineStage::kCompute: str->AddUsage(type::PipelineStageUsage::kComputeOutput); break; case ast::PipelineStage::kNone: break; } } auto* func = builder_->create(decl, return_type, return_location, std::move(parameters)); ApplyDiagnosticSeverities(func); builder_->Sem().Add(decl, func); TINT_SCOPED_ASSIGNMENT(current_function_, func); if (!WorkgroupSize(decl)) { return nullptr; } if (decl->IsEntryPoint()) { entry_points_.Push(func); } if (decl->body) { Mark(decl->body); if (TINT_UNLIKELY(current_compound_statement_)) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Function() called with a current compound statement"; return nullptr; } auto* body = StatementScope(decl->body, builder_->create(func), [&] { return Statements(decl->body->statements); }); if (!body) { return nullptr; } func->Behaviors() = body->Behaviors(); if (func->Behaviors().Contains(sem::Behavior::kReturn)) { // https://www.w3.org/TR/WGSL/#behaviors-rules // We assign a behavior to each function: it is its body’s behavior // (treating the body as a regular statement), with any "Return" replaced // by "Next". func->Behaviors().Remove(sem::Behavior::kReturn); func->Behaviors().Add(sem::Behavior::kNext); } } if (!validator_.NoDuplicateAttributes(decl->return_type_attributes)) { return nullptr; } auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() : ast::PipelineStage::kNone; if (!validator_.Function(func, stage)) { return nullptr; } // If this is an entry point, mark all transitively called functions as being // used by this entry point. if (decl->IsEntryPoint()) { for (auto* f : func->TransitivelyCalledFunctions()) { const_cast(f)->AddAncestorEntryPoint(func); } } return func; } bool Resolver::WorkgroupSize(const ast::Function* func) { // Set work-group size defaults. sem::WorkgroupSize ws; for (size_t i = 0; i < 3; i++) { ws[i] = 1; } auto* attr = ast::GetAttribute(func->attributes); if (!attr) { return true; } auto values = attr->Values(); utils::Vector args; utils::Vector arg_tys; constexpr const char* kErrBadExpr = "workgroup_size argument must be a constant or override-expression of type " "abstract-integer, i32 or u32"; for (size_t i = 0; i < 3; i++) { // Each argument to this attribute can either be a literal, an identifier for a // module-scope constants, a const-expression, or nullptr if not specified. auto* value = values[i]; if (!value) { break; } const auto* expr = ValueExpression(value); if (!expr) { return false; } auto* ty = expr->Type(); if (!ty->IsAnyOf()) { AddError(kErrBadExpr, value->source); return false; } if (expr->Stage() != sem::EvaluationStage::kConstant && expr->Stage() != sem::EvaluationStage::kOverride) { AddError(kErrBadExpr, value->source); return false; } args.Push(expr); arg_tys.Push(ty); } auto* common_ty = type::Type::Common(arg_tys); if (!common_ty) { AddError("workgroup_size arguments must be of the same type, either i32 or u32", attr->source); return false; } // If all arguments are abstract-integers, then materialize to i32. if (common_ty->Is()) { common_ty = builder_->create(); } for (size_t i = 0; i < args.Length(); i++) { auto* materialized = Materialize(args[i], common_ty); if (!materialized) { return false; } if (auto* value = materialized->ConstantValue()) { if (value->ValueAs() < 1) { AddError("workgroup_size argument must be at least 1", values[i]->source); return false; } ws[i] = value->ValueAs(); } else { ws[i] = std::nullopt; } } uint64_t total_size = static_cast(ws[0].value_or(1)); for (size_t i = 1; i < 3; i++) { total_size *= static_cast(ws[i].value_or(1)); if (total_size > 0xffffffff) { AddError("total workgroup grid size cannot exceed 0xffffffff", values[i]->source); return false; } } current_function_->SetWorkgroupSize(std::move(ws)); return true; } bool Resolver::Statements(utils::VectorRef stmts) { sem::Behaviors behaviors{sem::Behavior::kNext}; bool reachable = true; for (auto* stmt : stmts) { Mark(stmt); auto* sem = Statement(stmt); if (!sem) { return false; } // s1 s2:(B1∖{Next}) ∪ B2 sem->SetIsReachable(reachable); if (reachable) { behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors(); } reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext); } current_statement_->Behaviors() = behaviors; if (!validator_.Statements(stmts)) { return false; } return true; } sem::Statement* Resolver::Statement(const ast::Statement* stmt) { return Switch( stmt, // Compound statements. These create their own sem::CompoundStatement // bindings. [&](const ast::BlockStatement* b) { return BlockStatement(b); }, [&](const ast::ForLoopStatement* l) { return ForLoopStatement(l); }, [&](const ast::LoopStatement* l) { return LoopStatement(l); }, [&](const ast::WhileStatement* w) { return WhileStatement(w); }, [&](const ast::IfStatement* i) { return IfStatement(i); }, [&](const ast::SwitchStatement* s) { return SwitchStatement(s); }, // Non-Compound statements [&](const ast::AssignmentStatement* a) { return AssignmentStatement(a); }, [&](const ast::BreakStatement* b) { return BreakStatement(b); }, [&](const ast::BreakIfStatement* b) { return BreakIfStatement(b); }, [&](const ast::CallStatement* c) { return CallStatement(c); }, [&](const ast::CompoundAssignmentStatement* c) { return CompoundAssignmentStatement(c); }, [&](const ast::ContinueStatement* c) { return ContinueStatement(c); }, [&](const ast::DiscardStatement* d) { return DiscardStatement(d); }, [&](const ast::IncrementDecrementStatement* i) { return IncrementDecrementStatement(i); }, [&](const ast::ReturnStatement* r) { return ReturnStatement(r); }, [&](const ast::VariableDeclStatement* v) { return VariableDeclStatement(v); }, [&](const ast::ConstAssert* sa) { return ConstAssert(sa); }, // Error cases [&](const ast::CaseStatement*) { AddError("case statement can only be used inside a switch statement", stmt->source); return nullptr; }, [&](Default) { AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), stmt->source); return nullptr; }); } sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt, const type::Type* ty) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Selectors().reserve(stmt->selectors.Length()); for (auto* sel : stmt->selectors) { Mark(sel); ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "case selector"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); const constant::Value* const_value = nullptr; if (!sel->IsDefault()) { // The sem statement was created in the switch when attempting to determine the // common type. auto* materialized = Materialize(sem_.GetVal(sel->expr), ty); if (!materialized) { return false; } if (!materialized->Type()->IsAnyOf()) { AddError("case selector must be an i32 or u32 value", sel->source); return false; } const_value = materialized->ConstantValue(); if (!const_value) { AddError("case selector must be a constant expression", sel->source); return false; } } sem->Selectors().emplace_back(builder_->create(sel, const_value)); } Mark(stmt->body); auto* body = BlockStatement(stmt->body); if (!body) { return false; } sem->SetBlock(body); sem->Behaviors() = body->Behaviors(); return true; }); } sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* cond = Load(ValueExpression(stmt->condition)); if (!cond) { return false; } sem->SetCondition(cond); sem->Behaviors() = cond->Behaviors(); sem->Behaviors().Remove(sem::Behavior::kNext); Mark(stmt->body); auto* body = builder_->create(stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } sem->Behaviors().Add(body->Behaviors()); if (stmt->else_statement) { Mark(stmt->else_statement); auto* else_sem = Statement(stmt->else_statement); if (!else_sem) { return false; } sem->Behaviors().Add(else_sem->Behaviors()); } else { // https://www.w3.org/TR/WGSL/#behaviors-rules // if statements without an else branch are treated as if they had an // empty else branch (which adds Next to their behavior) sem->Behaviors().Add(sem::Behavior::kNext); } return validator_.IfStatement(sem); }); } sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) { auto* sem = builder_->create( stmt->As(), current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { return Statements(stmt->statements); }); } sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); return StatementScope(stmt->body, body, [&] { if (!Statements(stmt->body->statements)) { return false; } auto& behaviors = sem->Behaviors(); behaviors = body->Behaviors(); if (stmt->continuing) { Mark(stmt->continuing); auto* continuing = StatementScope( stmt->continuing, builder_->create( stmt->continuing, current_compound_statement_, current_function_), [&] { return Statements(stmt->continuing->statements); }); if (!continuing) { return false; } behaviors.Add(continuing->Behaviors()); } if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? behaviors.Add(sem::Behavior::kNext); } else { behaviors.Remove(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); return validator_.LoopStatement(sem); }); }); } sem::ForLoopStatement* Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = sem->Behaviors(); if (auto* initializer = stmt->initializer) { Mark(initializer); auto* init = Statement(initializer); if (!init) { return false; } behaviors.Add(init->Behaviors()); } if (auto* cond_expr = stmt->condition) { auto* cond = Load(ValueExpression(cond_expr)); if (!cond) { return false; } sem->SetCondition(cond); behaviors.Add(cond->Behaviors()); } if (auto* continuing = stmt->continuing) { Mark(continuing); auto* cont = Statement(continuing); if (!cont) { return false; } behaviors.Add(cont->Behaviors()); } Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } behaviors.Add(body->Behaviors()); if (stmt->condition || behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? behaviors.Add(sem::Behavior::kNext); } else { behaviors.Remove(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); return validator_.ForLoopStatement(sem); }); } sem::WhileStatement* Resolver::WhileStatement(const ast::WhileStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = sem->Behaviors(); auto* cond = Load(ValueExpression(stmt->condition)); if (!cond) { return false; } sem->SetCondition(cond); behaviors.Add(cond->Behaviors()); Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } behaviors.Add(body->Behaviors()); // Always consider the while as having a 'next' behaviour because it has // a condition. We don't check if the condition will terminate but it isn't // valid to have an infinite loop in a WGSL program, so a non-terminating // condition is already an invalid program. behaviors.Add(sem::Behavior::kNext); behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); return validator_.WhileStatement(sem); }); } sem::Expression* Resolver::Expression(const ast::Expression* root) { utils::Vector sorted; constexpr size_t kMaxExpressionDepth = 512U; bool failed = false; if (!ast::TraverseExpressions( root, diagnostics_, [&](const ast::Expression* expr, size_t depth) { if (depth > kMaxExpressionDepth) { AddError( "reached max expression depth of " + std::to_string(kMaxExpressionDepth), expr->source); failed = true; return ast::TraverseAction::Stop; } if (!Mark(expr)) { failed = true; return ast::TraverseAction::Stop; } if (auto* binary = expr->As(); binary && binary->IsLogical()) { // Store potential const-eval short-circuit pair logical_binary_lhs_to_parent_.Add(binary->lhs, binary); } sorted.Push(expr); return ast::TraverseAction::Descend; })) { return nullptr; } if (failed) { return nullptr; } for (auto* expr : utils::Reverse(sorted)) { auto* sem_expr = Switch( expr, [&](const ast::IndexAccessorExpression* array) { return IndexAccessor(array); }, [&](const ast::BinaryExpression* bin_op) { return Binary(bin_op); }, [&](const ast::BitcastExpression* bitcast) { return Bitcast(bitcast); }, [&](const ast::CallExpression* call) { return Call(call); }, [&](const ast::IdentifierExpression* ident) { return Identifier(ident); }, [&](const ast::LiteralExpression* literal) { return Literal(literal); }, [&](const ast::MemberAccessorExpression* member) { return MemberAccessor(member); }, [&](const ast::UnaryOpExpression* unary) { return UnaryOp(unary); }, [&](const ast::PhonyExpression*) { return builder_->create(expr, builder_->create(), sem::EvaluationStage::kRuntime, current_statement_, /* constant_value */ nullptr, /* has_side_effects */ false); }, [&](Default) { TINT_ICE(Resolver, diagnostics_) << "unhandled expression type: " << expr->TypeInfo().name; return nullptr; }); if (!sem_expr) { return nullptr; } auto* val = sem_expr->As(); if (val) { if (auto* constraint = expr_eval_stage_constraint_.constraint) { if (!validator_.EvaluationStage(val, expr_eval_stage_constraint_.stage, constraint)) { return nullptr; } } } builder_->Sem().Add(expr, sem_expr); if (expr == root) { return sem_expr; } // If we just processed the lhs of a constexpr logical binary expression, mark the rhs for // short-circuiting. if (val && val->ConstantValue()) { if (auto binary = logical_binary_lhs_to_parent_.Find(expr)) { const bool lhs_is_true = val->ConstantValue()->ValueAs(); if (((*binary)->IsLogicalAnd() && !lhs_is_true) || ((*binary)->IsLogicalOr() && lhs_is_true)) { // Mark entire expression tree to not const-evaluate auto r = ast::TraverseExpressions( // (*binary)->rhs, diagnostics_, [&](const ast::Expression* e) { skip_const_eval_.Add(e); return ast::TraverseAction::Descend; }); if (!r) { return nullptr; } } } } } TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node"; return nullptr; } sem::ValueExpression* Resolver::ValueExpression(const ast::Expression* expr) { return sem_.AsValueExpression(Expression(expr)); } sem::TypeExpression* Resolver::TypeExpression(const ast::Expression* expr) { return sem_.AsTypeExpression(Expression(expr)); } sem::FunctionExpression* Resolver::FunctionExpression(const ast::Expression* expr) { return sem_.AsFunctionExpression(Expression(expr)); } type::Type* Resolver::Type(const ast::Expression* ast) { auto* type_expr = TypeExpression(ast); if (!type_expr) { return nullptr; } return const_cast(type_expr->Type()); } sem::BuiltinEnumExpression* Resolver::AddressSpaceExpression( const ast::Expression* expr) { return sem_.AsAddressSpace(Expression(expr)); } sem::BuiltinEnumExpression* Resolver::TexelFormatExpression( const ast::Expression* expr) { return sem_.AsTexelFormat(Expression(expr)); } sem::BuiltinEnumExpression* Resolver::AccessExpression(const ast::Expression* expr) { return sem_.AsAccess(Expression(expr)); } void Resolver::RegisterStore(const sem::ValueExpression* expr) { auto& info = alias_analysis_infos_[current_function_]; Switch( expr->RootIdentifier(), [&](const sem::GlobalVariable* global) { info.module_scope_writes.insert({global, expr}); }, [&](const sem::Parameter* param) { info.parameter_writes.insert(param); }); } bool Resolver::AliasAnalysis(const sem::Call* call) { auto* target = call->Target()->As(); if (!target) { return true; } if (validator_.IsValidationDisabled(target->Declaration()->attributes, ast::DisabledValidation::kIgnorePointerAliasing)) { return true; } // Helper to generate an aliasing error diagnostic. struct Alias { const sem::ValueExpression* expr; // the "other expression" enum { Argument, ModuleScope } type; // the type of the "other" expression std::string access; // the access performed for the "other" expression }; auto make_error = [&](const sem::ValueExpression* arg, Alias&& var) { AddError("invalid aliased pointer argument", arg->Declaration()->source); switch (var.type) { case Alias::Argument: AddNote("aliases with another argument passed here", var.expr->Declaration()->source); break; case Alias::ModuleScope: { auto* func = var.expr->Stmt()->Function(); auto func_name = builder_->Symbols().NameFor(func->Declaration()->name->symbol); AddNote( "aliases with module-scope variable " + var.access + " in '" + func_name + "'", var.expr->Declaration()->source); break; } } return false; }; auto& args = call->Arguments(); auto& target_info = alias_analysis_infos_[target]; auto& caller_info = alias_analysis_infos_[current_function_]; // Track the set of root identifiers that are read and written by arguments passed in this // call. std::unordered_map arg_reads; std::unordered_map arg_writes; for (size_t i = 0; i < args.Length(); i++) { auto* arg = args[i]; if (!arg->Type()->Is()) { continue; } auto* root = arg->RootIdentifier(); if (target_info.parameter_writes.count(target->Parameters()[i])) { // Arguments that are written to can alias with any other argument or module-scope // variable access. if (arg_writes.count(root)) { return make_error(arg, {arg_writes.at(root), Alias::Argument, "write"}); } if (arg_reads.count(root)) { return make_error(arg, {arg_reads.at(root), Alias::Argument, "read"}); } if (target_info.module_scope_reads.count(root)) { return make_error( arg, {target_info.module_scope_reads.at(root), Alias::ModuleScope, "read"}); } if (target_info.module_scope_writes.count(root)) { return make_error( arg, {target_info.module_scope_writes.at(root), Alias::ModuleScope, "write"}); } arg_writes.insert({root, arg}); // Propagate the write access to the caller. Switch( root, [&](const sem::GlobalVariable* global) { caller_info.module_scope_writes.insert({global, arg}); }, [&](const sem::Parameter* param) { caller_info.parameter_writes.insert(param); }); } else if (target_info.parameter_reads.count(target->Parameters()[i])) { // Arguments that are read from can alias with arguments or module-scope variables // that are written to. if (arg_writes.count(root)) { return make_error(arg, {arg_writes.at(root), Alias::Argument, "write"}); } if (target_info.module_scope_writes.count(root)) { return make_error( arg, {target_info.module_scope_writes.at(root), Alias::ModuleScope, "write"}); } arg_reads.insert({root, arg}); // Propagate the read access to the caller. Switch( root, [&](const sem::GlobalVariable* global) { caller_info.module_scope_reads.insert({global, arg}); }, [&](const sem::Parameter* param) { caller_info.parameter_reads.insert(param); }); } } // Propagate module-scope variable uses to the caller. for (auto read : target_info.module_scope_reads) { caller_info.module_scope_reads.insert({read.first, read.second}); } for (auto write : target_info.module_scope_writes) { caller_info.module_scope_writes.insert({write.first, write.second}); } return true; } const type::Type* Resolver::ConcreteType(const type::Type* ty, const type::Type* target_ty, const Source& source) { auto i32 = [&] { return builder_->create(); }; auto f32 = [&] { return builder_->create(); }; auto i32v = [&](uint32_t width) { return builder_->create(i32(), width); }; auto f32v = [&](uint32_t width) { return builder_->create(f32(), width); }; auto f32m = [&](uint32_t columns, uint32_t rows) { return builder_->create(f32v(rows), columns); }; return Switch( ty, // [&](const type::AbstractInt*) { return target_ty ? target_ty : i32(); }, [&](const type::AbstractFloat*) { return target_ty ? target_ty : f32(); }, [&](const type::Vector* v) { return Switch( v->type(), // [&](const type::AbstractInt*) { return target_ty ? target_ty : i32v(v->Width()); }, [&](const type::AbstractFloat*) { return target_ty ? target_ty : f32v(v->Width()); }); }, [&](const type::Matrix* m) { return Switch(m->type(), // [&](const type::AbstractFloat*) { return target_ty ? target_ty : f32m(m->columns(), m->rows()); }); }, [&](const type::Array* a) -> const type::Type* { const type::Type* target_el_ty = nullptr; if (auto* target_arr_ty = As(target_ty)) { target_el_ty = target_arr_ty->ElemType(); } if (auto* el_ty = ConcreteType(a->ElemType(), target_el_ty, source)) { return Array(source, source, el_ty, a->Count(), /* explicit_stride */ 0); } return nullptr; }, [&](const sem::Struct* s) -> const type::Type* { if (auto tys = s->ConcreteTypes(); !tys.IsEmpty()) { return target_ty ? target_ty : tys[0]; } return nullptr; }); } const sem::ValueExpression* Resolver::Load(const sem::ValueExpression* expr) { if (!expr) { // Allow for Load(ValueExpression(blah)), where failures pass through Load() return nullptr; } if (!expr->Type()->Is()) { // Expression is not a reference type, so cannot be loaded. Just return expr. return expr; } auto* load = builder_->create(expr, current_statement_); load->Behaviors() = expr->Behaviors(); builder_->Sem().Replace(expr->Declaration(), load); // Track the load for the alias analysis. auto& alias_info = alias_analysis_infos_[current_function_]; Switch( expr->RootIdentifier(), [&](const sem::GlobalVariable* global) { alias_info.module_scope_reads.insert({global, expr}); }, [&](const sem::Parameter* param) { alias_info.parameter_reads.insert(param); }); return load; } const sem::ValueExpression* Resolver::Materialize(const sem::ValueExpression* expr, const type::Type* target_type /* = nullptr */) { if (!expr) { // Allow for Materialize(ValueExpression(blah)), where failures pass through Materialize() return nullptr; } auto* decl = expr->Declaration(); auto* concrete_ty = ConcreteType(expr->Type(), target_type, decl->source); if (!concrete_ty) { return expr; // Does not require materialization } auto* src_ty = expr->Type(); if (!validator_.Materialize(concrete_ty, src_ty, decl->source)) { return nullptr; } const constant::Value* materialized_val = nullptr; if (!skip_const_eval_.Contains(decl)) { auto expr_val = expr->ConstantValue(); if (TINT_UNLIKELY(!expr_val)) { TINT_ICE(Resolver, diagnostics_) << decl->source << "Materialize(" << decl->TypeInfo().name << ") called on expression with no constant value"; return nullptr; } auto val = const_eval_.Convert(concrete_ty, expr_val, decl->source); if (!val) { // Convert() has already failed and raised an diagnostic error. return nullptr; } materialized_val = val.Get(); if (TINT_UNLIKELY(!materialized_val)) { TINT_ICE(Resolver, diagnostics_) << decl->source << "ConvertValue(" << builder_->FriendlyName(expr_val->Type()) << " -> " << builder_->FriendlyName(concrete_ty) << ") returned invalid value"; return nullptr; } } auto* m = builder_->create(expr, current_statement_, concrete_ty, materialized_val); m->Behaviors() = expr->Behaviors(); builder_->Sem().Replace(decl, m); return m; } template bool Resolver::MaybeMaterializeAndLoadArguments(utils::Vector& args, const sem::CallTarget* target) { for (size_t i = 0, n = std::min(args.Length(), target->Parameters().Length()); i < n; i++) { const auto* param_ty = target->Parameters()[i]->Type(); if (ShouldMaterializeArgument(param_ty)) { auto* materialized = Materialize(args[i], param_ty); if (!materialized) { return false; } args[i] = materialized; } if (!param_ty->Is()) { auto* load = Load(args[i]); if (!load) { return false; } args[i] = load; } } return true; } bool Resolver::ShouldMaterializeArgument(const type::Type* parameter_ty) const { const auto* param_el_ty = type::Type::DeepestElementOf(parameter_ty); return param_el_ty && !param_el_ty->Is(); } bool Resolver::Convert(const constant::Value*& c, const type::Type* target_ty, const Source& source) { auto r = const_eval_.Convert(target_ty, c, source); if (!r) { return false; } c = r.Get(); return true; } template utils::Result> Resolver::ConvertArguments( const utils::Vector& args, const sem::CallTarget* target) { auto const_args = utils::Transform(args, [](auto* arg) { return arg->ConstantValue(); }); for (size_t i = 0, n = std::min(args.Length(), target->Parameters().Length()); i < n; i++) { if (!Convert(const_args[i], target->Parameters()[i]->Type(), args[i]->Declaration()->source)) { return utils::Failure; } } return const_args; } sem::ValueExpression* Resolver::IndexAccessor(const ast::IndexAccessorExpression* expr) { auto* idx = Load(Materialize(sem_.GetVal(expr->index))); if (!idx) { return nullptr; } const auto* obj = sem_.GetVal(expr->object); if (idx->Stage() != sem::EvaluationStage::kConstant) { // If the index is non-constant, then the resulting expression is non-constant, so we'll // have to materialize the object. For example, consider: // vec2(1, 2)[runtime-index] obj = Materialize(obj); } if (!obj) { return nullptr; } auto* obj_raw_ty = obj->Type(); auto* obj_ty = obj_raw_ty->UnwrapRef(); auto* ty = Switch( obj_ty, // [&](const type::Array* arr) { return arr->ElemType(); }, [&](const type::Vector* vec) { return vec->type(); }, [&](const type::Matrix* mat) { return builder_->create(mat->type(), mat->rows()); }, [&](Default) { AddError("cannot index type '" + sem_.TypeNameOf(obj_ty) + "'", expr->source); return nullptr; }); if (ty == nullptr) { return nullptr; } auto* idx_ty = idx->Type()->UnwrapRef(); if (!idx_ty->IsAnyOf()) { AddError("index must be of type 'i32' or 'u32', found: '" + sem_.TypeNameOf(idx_ty) + "'", idx->Declaration()->source); return nullptr; } // If we're extracting from a reference, we return a reference. if (auto* ref = obj_raw_ty->As()) { ty = builder_->create(ty, ref->AddressSpace(), ref->Access()); } const constant::Value* val = nullptr; auto stage = sem::EarliestStage(obj->Stage(), idx->Stage()); if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { stage = sem::EvaluationStage::kNotEvaluated; } else { if (auto r = const_eval_.Index(ty, obj, idx)) { val = r.Get(); } else { return nullptr; } } bool has_side_effects = idx->HasSideEffects() || obj->HasSideEffects(); auto* sem = builder_->create( expr, ty, stage, obj, idx, current_statement_, std::move(val), has_side_effects, obj->RootIdentifier()); sem->Behaviors() = idx->Behaviors() + obj->Behaviors(); return sem; } sem::ValueExpression* Resolver::Bitcast(const ast::BitcastExpression* expr) { auto* inner = Load(Materialize(sem_.GetVal(expr->expr))); if (!inner) { return nullptr; } auto* ty = Type(expr->type); if (!ty) { return nullptr; } if (!validator_.Bitcast(expr, ty)) { return nullptr; } auto stage = inner->Stage(); if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { stage = sem::EvaluationStage::kNotEvaluated; } const constant::Value* value = nullptr; if (stage == sem::EvaluationStage::kConstant) { if (auto r = const_eval_.Bitcast(ty, inner->ConstantValue(), expr->source)) { value = r.Get(); } else { return nullptr; } } auto* sem = builder_->create(expr, ty, stage, current_statement_, std::move(value), inner->HasSideEffects()); sem->Behaviors() = inner->Behaviors(); return sem; } sem::Call* Resolver::Call(const ast::CallExpression* expr) { // A CallExpression can resolve to one of: // * A function call. // * A builtin call. // * A type initializer. // * A type conversion. auto* target = expr->target; Mark(target); auto* ident = target->identifier; Mark(ident); // Resolve all of the arguments, their types and the set of behaviors. utils::Vector args; args.Reserve(expr->args.Length()); auto args_stage = sem::EvaluationStage::kConstant; sem::Behaviors arg_behaviors; for (size_t i = 0; i < expr->args.Length(); i++) { auto* arg = sem_.GetVal(expr->args[i]); if (!arg) { return nullptr; } args.Push(arg); args_stage = sem::EarliestStage(args_stage, arg->Stage()); arg_behaviors.Add(arg->Behaviors()); } arg_behaviors.Remove(sem::Behavior::kNext); // Did any arguments have side effects? bool has_side_effects = std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); // init_or_conv is a helper for building either a sem::TypeInitializer or // sem::TypeConversion call for a InitConvIntrinsic with an optional template argument type. auto init_or_conv = [&](InitConvIntrinsic ty, const type::Type* template_arg) -> sem::Call* { auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); auto ctor_or_conv = intrinsic_table_->Lookup(ty, template_arg, arg_tys, args_stage, expr->source); if (!ctor_or_conv.target) { return nullptr; } if (!MaybeMaterializeAndLoadArguments(args, ctor_or_conv.target)) { return nullptr; } const constant::Value* value = nullptr; auto stage = sem::EarliestStage(ctor_or_conv.target->Stage(), args_stage); if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { stage = sem::EvaluationStage::kNotEvaluated; } if (stage == sem::EvaluationStage::kConstant) { auto const_args = ConvertArguments(args, ctor_or_conv.target); if (!const_args) { return nullptr; } if (auto r = (const_eval_.*ctor_or_conv.const_eval_fn)( ctor_or_conv.target->ReturnType(), const_args.Get(), expr->source)) { value = r.Get(); } else { return nullptr; } } return builder_->create(expr, ctor_or_conv.target, stage, std::move(args), current_statement_, value, has_side_effects); }; // arr_or_str_init is a helper for building a sem::TypeInitializer for an array or structure // initializer call target. auto arr_or_str_init = [&](const type::Type* ty, const sem::CallTarget* call_target) -> sem::Call* { if (!MaybeMaterializeAndLoadArguments(args, call_target)) { return nullptr; } auto stage = args_stage; // The evaluation stage of the call const constant::Value* value = nullptr; // The constant value for the call if (stage == sem::EvaluationStage::kConstant) { if (auto r = const_eval_.ArrayOrStructInit(ty, args)) { value = r.Get(); } else { return nullptr; } if (!value) { // Constant evaluation failed. // Can happen for expressions that will fail validation (later). // Use the kRuntime EvaluationStage, as kConstant will trigger an assertion in // the sem::ValueExpression initializer, which checks that kConstant is paired // with a constant value. stage = sem::EvaluationStage::kRuntime; } } return builder_->create(expr, call_target, stage, std::move(args), current_statement_, value, has_side_effects); }; auto ty_init_or_conv = [&](const type::Type* type) { return Switch( type, // [&](const type::I32*) { return init_or_conv(InitConvIntrinsic::kI32, nullptr); }, [&](const type::U32*) { return init_or_conv(InitConvIntrinsic::kU32, nullptr); }, [&](const type::F16*) { return validator_.CheckF16Enabled(expr->source) ? init_or_conv(InitConvIntrinsic::kF16, nullptr) : nullptr; }, [&](const type::F32*) { return init_or_conv(InitConvIntrinsic::kF32, nullptr); }, [&](const type::Bool*) { return init_or_conv(InitConvIntrinsic::kBool, nullptr); }, [&](const type::Vector* v) { return init_or_conv(VectorInitConvIntrinsic(v->Width()), v->type()); }, [&](const type::Matrix* m) { return init_or_conv(MatrixInitConvIntrinsic(m->columns(), m->rows()), m->type()); }, [&](const type::Array* arr) -> sem::Call* { auto* call_target = array_inits_.GetOrCreate( ArrayInitializerSig{{arr, args.Length(), args_stage}}, [&]() -> sem::TypeInitializer* { auto params = utils::Transform(args, [&](auto, size_t i) { return builder_->create( nullptr, // declaration static_cast(i), // index arr->ElemType(), // type type::AddressSpace::kNone, // address_space type::Access::kUndefined); }); return builder_->create(arr, std::move(params), args_stage); }); auto* call = arr_or_str_init(arr, call_target); if (!call) { return nullptr; } // Validation must occur after argument materialization in arr_or_str_init(). if (!validator_.ArrayInitializer(expr, arr)) { return nullptr; } return call; }, [&](const sem::Struct* str) -> sem::Call* { auto* call_target = struct_inits_.GetOrCreate( StructInitializerSig{{str, args.Length(), args_stage}}, [&]() -> sem::TypeInitializer* { utils::Vector params; params.Resize(std::min(args.Length(), str->Members().Length())); for (size_t i = 0, n = params.Length(); i < n; i++) { params[i] = builder_->create( nullptr, // declaration static_cast(i), // index str->Members()[i]->Type(), // type type::AddressSpace::kNone, // address_space type::Access::kUndefined); // access } return builder_->create(str, std::move(params), args_stage); }); auto* call = arr_or_str_init(str, call_target); if (!call) { return nullptr; } // Validation must occur after argument materialization in arr_or_str_init(). if (!validator_.StructureInitializer(expr, str)) { return nullptr; } return call; }, [&](Default) { AddError("type is not constructible", expr->source); return nullptr; }); }; auto inferred_array = [&]() -> tint::sem::Call* { auto el_count = builder_->create(static_cast(args.Length())); auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type()->UnwrapRef(); }); auto el_ty = type::Type::Common(arg_tys); if (!el_ty) { AddError("cannot infer common array element type from initializer arguments", expr->source); utils::Hashset types; for (size_t i = 0; i < args.Length(); i++) { if (types.Add(args[i]->Type())) { AddNote("argument " + std::to_string(i) + " is of type '" + sem_.TypeNameOf(args[i]->Type()) + "'", args[i]->Declaration()->source); } } return nullptr; } auto* arr = Array(expr->source, expr->source, el_ty, el_count, /* explicit_stride */ 0); if (!arr) { return nullptr; } return ty_init_or_conv(arr); }; auto call = [&]() -> sem::Call* { auto resolved = dependencies_.resolved_identifiers.Get(ident); if (!resolved) { TINT_ICE(Resolver, diagnostics_) << "identifier '" << builder_->Symbols().NameFor(ident->symbol) << "' was not resolved"; return nullptr; } if (auto* ast_node = resolved->Node()) { return Switch( sem_.Get(ast_node), // [&](type::Type* t) { return ty_init_or_conv(t); }, [&](sem::Function* f) { return