ByteAddressBuffer firstMatrix : register(t0, space0); ByteAddressBuffer secondMatrix : register(t1, space0); RWByteAddressBuffer resultMatrix : register(u2, space0); cbuffer cbuffer_uniforms : register(b3, space0) { uint4 uniforms[1]; }; float mm_readA(uint row, uint col) { const uint scalar_offset = (0u) / 4; bool tint_tmp = (row < uniforms[scalar_offset / 4][scalar_offset % 4]); if (tint_tmp) { const uint scalar_offset_1 = (4u) / 4; tint_tmp = (col < uniforms[scalar_offset_1 / 4][scalar_offset_1 % 4]); } if ((tint_tmp)) { const uint scalar_offset_2 = (4u) / 4; const float result = asfloat(firstMatrix.Load((4u * ((row * uniforms[scalar_offset_2 / 4][scalar_offset_2 % 4]) + col)))); return result; } return 0.0f; } float mm_readB(uint row, uint col) { const uint scalar_offset_3 = (4u) / 4; bool tint_tmp_1 = (row < uniforms[scalar_offset_3 / 4][scalar_offset_3 % 4]); if (tint_tmp_1) { const uint scalar_offset_4 = (8u) / 4; tint_tmp_1 = (col < uniforms[scalar_offset_4 / 4][scalar_offset_4 % 4]); } if ((tint_tmp_1)) { const uint scalar_offset_5 = (8u) / 4; const float result = asfloat(secondMatrix.Load((4u * ((row * uniforms[scalar_offset_5 / 4][scalar_offset_5 % 4]) + col)))); return result; } return 0.0f; } void mm_write(uint row, uint col, float value) { const uint scalar_offset_6 = (0u) / 4; bool tint_tmp_2 = (row < uniforms[scalar_offset_6 / 4][scalar_offset_6 % 4]); if (tint_tmp_2) { const uint scalar_offset_7 = (8u) / 4; tint_tmp_2 = (col < uniforms[scalar_offset_7 / 4][scalar_offset_7 % 4]); } if ((tint_tmp_2)) { const uint scalar_offset_8 = (8u) / 4; const uint index = (col + (row * uniforms[scalar_offset_8 / 4][scalar_offset_8 % 4])); resultMatrix.Store((4u * index), asuint(value)); } } static const uint RowPerThread = 4u; static const uint ColPerThread = 4u; static const uint TileAOuter = 64u; static const uint TileBOuter = 64u; static const uint TileInner = 64u; struct tint_array_wrapper_1 { float arr[64]; }; struct tint_array_wrapper { tint_array_wrapper_1 arr[64]; }; groupshared tint_array_wrapper mm_Asub; groupshared tint_array_wrapper mm_Bsub; struct tint_symbol_1 { uint3 local_id : SV_GroupThreadID; uint local_invocation_index : SV_GroupIndex; uint3 global_id : SV_DispatchThreadID; }; struct tint_array_wrapper_2 { float arr[16]; }; struct tint_array_wrapper_3 { float arr[4]; }; [numthreads(16, 16, 1)] void main(tint_symbol_1 tint_symbol) { const uint3 local_id = tint_symbol.local_id; const uint3 global_id = tint_symbol.global_id; const uint local_invocation_index = tint_symbol.local_invocation_index; if ((local_invocation_index == 0u)) { const tint_array_wrapper tint_symbol_5 = {(tint_array_wrapper_1[64])0}; mm_Asub = tint_symbol_5; const tint_array_wrapper tint_symbol_6 = {(tint_array_wrapper_1[64])0}; mm_Bsub = tint_symbol_6; } GroupMemoryBarrierWithGroupSync(); const uint tileRow = (local_id.y * RowPerThread); const uint tileCol = (local_id.x * ColPerThread); const uint globalRow = (global_id.y * RowPerThread); const uint globalCol = (global_id.x * ColPerThread); const uint scalar_offset_9 = (4u) / 4; const uint numTiles = (((uniforms[scalar_offset_9 / 4][scalar_offset_9 % 4] - 1u) / TileInner) + 1u); tint_array_wrapper_2 acc = (tint_array_wrapper_2)0; float ACached = 0.0f; tint_array_wrapper_3 BCached = (tint_array_wrapper_3)0; { uint index = 0u; while (true) { if (!((index < (RowPerThread * ColPerThread)))) { break; } acc.arr[index] = 0.0f; { index = (index + 1u); } } } const uint ColPerThreadA = (TileInner / 16u); const uint tileColA = (local_id.x * ColPerThreadA); const uint RowPerThreadB = (TileInner / 16u); const uint tileRowB = (local_id.y * RowPerThreadB); { uint t = 0u; while (true) { if (!((t < numTiles))) { break; } { uint innerRow = 0u; while (true) { if (!((innerRow < RowPerThread))) { break; } { uint innerCol = 0u; while (true) { if (!((innerCol < ColPerThreadA))) { break; } const uint inputRow = (tileRow + innerRow); const uint inputCol = (tileColA + innerCol); mm_Asub.arr[inputRow].arr[inputCol] = mm_readA((globalRow + innerRow), ((t * TileInner) + inputCol)); { innerCol = (innerCol + 1u); } } } { innerRow = (innerRow + 1u); } } } { uint innerRow = 0u; while (true) { if (!((innerRow < RowPerThreadB))) { break; } { uint innerCol = 0u; while (true) { if (!((innerCol < ColPerThread))) { break; } const uint inputRow = (tileRowB + innerRow); const uint inputCol = (tileCol + innerCol); mm_Bsub.arr[innerCol].arr[inputCol] = mm_readB(((t * TileInner) + inputRow), (globalCol + innerCol)); { innerCol = (innerCol + 1u); } } } { innerRow = (innerRow + 1u); } } } GroupMemoryBarrierWithGroupSync(); { uint k = 0u; while (true) { if (!((k < TileInner))) { break; } { uint inner = 0u; while (true) { if (!((inner < ColPerThread))) { break; } BCached.arr[inner] = mm_Bsub.arr[k].arr[(tileCol + inner)]; { inner = (inner + 1