FunctionCall(expr, f, args, arg_behaviors); }, [&](sem::Expression* e) { sem_.ErrorUnexpectedExprKind(e, "call target"); return nullptr; }, [&](Default) { ErrorMismatchedResolvedIdentifier(ident->source, *resolved, "call target"); return nullptr; }); } if (auto f = resolved->BuiltinFunction(); f != sem::BuiltinType::kNone) { return BuiltinCall(expr, f, args); } if (auto b = resolved->BuiltinType(); b != type::Builtin::kUndefined) { if (!ident->Is()) { // No template arguments provided. // Check to see if this is an inferred-element-type call. switch (b) { case type::Builtin::kArray: return inferred_array(); case type::Builtin::kVec2: return init_or_conv(InitConvIntrinsic::kVec2, nullptr); case type::Builtin::kVec3: return init_or_conv(InitConvIntrinsic::kVec3, nullptr); case type::Builtin::kVec4: return init_or_conv(InitConvIntrinsic::kVec4, nullptr); case type::Builtin::kMat2X2: return init_or_conv(InitConvIntrinsic::kMat2x2, nullptr); case type::Builtin::kMat2X3: return init_or_conv(InitConvIntrinsic::kMat2x3, nullptr); case type::Builtin::kMat2X4: return init_or_conv(InitConvIntrinsic::kMat2x4, nullptr); case type::Builtin::kMat3X2: return init_or_conv(InitConvIntrinsic::kMat3x2, nullptr); case type::Builtin::kMat3X3: return init_or_conv(InitConvIntrinsic::kMat3x3, nullptr); case type::Builtin::kMat3X4: return init_or_conv(InitConvIntrinsic::kMat3x4, nullptr); case type::Builtin::kMat4X2: return init_or_conv(InitConvIntrinsic::kMat4x2, nullptr); case type::Builtin::kMat4X3: return init_or_conv(InitConvIntrinsic::kMat4x3, nullptr); case type::Builtin::kMat4X4: return init_or_conv(InitConvIntrinsic::kMat4x4, nullptr); default: break; } } auto* ty = BuiltinType(b, ident); if (TINT_UNLIKELY(!ty)) { return nullptr; } return ty_init_or_conv(ty); } ErrorMismatchedResolvedIdentifier(ident->source, *resolved, "call target"); return nullptr; }(); if (!call) { return nullptr; } if (call->Target()->IsAnyOf()) { // The target of the call was a type. // Associate the target identifier expression with the resolved type. auto* ty_expr = builder_->create(target, current_statement_, call->Type()); builder_->Sem().Add(target, ty_expr); } return validator_.Call(call, current_statement_) ? call : nullptr; } template sem::Call* Resolver::BuiltinCall(const ast::CallExpression* expr, sem::BuiltinType builtin_type, utils::Vector& args) { auto arg_stage = sem::EvaluationStage::kConstant; for (auto* arg : args) { arg_stage = sem::EarliestStage(arg_stage, arg->Stage()); } IntrinsicTable::Builtin builtin; { auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); builtin = intrinsic_table_->Lookup(builtin_type, arg_tys, arg_stage, expr->source); if (!builtin.sem) { return nullptr; } } if (builtin_type == sem::BuiltinType::kTintMaterialize) { args[0] = Materialize(args[0]); if (!args[0]) { return nullptr; } } else { // Materialize arguments if the parameter type is not abstract if (!MaybeMaterializeAndLoadArguments(args, builtin.sem)) { return nullptr; } } if (builtin.sem->IsDeprecated()) { AddWarning("use of deprecated builtin", expr->source); } // If the builtin is @const, and all arguments have constant values, evaluate the builtin // now. const constant::Value* value = nullptr; auto stage = sem::EarliestStage(arg_stage, builtin.sem->Stage()); if (stage == sem::EvaluationStage::kConstant && skip_const_eval_.Contains(expr)) { stage = sem::EvaluationStage::kNotEvaluated; } if (stage == sem::EvaluationStage::kConstant) { auto const_args = ConvertArguments(args, builtin.sem); if (!const_args) { return nullptr; } if (auto r = (const_eval_.*builtin.const_eval_fn)(builtin.sem->ReturnType(), const_args.Get(), expr->source)) { value = r.Get(); } else { return nullptr; } } bool has_side_effects = builtin.sem->HasSideEffects() || std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); auto* call = builder_->create(expr, builtin.sem, stage, std::move(args), current_statement_, value, has_side_effects); if (current_function_) { current_function_->AddDirectlyCalledBuiltin(builtin.sem); current_function_->AddDirectCall(call); } if (!validator_.RequiredExtensionForBuiltinFunction(call)) { return nullptr; } if (IsTextureBuiltin(builtin_type)) { if (!validator_.TextureBuiltinFunction(call)) { return nullptr; } CollectTextureSamplerPairs(builtin.sem, call->Arguments()); } if (builtin_type == sem::BuiltinType::kWorkgroupUniformLoad) { if (!validator_.WorkgroupUniformLoad(call)) { return nullptr; } } if (!validator_.BuiltinCall(call)) { return nullptr; } return call; } type::Type* Resolver::BuiltinType(type::Builtin builtin_ty, const ast::Identifier* ident) { auto& b = *builder_; auto check_no_tmpl_args = [&](type::Type* ty) -> type::Type* { if (TINT_UNLIKELY(ident->Is())) { AddError("type '" + b.Symbols().NameFor(ident->symbol) + "' does not take template arguments", ident->source); return nullptr; } return ty; }; auto f32 = [&] { return b.create(); }; auto i32 = [&] { return b.create(); }; auto u32 = [&] { return b.create(); }; auto f16 = [&] { return validator_.CheckF16Enabled(ident->source) ? b.create() : nullptr; }; auto templated_identifier = [&](size_t min_args, size_t max_args = /* use min */ 0) -> const ast::TemplatedIdentifier* { if (max_args == 0) { max_args = min_args; } auto* tmpl_ident = ident->As(); if (!tmpl_ident) { if (TINT_UNLIKELY(min_args != 0)) { AddError("expected '<' for '" + b.Symbols().NameFor(ident->symbol) + "'", Source{ident->source.range.end}); } return nullptr; } if (min_args == max_args) { if (TINT_UNLIKELY(tmpl_ident->arguments.Length() != min_args)) { AddError("'" + b.Symbols().NameFor(ident->symbol) + "' requires " + std::to_string(min_args) + " template arguments", ident->source); return nullptr; } } else { if (TINT_UNLIKELY(tmpl_ident->arguments.Length() < min_args)) { AddError("'" + b.Symbols().NameFor(ident->symbol) + "' requires at least " + std::to_string(min_args) + " template arguments", ident->source); return nullptr; } if (TINT_UNLIKELY(tmpl_ident->arguments.Length() > max_args)) { AddError("'" + b.Symbols().NameFor(ident->symbol) + "' requires at most " + std::to_string(max_args) + " template arguments", ident->source); return nullptr; } } return tmpl_ident; }; auto vec = [&](type::Type* el, uint32_t n) -> type::Vector* { if (TINT_UNLIKELY(!el)) { return nullptr; } if (TINT_UNLIKELY(!validator_.Vector(el, ident->source))) { return nullptr; } return b.create(el, n); }; auto mat = [&](type::Type* el, uint32_t num_columns, uint32_t num_rows) -> type::Matrix* { if (TINT_UNLIKELY(!el)) { return nullptr; } if (TINT_UNLIKELY(!validator_.Matrix(el, ident->source))) { return nullptr; } auto* column = vec(el, num_rows); if (!column) { return nullptr; } return b.create(column, num_columns); }; auto vec_t = [&](uint32_t n) -> type::Vector* { auto* tmpl_ident = templated_identifier(1); if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* ty = Type(tmpl_ident->arguments[0]); if (TINT_UNLIKELY(!ty)) { return nullptr; } return vec(const_cast(ty), n); }; auto mat_t = [&](uint32_t num_columns, uint32_t num_rows) -> type::Matrix* { auto* tmpl_ident = templated_identifier(1); if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* ty = Type(tmpl_ident->arguments[0]); if (TINT_UNLIKELY(!ty)) { return nullptr; } return mat(const_cast(ty), num_columns, num_rows); }; auto array = [&]() -> type::Array* { utils::UniqueVector transitively_referenced_overrides; TINT_SCOPED_ASSIGNMENT(resolved_overrides_, &transitively_referenced_overrides); auto* tmpl_ident = templated_identifier(1, 2); if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* ast_el_ty = tmpl_ident->arguments[0]; auto* ast_count = (tmpl_ident->arguments.Length() > 1) ? tmpl_ident->arguments[1] : nullptr; auto* el_ty = Type(ast_el_ty); if (!el_ty) { return nullptr; } const type::ArrayCount* el_count = ast_count ? ArrayCount(ast_count) : builder_->create(); if (!el_count) { return nullptr; } // Look for explicit stride via @stride(n) attribute uint32_t explicit_stride = 0; if (!ArrayAttributes(tmpl_ident->attributes, el_ty, explicit_stride)) { return nullptr; } auto* out = Array(ast_el_ty->source, // ast_count ? ast_count->source : ident->source, // el_ty, el_count, explicit_stride); if (!out) { return nullptr; } if (el_ty->Is()) { atomic_composite_info_.Add(out, &ast_el_ty->source); } else { if (auto found = atomic_composite_info_.Get(el_ty)) { atomic_composite_info_.Add(out, *found); } } // Track the pipeline-overridable constants that are transitively referenced by this // array type. for (auto* var : transitively_referenced_overrides) { builder_->Sem().AddTransitivelyReferencedOverride(out, var); } return out; }; auto atomic = [&]() -> type::Atomic* { auto* tmpl_ident = templated_identifier(1); // atomic if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* ty_expr = TypeExpression(tmpl_ident->arguments[0]); if (TINT_UNLIKELY(!ty_expr)) { return nullptr; } auto* ty = ty_expr->Type(); auto* out = builder_->create(ty); if (!validator_.Atomic(tmpl_ident, out)) { return nullptr; } return out; }; auto ptr = [&]() -> type::Pointer* { auto* tmpl_ident = templated_identifier(2, 3); // ptr if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* address_space_expr = AddressSpaceExpression(tmpl_ident->arguments[0]); if (TINT_UNLIKELY(!address_space_expr)) { return nullptr; } auto address_space = address_space_expr->Value(); auto* store_ty_expr = TypeExpression(tmpl_ident->arguments[1]); if (TINT_UNLIKELY(!store_ty_expr)) { return nullptr; } auto* store_ty = const_cast(store_ty_expr->Type()); auto access = DefaultAccessForAddressSpace(address_space); if (tmpl_ident->arguments.Length() > 2) { auto* access_expr = AccessExpression(tmpl_ident->arguments[2]); if (TINT_UNLIKELY(!access_expr)) { return nullptr; } access = access_expr->Value(); } auto* out = b.create(store_ty, address_space, access); if (!validator_.Pointer(tmpl_ident, out)) { return nullptr; } if (!ApplyAddressSpaceUsageToType(address_space, store_ty, store_ty_expr->Declaration()->source)) { AddNote("while instantiating " + builder_->FriendlyName(out), ident->source); return nullptr; } return out; }; auto sampled_texture = [&](type::TextureDimension dim) -> type::SampledTexture* { auto* tmpl_ident = templated_identifier(1); if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* ty_expr = TypeExpression(tmpl_ident->arguments[0]); if (TINT_UNLIKELY(!ty_expr)) { return nullptr; } auto* out = b.create(dim, ty_expr->Type()); return validator_.SampledTexture(out, ident->source) ? out : nullptr; }; auto multisampled_texture = [&](type::TextureDimension dim) -> type::MultisampledTexture* { auto* tmpl_ident = templated_identifier(1); if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* ty_expr = TypeExpression(tmpl_ident->arguments[0]); if (TINT_UNLIKELY(!ty_expr)) { return nullptr; } auto* out = b.create(dim, ty_expr->Type()); return validator_.MultisampledTexture(out, ident->source) ? out : nullptr; }; auto storage_texture = [&](type::TextureDimension dim) -> type::StorageTexture* { auto* tmpl_ident = templated_identifier(2); if (TINT_UNLIKELY(!tmpl_ident)) { return nullptr; } auto* format = sem_.AsTexelFormat(Expression(tmpl_ident->arguments[0])); if (TINT_UNLIKELY(!format)) { return nullptr; } auto* access = sem_.AsAccess(Expression(tmpl_ident->arguments[1])); if (TINT_UNLIKELY(!access)) { return nullptr; } auto* subtype = type::StorageTexture::SubtypeFor(format->Value(), builder_->Types()); auto* tex = b.create(dim, format->Value(), access->Value(), subtype); if (!validator_.StorageTexture(tex, ident->source)) { return nullptr; } return tex; }; switch (builtin_ty) { case type::Builtin::kBool: return check_no_tmpl_args(b.create()); case type::Builtin::kI32: return check_no_tmpl_args(i32()); case type::Builtin::kU32: return check_no_tmpl_args(u32()); case type::Builtin::kF16: return check_no_tmpl_args(f16()); case type::Builtin::kF32: return check_no_tmpl_args(b.create()); case type::Builtin::kVec2: return vec_t(2); case type::Builtin::kVec3: return vec_t(3); case type::Builtin::kVec4: return vec_t(4); case type::Builtin::kMat2X2: return mat_t(2, 2); case type::Builtin::kMat2X3: return mat_t(2, 3); case type::Builtin::kMat2X4: return mat_t(2, 4); case type::Builtin::kMat3X2: return mat_t(3, 2); case type::Builtin::kMat3X3: return mat_t(3, 3); case type::Builtin::kMat3X4: return mat_t(3, 4); case type::Builtin::kMat4X2: return mat_t(4, 2); case type::Builtin::kMat4X3: return mat_t(4, 3); case type::Builtin::kMat4X4: return mat_t(4, 4); case type::Builtin::kMat2X2F: return check_no_tmpl_args(mat(f32(), 2u, 2u)); case type::Builtin::kMat2X3F: return check_no_tmpl_args(mat(f32(), 2u, 3u)); case type::Builtin::kMat2X4F: return check_no_tmpl_args(mat(f32(), 2u, 4u)); case type::Builtin::kMat3X2F: return check_no_tmpl_args(mat(f32(), 3u, 2u)); case type::Builtin::kMat3X3F: return check_no_tmpl_args(mat(f32(), 3u, 3u)); case type::Builtin::kMat3X4F: return check_no_tmpl_args(mat(f32(), 3u, 4u)); case type::Builtin::kMat4X2F: return check_no_tmpl_args(mat(f32(), 4u, 2u)); case type::Builtin::kMat4X3F: return check_no_tmpl_args(mat(f32(), 4u, 3u)); case type::Builtin::kMat4X4F: return check_no_tmpl_args(mat(f32(), 4u, 4u)); case type::Builtin::kMat2X2H: return check_no_tmpl_args(mat(f16(), 2u, 2u)); case type::Builtin::kMat2X3H: return check_no_tmpl_args(mat(f16(), 2u, 3u)); case type::Builtin::kMat2X4H: return check_no_tmpl_args(mat(f16(), 2u, 4u)); case type::Builtin::kMat3X2H: return check_no_tmpl_args(mat(f16(), 3u, 2u)); case type::Builtin::kMat3X3H: return check_no_tmpl_args(mat(f16(), 3u, 3u)); case type::Builtin::kMat3X4H: return check_no_tmpl_args(mat(f16(), 3u, 4u)); case type::Builtin::kMat4X2H: return check_no_tmpl_args(mat(f16(), 4u, 2u)); case type::Builtin::kMat4X3H: return check_no_tmpl_args(mat(f16(), 4u, 3u)); case type::Builtin::kMat4X4H: return check_no_tmpl_args(mat(f16(), 4u, 4u)); case type::Builtin::kVec2F: return check_no_tmpl_args(vec(f32(), 2u)); case type::Builtin::kVec3F: return check_no_tmpl_args(vec(f32(), 3u)); case type::Builtin::kVec4F: return check_no_tmpl_args(vec(f32(), 4u)); case type::Builtin::kVec2H: return check_no_tmpl_args(vec(f16(), 2u)); case type::Builtin::kVec3H: return check_no_tmpl_args(vec(f16(), 3u)); case type::Builtin::kVec4H: return check_no_tmpl_args(vec(f16(), 4u)); case type::Builtin::kVec2I: return check_no_tmpl_args(vec(i32(), 2u)); case type::Builtin::kVec3I: return check_no_tmpl_args(vec(i32(), 3u)); case type::Builtin::kVec4I: return check_no_tmpl_args(vec(i32(), 4u)); case type::Builtin::kVec2U: return check_no_tmpl_args(vec(u32(), 2u)); case type::Builtin::kVec3U: return check_no_tmpl_args(vec(u32(), 3u)); case type::Builtin::kVec4U: return check_no_tmpl_args(vec(u32(), 4u)); case type::Builtin::kArray: return array(); case type::Builtin::kAtomic: return atomic(); case type::Builtin::kPtr: return ptr(); case type::Builtin::kSampler: return check_no_tmpl_args(builder_->create(type::SamplerKind::kSampler)); case type::Builtin::kSamplerComparison: return check_no_tmpl_args( builder_->create(type::SamplerKind::kComparisonSampler)); case type::Builtin::kTexture1D: return sampled_texture(type::TextureDimension::k1d); case type::Builtin::kTexture2D: return sampled_texture(type::TextureDimension::k2d); case type::Builtin::kTexture2DArray: return sampled_texture(type::TextureDimension::k2dArray); case type::Builtin::kTexture3D: return sampled_texture(type::TextureDimension::k3d); case type::Builtin::kTextureCube: return sampled_texture(type::TextureDimension::kCube); case type::Builtin::kTextureCubeArray: return sampled_texture(type::TextureDimension::kCubeArray); case type::Builtin::kTextureDepth2D: return check_no_tmpl_args( builder_->create(type::TextureDimension::k2d)); case type::Builtin::kTextureDepth2DArray: return check_no_tmpl_args( builder_->create(type::TextureDimension::k2dArray)); case type::Builtin::kTextureDepthCube: return check_no_tmpl_args( builder_->create(type::TextureDimension::kCube)); case type::Builtin::kTextureDepthCubeArray: return check_no_tmpl_args( builder_->create(type::TextureDimension::kCubeArray)); case type::Builtin::kTextureDepthMultisampled2D: return check_no_tmpl_args( builder_->create(type::TextureDimension::k2d)); case type::Builtin::kTextureExternal: return check_no_tmpl_args(builder_->create()); case type::Builtin::kTextureMultisampled2D: return multisampled_texture(type::TextureDimension::k2d); case type::Builtin::kTextureStorage1D: return storage_texture(type::TextureDimension::k1d); case type::Builtin::kTextureStorage2D: return storage_texture(type::TextureDimension::k2d); case type::Builtin::kTextureStorage2DArray: return storage_texture(type::TextureDimension::k2dArray); case type::Builtin::kTextureStorage3D: return storage_texture(type::TextureDimension::k3d); case type::Builtin::kUndefined: break; } auto name = builder_->Symbols().NameFor(ident->symbol); TINT_ICE(Resolver, diagnostics_) << ident->source << " unhandled builtin type '" << name << "'"; return nullptr; } void Resolver::CollectTextureSamplerPairs( const sem::Builtin* builtin, utils::VectorRef args) const { // Collect a texture/sampler pair for this builtin. const auto& signature = builtin->Signature(); int texture_index = signature.IndexOf(sem::ParameterUsage::kTexture); if (TINT_UNLIKELY(texture_index == -1)) { TINT_ICE(Resolver, diagnostics_) << "texture builtin without texture parameter"; } if (auto* user = args[static_cast(texture_index)]->UnwrapLoad()->As()) { auto* texture = user->Variable(); if (!texture->Type()->UnwrapRef()->Is()) { int sampler_index = signature.IndexOf(sem::ParameterUsage::kSampler); const sem::Variable* sampler = sampler_index != -1 ? args[static_cast(sampler_index)] ->UnwrapLoad() ->As() ->Variable() : nullptr; current_function_->AddTextureSamplerPair(texture, sampler); } } } template sem::Call* Resolver::FunctionCall(const ast::CallExpression* expr, sem::Function* target, utils::Vector& args, sem::Behaviors arg_behaviors) { if (!MaybeMaterializeAndLoadArguments(args, target)) { return nullptr; } // TODO(crbug.com/tint/1420): For now, assume all function calls have side // effects. bool has_side_effects = true; auto* call = builder_->create(expr, target, sem::EvaluationStage::kRuntime, std::move(args), current_statement_, /* constant_value */ nullptr, has_side_effects); target->AddCallSite(call); call->Behaviors() = arg_behaviors + target->Behaviors(); if (!validator_.FunctionCall(call, current_statement_)) { return nullptr; } if (current_function_) { // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before // use. current_function_->AddTransitivelyCalledFunction(target); current_function_->AddDirectCall(call); for (auto* transitive_call : target->TransitivelyCalledFunctions()) { current_function_->AddTransitivelyCalledFunction(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : target->TransitivelyReferencedGlobals()) { current_function_->AddTransitivelyReferencedGlobal(var); } if (!AliasAnalysis(call)) { return nullptr; } // Note: Validation *must* be performed before calling this method. CollectTextureSamplerPairs(target, call->Arguments()); } // Associate the target identifier expression with the resolved function. auto* fn_expr = builder_->create(expr->target, current_statement_, target); builder_->Sem().Add(expr->target, fn_expr); return call; } void Resolver::CollectTextureSamplerPairs( sem::Function* func, utils::VectorRef args) const { // Map all texture/sampler pairs from the target function to the // current function. These can only be global or parameter // variables. Resolve any parameter variables to the corresponding // argument passed to the current function. Leave global variables // as-is. Then add the mapped pair to the current function's list of // texture/sampler pairs. for (sem::VariablePair pair : func->TextureSamplerPairs()) { const sem::Variable* texture = pair.first; const sem::Variable* sampler = pair.second; if (auto* param = texture->As()) { texture = args[param->Index()]->UnwrapLoad()->As()->Variable(); } if (sampler) { if (auto* param = sampler->As()) { sampler = args[param->Index()]->UnwrapLoad()->As()->Variable(); } } current_function_->AddTextureSamplerPair(texture, sampler); } } sem::ValueExpression* Resolver::Literal(const ast::LiteralExpression* literal) { auto* ty = Switch( literal, [&](const ast::IntLiteralExpression* i) -> type::Type* { switch (i->suffix) { case ast::IntLiteralExpression::Suffix::kNone: return builder_->create(); case ast::IntLiteralExpression::Suffix::kI: return builder_->create(); case ast::IntLiteralExpression::Suffix::kU: return builder_->create(); } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled integer literal suffix: " << i->suffix; return nullptr; }, [&](const ast::FloatLiteralExpression* f) -> type::Type* { switch (f->suffix) { case ast::FloatLiteralExpression::Suffix::kNone: return builder_->create(); case ast::FloatLiteralExpression::Suffix::kF: return builder_->create(); case ast::FloatLiteralExpression::Suffix::kH: return validator_.CheckF16Enabled(literal->source) ? builder_->create() : nullptr; } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled float literal suffix: " << f->suffix; return nullptr; }, [&](const ast::BoolLiteralExpression*) { return builder_->create(); }, [&](Default) { TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled literal type: " << literal->TypeInfo().name; return nullptr; }); if (ty == nullptr) { return nullptr; } const constant::Value* val = nullptr; auto stage = sem::EvaluationStage::kConstant; if (skip_const_eval_.Contains(literal)) { stage = sem::EvaluationStage::kNotEvaluated; } if (stage == sem::EvaluationStage::kConstant) { if (auto r = const_eval_.Literal(ty, literal)) { val = r.Get(); } else { return nullptr; } } return builder_->create(literal, ty, stage, current_statement_, std::move(val), /* has_side_effects */ false); } sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) { auto* ident = expr->identifier; Mark(ident); auto resolved = dependencies_.resolved_identifiers.Get(ident); if (!resolved) { TINT_ICE(Resolver, diagnostics_) << "identifier '" << builder_->Symbols().NameFor(ident->symbol) << "' was not resolved"; return nullptr; } if (auto* ast_node = resolved->Node()) { auto* resolved_node = sem_.Get(ast_node); return Switch( resolved_node, // [&](sem::Variable* variable) -> sem::VariableUser* { auto symbol = ident->symbol; auto* user = builder_->create(expr, current_statement_, variable); if (current_statement_) { // If identifier is part of a loop continuing block, make sure it // doesn't refer to a variable that is bypassed by a continue statement // in the loop's body block. if (auto* continuing_block = current_statement_ ->FindFirstParent()) { auto* loop_block = continuing_block->FindFirstParent(); if (loop_block->FirstContinue()) { // If our identifier is in loop_block->decls, make sure its index is // less than first_continue if (auto decl = loop_block->Decls().Find(symbol)) { if (decl->order >= loop_block->NumDeclsAtFirstContinue()) { AddError("continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "'", loop_block->FirstContinue()->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' declared here", decl->variable->Declaration()->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' referenced in continuing block here", expr->source); return nullptr; } } } } } auto* global = variable->As(); if (current_function_) { if (global) { current_function_->AddDirectlyReferencedGlobal(global); auto* refs = builder_->Sem().TransitivelyReferencedOverrides(global); if (refs) { for (auto* var : *refs) { current_function_->AddTransitivelyReferencedGlobal(var); } } } } else if (variable->Declaration()->Is()) { if (resolved_overrides_) { // Track the reference to this pipeline-overridable constant and any other // pipeline-overridable constants that it references. resolved_overrides_->Add(global); auto* refs = builder_->Sem().TransitivelyReferencedOverrides(global); if (refs) { for (auto* var : *refs) { resolved_overrides_->Add(var); } } } } else if (variable->Declaration()->Is()) { // Use of a module-scope 'var' outside of a function. // Note: The spec is currently vague around the rules here. See // https://github.com/gpuweb/gpuweb/issues/3081. Remove this comment when // resolved. std::string desc = "var '" + builder_->Symbols().NameFor(symbol) + "' "; AddError(desc + "cannot be referenced at module-scope", expr->source); AddNote(desc + "declared here", variable->Declaration()->source); return nullptr; } variable->AddUser(user); return user; }, [&](const type::Type* ty) -> sem::TypeExpression* { if (TINT_UNLIKELY(ident->Is())) { AddError("type '" + builder_->Symbols().NameFor(ident->symbol) + "' does not take template arguments", ident->source); sem_.NoteDeclarationSource(ast_node); return nullptr; } return builder_->create(expr, current_statement_, ty); }, [&](const sem::Function* fn) -> sem::FunctionExpression* { if (TINT_UNLIKELY(ident->Is())) { AddError("function '" + builder_->Symbols().NameFor(ident->symbol) + "' does not take template arguments", ident->source); sem_.NoteDeclarationSource(ast_node); return nullptr; } return builder_->create(expr, current_statement_, fn); }); } if (auto builtin_ty = resolved->BuiltinType(); builtin_ty != type::Builtin::kUndefined) { auto* ty = BuiltinType(builtin_ty, ident); if (!ty) { return nullptr; } return builder_->create(expr, current_statement_, ty); } if (resolved->BuiltinFunction() != sem::BuiltinType::kNone) { AddError("missing '(' for builtin function call", expr->source.End()); return nullptr; } if (auto access = resolved->Access(); access != type::Access::kUndefined) { return builder_->create>(expr, current_statement_, access); } if (auto addr = resolved->AddressSpace(); addr != type::AddressSpace::kUndefined) { return builder_->create>( expr, current_statement_, addr); } if (auto fmt = resolved->TexelFormat(); fmt != type::TexelFormat::kUndefined) { return builder_->create>( expr, current_statement_, fmt); } TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled resolved identifier: " << resolved->String(builder_->Symbols(), diagnostics_); return nullptr; } sem::ValueExpression* Resolver::MemberAccessor(const ast::MemberAccessorExpression* expr) { auto* structure = sem_.TypeOf(expr->object); auto* storage_ty = structure->UnwrapRef(); auto* object = sem_.GetVal(expr->object); if (!object) { return nullptr; } auto* root_ident = object->RootIdentifier(); const type::Type* ty = nullptr; // Object may be a side-effecting expression (e.g. function call). bool has_side_effects = object->HasSideEffects(); Mark(expr->member); return Switch( storage_ty, // [&](const sem::Struct* str) -> sem::ValueExpression* { auto symbol = expr->member->symbol; const sem::StructMember* member = nullptr; for (auto* m : str->Members()) { if (m->Name() == symbol) { member = m; break; } } if (member == nullptr) { AddError("struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source); return nullptr; } ty = member->Type(); // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ty = builder_->create(ty, ref->AddressSpace(), ref->Access()); } auto val = const_eval_.MemberAccess(object, member); if (!val) { return nullptr; } return builder_->create(expr, ty, current_statement_, val.Get(), object, member, has_side_effects, root_ident); }, [&](const type::Vector* vec) -> sem::ValueExpression* { std::string s = builder_->Symbols().NameFor(expr->member->symbol); auto size = s.size(); utils::Vector swizzle; swizzle.Reserve(s.size()); for (auto c : s) { switch (c) { case 'x': case 'r': swizzle.Push(0u); break; case 'y': case 'g': swizzle.Push(1u); break; case 'z': case 'b': swizzle.Push(2u); break; case 'w': case 'a': swizzle.Push(3u); break; default: AddError("invalid vector swizzle character", expr->member->source.Begin() + swizzle.Length()); return nullptr; } if (swizzle.Back() >= vec->Width()) { AddError("invalid vector swizzle member", expr->member->source); return nullptr; } } if (size < 1 || size > 4) { AddError("invalid vector swizzle size", expr->member->source); return nullptr; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(s.begin(), s.end(), is_rgba) && !std::all_of(s.begin(), s.end(), is_xyzw)) { AddError("invalid mixing of vector swizzle characters rgba with xyzw", expr->member->source); return nullptr; } const sem::ValueExpression* obj_expr = object; if (size == 1) { // A single element swizzle is just the type of the vector. ty = vec->type(); // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ty = builder_->create(ty, ref->AddressSpace(), ref->Access()); } } else { // The vector will have a number of components equal to the length of // the swizzle. ty = builder_->create(vec->type(), static_cast(size)); // The load rule is invoked before the swizzle, if necessary. obj_expr = Load(object); } auto val = const_eval_.Swizzle(ty, object, swizzle); if (!val) { return nullptr; } return builder_->create(expr, ty, current_statement_, val.Get(), obj_expr, std::move(swizzle), has_side_effects, root_ident); }, [&](Default) { AddError("invalid member accessor expression. Expected vector or struct, got '" + sem_.TypeNameOf(storage_ty) + "'", expr->member->source); return nullptr; }); } sem::ValueExpression* Resolver::Binary(const ast::BinaryExpression* expr) { const auto* lhs = sem_.GetVal(expr->lhs); const auto* rhs = sem_.GetVal(expr->rhs); if (!lhs || !rhs) { return nullptr; } auto* lhs_ty = lhs->Type()->UnwrapRef(); auto* rhs_ty = rhs->Type()->UnwrapRef(); auto stage = sem::EarliestStage(lhs->Stage(), rhs->Stage()); auto op = intrinsic_table_->Lookup(expr->op, lhs_ty, rhs_ty, stage, expr->source, false); if (!op.result) { return nullptr; } if (ShouldMaterializeArgument(op.lhs)) { lhs = Materialize(lhs, op.lhs); if (!lhs) { return nullptr; } } if (ShouldMaterializeArgument(op.rhs)) { rhs = Materialize(rhs, op.rhs); if (!rhs) { return nullptr; } } // Load arguments if they are references lhs = Load(lhs); if (!lhs) { return nullptr; } rhs = Load(rhs); if (!rhs) { return nullptr; } const constant::Value* value = nullptr; if (skip_const_eval_.Contains(expr)) { // This expression is short-circuited by an ancestor expression. // Do not const-eval. stage = sem::EvaluationStage::kNotEvaluated; } else if (lhs->Stage() == sem::EvaluationStage::kConstant && rhs->Stage() == sem::EvaluationStage::kNotEvaluated) { // Short-circuiting binary expression. Use the LHS value and stage. value = lhs->ConstantValue(); stage = sem::EvaluationStage::kConstant; } else if (stage == sem::EvaluationStage::kConstant) { // Both LHS and RHS have expressions that are constant evaluation stage. if (op.const_eval_fn) { // Do we have a @const operator? // Yes. Perform any required abstract argument values implicit conversions to the // overload parameter types, and const-eval. utils::Vector const_args{lhs->ConstantValue(), rhs->ConstantValue()}; // Implicit conversion (e.g. AInt -> AFloat) if (!Convert(const_args[0], op.lhs, lhs->Declaration()->source)) { return nullptr; } if (!Convert(const_args[1], op.rhs, rhs->Declaration()->source)) { return nullptr; } if (auto r = (const_eval_.*op.const_eval_fn)(op.result, const_args, expr->source)) { value = r.Get(); } else { return nullptr; } } else { // The arguments have constant values, but the operator cannot be const-evaluated. // This can only be evaluated at runtime. stage = sem::EvaluationStage::kRuntime; } } bool has_side_effects = lhs->HasSideEffects() || rhs->HasSideEffects(); auto* sem = builder_->create(expr, op.result, stage, current_statement_, value, has_side_effects); sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors(); return sem; } sem::ValueExpression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) { const auto* expr = sem_.GetVal(unary->expr); if (!expr) { return nullptr; } auto* expr_ty = expr->Type(); const type::Type* ty = nullptr; const sem::Variable* root_ident = nullptr; const constant::Value* value = nullptr; auto stage = sem::EvaluationStage::kRuntime; switch (unary->op) { case ast::UnaryOp::kAddressOf: if (auto* ref = expr_ty->As()) { if (ref->StoreType()->UnwrapRef()->is_handle()) { AddError("cannot take the address of expression in handle address space", unary->expr->source); return nullptr; } auto* array = unary->expr->As(); auto* member = unary->expr->As(); if ((array && sem_.TypeOf(array->object)->UnwrapRef()->Is()) || (member && sem_.TypeOf(member->object)->UnwrapRef()->Is())) { AddError("cannot take the address of a vector component", unary->expr->source); return nullptr; } ty = builder_->create(ref->StoreType(), ref->AddressSpace(), ref->Access()); root_ident = expr->RootIdentifier(); } else { AddError("cannot take the address of expression", unary->expr->source); return nullptr; } break; case ast::UnaryOp::kIndirection: if (auto* ptr = expr_ty->As()) { ty = builder_->create(ptr->StoreType(), ptr->AddressSpace(), ptr->Access()); root_ident = expr->RootIdentifier(); } else { AddError("cannot dereference expression of type '" + sem_.TypeNameOf(expr_ty) + "'", unary->expr->source); return nullptr; } break; default: { stage = expr->Stage(); auto op = intrinsic_table_->Lookup(unary->op, expr_ty, stage, unary->source); if (!op.result) { return nullptr; } ty = op.result; if (ShouldMaterializeArgument(op.parameter)) { expr = Materialize(expr, op.parameter); if (!expr) { return nullptr; } } // Load expr if it is a reference expr = Load(expr); if (!expr) { return nullptr; } stage = expr->Stage(); if (stage == sem::EvaluationStage::kConstant) { if (op.const_eval_fn) { if (auto r = (const_eval_.*op.const_eval_fn)( ty, utils::Vector{expr->ConstantValue()}, expr->Declaration()->source)) { value = r.Get(); } else { return nullptr; } } else { stage = sem::EvaluationStage::kRuntime; } } break; } } auto* sem = builder_->create(unary, ty, stage, current_statement_, value, expr->HasSideEffects(), root_ident); sem->Behaviors() = expr->Behaviors(); return sem; } bool Resolver::DiagnosticControl(const ast::DiagnosticControl& control) { Mark(control.rule_name); auto rule_name = builder_->Symbols().NameFor(control.rule_name->symbol); auto rule = ast::ParseDiagnosticRule(rule_name); if (rule != ast::DiagnosticRule::kUndefined) { validator_.DiagnosticFilters().Set(rule, control.severity); } else { std::ostringstream ss; ss << "unrecognized diagnostic rule '" << rule_name << "'\n"; utils::SuggestAlternatives(rule_name, ast::kDiagnosticRuleStrings, ss); AddWarning(ss.str(), control.rule_name->source); } return true; } bool Resolver::Enable(const ast::Enable* enable) { enabled_extensions_.Add(enable->extension); return true; } type::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { Mark(named_type->name); type::Type* result = nullptr; if (auto* alias = named_type->As()) { result = Alias(alias); } else if (auto* str = named_type->As()) { result = Structure(str); } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; } if (!result) { return nullptr; } builder_->Sem().Add(named_type, result); return result; } const type::ArrayCount* Resolver::ArrayCount(const ast::Expression* count_expr) { // Evaluate the constant array count expression. const auto* count_sem = Materialize(ValueExpression(count_expr)); if (!count_sem) { return nullptr; } if (count_sem->Stage() == sem::EvaluationStage::kOverride) { // array count is an override expression. // Is the count a named 'override'? if (auto* user = count_sem->UnwrapMaterialize()->As()) { if (auto* global = user->Variable()->As()) { return builder_->create(global); } } return builder_->create(count_sem); } auto* count_val = count_sem->ConstantValue(); if (!count_val) { AddError("array count must evaluate to a constant integer expression or override variable", count_expr->source); return nullptr; } if (auto* ty = count_val->Type(); !ty->is_integer_scalar()) { AddError("array count must evaluate to a constant integer expression, but is type '" + builder_->FriendlyName(ty) + "'", count_expr->source); return nullptr; } int64_t count = count_val->ValueAs(); if (count < 1) { AddError("array count (" + std::to_string(count) + ") must be greater than 0", count_expr->source); return nullptr; } return builder_->create(static_cast(count)); } bool Resolver::ArrayAttributes(utils::VectorRef attributes, const type::Type* el_ty, uint32_t& explicit_stride) { if (!validator_.NoDuplicateAttributes(attributes)) { return false; } for (auto* attr : attributes) { Mark(attr); if (auto* sd = attr->As()) { // If the element type is not plain, then el_ty->Align() may be 0, in which case we // could get a DBZ in ArrayStrideAttribute(). In this case, validation will error // about the invalid array element type (which is tested later), so this is just a // seatbelt. if (IsPlain(el_ty)) { explicit_stride = sd->stride; if (!validator_.ArrayStrideAttribute(sd, el_ty->Size(), el_ty->Align())) { return false; } } continue; } AddError("attribute is not valid for array types", attr->source); return false; } return true; } type::Array* Resolver::Array(const Source& el_source, const Source& count_source, const type::Type* el_ty, const type::ArrayCount* el_count, uint32_t explicit_stride) { uint32_t el_align = el_ty->Align(); uint32_t el_size = el_ty->Size(); uint64_t implicit_stride = el_size ? utils::RoundUp(el_align, el_size) : 0; uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; uint64_t size = 0; if (auto const_count = el_count->As()) { size = const_count->value * stride; if (size > std::numeric_limits::max()) { std::stringstream msg; msg << "array byte size (0x" << std::hex << size << ") must not exceed 0xffffffff bytes"; AddError(msg.str(), count_source); return nullptr; } } else if (el_count->Is()) { size = stride; } auto* out = builder_->create( el_ty, el_count, el_align, static_cast(size), static_cast(stride), static_cast(implicit_stride)); if (!validator_.Array(out, el_source)) { return nullptr; } return out; } type::Type* Resolver::Alias(const ast::Alias* alias) { auto* ty = Type(alias->type); if (!ty) { return nullptr; } if (!validator_.Alias(alias)) { return nullptr; } return ty; } sem::Struct* Resolver::Structure(const ast::Struct* str) { if (!validator_.NoDuplicateAttributes(str->attributes)) { return nullptr; } for (auto* attr : str->attributes) { Mark(attr); } utils::Vector sem_members; sem_members.Reserve(str->members.Length()); // Calculate the effective size and alignment of each field, and the overall size of the // structure. For size, use the size attribute if provided, otherwise use the default size // for the type. For alignment, use the alignment attribute if provided, otherwise use the // default alignment for the member type. Diagnostic errors are raised if a basic rule is // violated. Validation of storage-class rules requires analyzing the actual variable usage // of the structure, and so is performed as part of the variable validation. uint64_t struct_size = 0; uint64_t struct_align = 1; utils::Hashmap member_map; for (auto* member : str->members) { Mark(member); Mark(member->name); if (auto added = member_map.Add(member->name->symbol, member); !added) { AddError("redefinition of '" + builder_->Symbols().NameFor(member->name->symbol) + "'", member->source); AddNote("previous definition is here", (*added.value)->source); return nullptr; } // Resolve member type auto type = Type(member->type); if (!type) { return nullptr; } // validator_.Validate member type if (!validator_.IsPlain(type)) { AddError(sem_.TypeNameOf(type) + " cannot be used as the type of a structure member", member->source); return nullptr; } uint64_t offset = struct_size; uint64_t align = type->Align(); uint64_t size = type->Size(); if (!validator_.NoDuplicateAttributes(member->attributes)) { return nullptr; } bool has_offset_attr = false; bool has_align_attr = false; bool has_size_attr = false; std::optional location; for (auto* attr : member->attributes) { Mark(attr); bool ok = Switch( attr, // [&](const ast::StructMemberOffsetAttribute* o) { // Offset attributes are not part of the WGSL spec, but are emitted // by the SPIR-V reader. ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@offset value"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* materialized = Materialize(ValueExpression(o->expr)); if (!materialized) { return false; } auto const_value = materialized->ConstantValue(); if (!const_value) { AddError("@offset must be constant expression", o->expr->source); return false; } offset = const_value->ValueAs(); if (offset < struct_size) { AddError("offsets must be in ascending order", o->source); return false; } has_offset_attr = true; return true; }, [&](const ast::StructMemberAlignAttribute* a) { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@align"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* materialized = Materialize(ValueExpression(a->expr)); if (!materialized) { return false; } if (!materialized->Type()->IsAnyOf()) { AddError("@align must be an i32 or u32 value", a->source); return false; } auto const_value = materialized->ConstantValue(); if (!const_value) { AddError("@align must be constant expression", a->source); return false; } auto value = const_value->ValueAs(); if (value <= 0 || !utils::IsPowerOfTwo(value)) { AddError("@align value must be a positive, power-of-two integer", a->source); return false; } align = u32(value); has_align_attr = true; return true; }, [&](const ast::StructMemberSizeAttribute* s) { ExprEvalStageConstraint constraint{sem::EvaluationStage::kConstant, "@size"}; TINT_SCOPED_ASSIGNMENT(expr_eval_stage_constraint_, constraint); auto* materialized = Materialize(ValueExpression(s->expr)); if (!materialized) { return false; } if (!materialized->Type()->IsAnyOf()) { AddError("@size must be an i32 or u32 value", s->source); return false; } auto const_value = materialized->ConstantValue(); if (!const_value) { AddError("@size must be constant expression", s->expr->source); return false; } { auto value = const_value->ValueAs(); if (value <= 0) { AddError("@size must be a positive integer", s->source); return false; } } auto value = const_value->ValueAs(); if (value < size) { AddError("@size must be at least as big as the type's size (" + std::to_string(size) + ")", s->source); return false; } size = u32(value); has_size_attr = true; return true; }, [&](const ast::LocationAttribute* loc_attr) { auto value = LocationAttribute(loc_attr); if (!value) { return false; } location = value.Get(); return true; }, [&](Default) { // The validator will check attributes can be applied to the struct member. return true; }); if (!ok) { return nullptr; } } if (has_offset_attr && (has_align_attr || has_size_attr)) { AddError("@offset cannot be used with @align or @size", member->source); return nullptr; } offset = utils::RoundUp(align, offset); if (offset > std::numeric_limits::max()) { std::stringstream msg; msg << "struct member offset (0x" << std::hex << offset << ") must not exceed 0x" << std::hex << std::numeric_limits::max() << " bytes"; AddError(msg.str(), member->source); return nullptr; } auto* sem_member = builder_->create( member, member->source, member->name->symbol, type, static_cast(sem_members.Length()), static_cast(offset), static_cast(align), static_cast(size), location); builder_->Sem().Add(member, sem_member); sem_members.Push(sem_member); struct_size = offset + size; struct_align = std::max(struct_align, align); } uint64_t size_no_padding = struct_size; struct_size = utils::RoundUp(struct_align, struct_size); if (struct_size > std::numeric_limits::max()) { std::stringstream msg; msg << "struct size (0x" << std::hex << struct_size << ") must not exceed 0xffffffff bytes"; AddError(msg.str(), str->source); return nullptr; } if (TINT_UNLIKELY(struct_align > std::numeric_limits::max())) { TINT_ICE(Resolver, diagnostics_) << "calculated struct stride exceeds uint32"; return nullptr; } auto* out = builder_->create( str, str->source, str->name->symbol, std::move(sem_members), static_cast(struct_align), static_cast(struct_size), static_cast(size_no_padding)); for (size_t i = 0; i < sem_members.Length(); i++) { auto* mem_type = sem_members[i]->Type(); if (mem_type->Is()) { atomic_composite_info_.Add(out, &sem_members[i]->Source()); break; } else { if (auto found = atomic_composite_info_.Get(mem_type)) { atomic_composite_info_.Add(out, *found); break; } } const_cast(sem_members[i])->SetStruct(out); } auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() : ast::PipelineStage::kNone; if (!validator_.Structure(out, stage)) { return nullptr; } return out; } sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = current_statement_->Behaviors(); behaviors = sem::Behavior::kReturn; const type::Type* value_ty = nullptr; if (auto* value = stmt->value) { const auto* expr = Load(ValueExpression(value)); if (!expr) { return false; } if (auto* ret_ty = current_function_->ReturnType(); !ret_ty->Is()) { expr = Materialize(expr, ret_ty); if (!expr) { return false; } } behaviors.Add(expr->Behaviors() - sem::Behavior::kNext); value_ty = expr->Type(); } else { value_ty = builder_->create(); } // Validate after processing the return value expression so that its type // is available for validation. return validator_.Return(stmt, current_function_->ReturnType(), value_ty, current_statement_); }); } sem::SwitchStatement* Resolver::SwitchStatement(const ast::SwitchStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = sem->Behaviors(); const auto* cond = Load(ValueExpression(stmt->condition)); if (!cond) { return false; } behaviors = cond->Behaviors() - sem::Behavior::kNext; auto* cond_ty = cond->Type(); // Determine the common type across all selectors and the switch expression // This must materialize to an integer scalar (non-abstract). utils::Vector types; types.Push(cond_ty); for (auto* case_stmt : stmt->body) { for (auto* sel : case_stmt->selectors) { if (sel->IsDefault()) { continue; } auto* sem_expr = ValueExpression(sel->expr); if (!sem_expr) { return false; } types.Push(sem_expr->Type()->UnwrapRef()); } } auto* common_ty = type::Type::Common(types); if (!common_ty || !common_ty->is_integer_scalar()) { // No common type found or the common type was abstract. // Pick i32 and let validation deal with any mismatches. common_ty = builder_->create(); } cond = Materialize(cond, common_ty); if (!cond) { return false; } utils::Vector cases; cases.Reserve(stmt->body.Length()); for (auto* case_stmt : stmt->body) { Mark(case_stmt); auto* c = CaseStatement(case_stmt, common_ty); if (!c) { return false; } cases.Push(c); behaviors.Add(c->Behaviors()); sem->Cases().emplace_back(c); } if (behaviors.Contains(sem::Behavior::kBreak)) { behaviors.Add(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak); return validator_.SwitchStatement(stmt); }); } sem::Statement* Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { Mark(stmt->variable); auto* variable = Variable(stmt->variable, /* is_global */ false); if (!variable) { return false; } for (auto* attr : stmt->variable->attributes) { Mark(attr); if (!attr->Is()) { AddError("attributes are not valid on local variables", attr->source); return false; } } current_compound_statement_->AddDecl(variable->As()); if (auto* ctor = variable->Initializer()) { sem->Behaviors() = ctor->Behaviors(); } return validator_.LocalVariable(variable); }); } sem::Statement* Resolver::AssignmentStatement(const ast::AssignmentStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* lhs = ValueExpression(stmt->lhs); if (!lhs) { return false; } const bool is_phony_assignment = stmt->lhs->Is(); const auto* rhs = ValueExpression(stmt->rhs); if (!rhs) { return false; } if (!is_phony_assignment) { rhs = Materialize(rhs, lhs->Type()->UnwrapRef()); if (!rhs) { return false; } } rhs = Load(rhs); if (!rhs) { return false; } auto& behaviors = sem->Behaviors(); behaviors = rhs->Behaviors(); if (!is_phony_assignment) { behaviors.Add(lhs->Behaviors()); } if (!is_phony_assignment) { RegisterStore(lhs); } return validator_.Assignment(stmt, sem_.TypeOf(stmt->rhs)); }); } sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kBreak; return validator_.BreakStatement(sem, current_statement_); }); } sem::Statement* Resolver::BreakIfStatement(const ast::BreakIfStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* cond = Load(ValueExpression(stmt->condition)); if (!cond) { return false; } sem->SetCondition(cond); sem->Behaviors() = cond->Behaviors(); sem->Behaviors().Add(sem::Behavior::kBreak); return validator_.BreakIfStatement(sem, current_statement_); }); } sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { if (auto* expr = ValueExpression(stmt->expr)) { sem->Behaviors() = expr->Behaviors(); return true; } return false; }); } sem::Statement* Resolver::CompoundAssignmentStatement( const ast::CompoundAssignmentStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* lhs = ValueExpression(stmt->lhs); if (!lhs) { return false; } auto* rhs = Load(ValueExpression(stmt->rhs)); if (!rhs) { return false; } RegisterStore(lhs); sem->Behaviors() = rhs->Behaviors() + lhs->Behaviors(); auto* lhs_ty = lhs->Type()->UnwrapRef(); auto* rhs_ty = rhs->Type()->UnwrapRef(); auto stage = sem::EarliestStage(lhs->Stage(), rhs->Stage()); auto* ty = intrinsic_table_->Lookup(stmt->op, lhs_ty, rhs_ty, stage, stmt->source, true).result; if (!ty) { return false; } return validator_.Assignment(stmt, ty); }); } sem::Statement* Resolver::ContinueStatement(const ast::ContinueStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kContinue; // Set if we've hit the first continue statement in our parent loop if (auto* block = sem->FindFirstParent()) { if (!block->FirstContinue()) { const_cast(block)->SetFirstContinue( stmt, block->Decls().Count()); } } return validator_.ContinueStatement(sem, current_statement_); }); } sem::Statement* Resolver::DiscardStatement(const ast::DiscardStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { current_function_->SetDiscardStatement(sem); return true; }); } sem::Statement* Resolver::IncrementDecrementStatement( const ast::IncrementDecrementStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* lhs = ValueExpression(stmt->lhs); if (!lhs) { return false; } sem->Behaviors() = lhs->Behaviors(); RegisterStore(lhs); return validator_.IncrementDecrementStatement(stmt); }); } bool Resolver::ApplyAddressSpaceUsageToType(type::AddressSpace address_space, type::Type* ty, const Source& usage) { ty = const_cast(ty->UnwrapRef()); if (auto* str = ty->As()) { if (str->AddressSpaceUsage().count(address_space)) { return true; // Already applied } str->AddUsage(address_space); for (auto* member : str->Members()) { auto decl = member->Declaration(); if (decl && !ApplyAddressSpaceUsageToType( address_space, const_cast(member->Type()), decl->type->source)) { std::stringstream err; err << "while analyzing structure member " << sem_.TypeNameOf(str) << "." << builder_->Symbols().NameFor(member->Name()); AddNote(err.str(), member->Source()); return false; } } return true; } if (auto* arr = ty->As()) { if (address_space != type::AddressSpace::kStorage) { if (arr->Count()->Is()) { AddError("runtime-sized arrays can only be used in the address space", usage); return false; } auto count = arr->ConstantCount(); if (count.has_value() && count.value() >= kMaxArrayElementCount) { AddError("array count (" + std::to_string(count.value()) + ") must be less than " + std::to_string(kMaxArrayElementCount), usage); return false; } } return ApplyAddressSpaceUsageToType(address_space, const_cast(arr->ElemType()), usage); } if (type::IsHostShareable(address_space) && !validator_.IsHostShareable(ty)) { std::stringstream err; err << "Type '" << sem_.TypeNameOf(ty) << "' cannot be used in address space '" << address_space << "' as it is non-host-shareable"; AddError(err.str(), usage); return false; } return true; } template SEM* Resolver::StatementScope(const ast::Statement* ast, SEM* sem, F&& callback) { builder_->Sem().Add(ast, sem); auto* as_compound = As(sem); // Helper to handle attributes that are supported on certain types of statement. auto handle_attributes = [&](auto* stmt, sem::Statement* sem_stmt, const char* use) { for (auto* attr : stmt->attributes) { Mark(attr); if (auto* dc = attr->template As()) { if (!DiagnosticControl(dc->control)) { return false; } } else { std::ostringstream ss; ss << "attribute is not valid for " << use; AddError(ss.str(), attr->source); return false; } } if (!validator_.NoDuplicateAttributes(stmt->attributes)) { return false; } ApplyDiagnosticSeverities(sem_stmt); return true; }; // Handle attributes, if necessary. // Some statements can take diagnostic filtering attributes, so push a new diagnostic filter // scope to capture them. validator_.DiagnosticFilters().Push(); TINT_DEFER(validator_.DiagnosticFilters().Pop()); if (!Switch( ast, // [&](const ast::BlockStatement* block) { return handle_attributes(block, sem, "block statements"); }, [&](Default) { return true; })) { return nullptr; } TINT_SCOPED_ASSIGNMENT(current_statement_, sem); TINT_SCOPED_ASSIGNMENT(current_compound_statement_, as_compound ? as_compound : current_compound_statement_); TINT_SCOPED_ASSIGNMENT(current_scoping_depth_, current_scoping_depth_ + 1); if (current_scoping_depth_ > kMaxStatementDepth) { AddError("statement nesting depth / chaining length exceeds limit of " + std::to_string(kMaxStatementDepth), ast->source); return nullptr; } if (!callback()) { return nullptr; } return sem; } bool Resolver::Mark(const ast::Node* node) { if (TINT_UNLIKELY(node == nullptr)) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr"; return false; } auto marked_bit_ref = marked_[node->node_id.value]; if (TINT_LIKELY(!marked_bit_ref)) { marked_bit_ref = true; return true; } TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was encountered twice in the same AST of a Program\n" << "At: " << node->source << "\n" << "Pointer: " << node; return false; } template void Resolver::ApplyDiagnosticSeverities(NODE* node) { for (auto itr : validator_.DiagnosticFilters().Top()) { node->SetDiagnosticSeverity(itr.key, itr.value); } } void Resolver::ErrorMismatchedResolvedIdentifier(const Source& source, const ResolvedIdentifier& resolved, std::string_view wanted) { AddError("cannot use " + resolved.String(builder_->Symbols(), diagnostics_) + " as " + std::string(wanted), source); sem_.NoteDeclarationSource(resolved.Node()); } void Resolver::AddError(const std::string& msg, const Source& source) const { diagnostics_.add_error(diag::System::Resolver, msg, source); } void Resolver::AddWarning(const std::string& msg, const Source& source) const { diagnostics_.add_warning(diag::System::Resolver, msg, source); } void Resolver::AddNote(const std::string& msg, const Source& source) const { diagnostics_.add_note(diag::System::Resolver, msg, source); } } // namespace tint::resolver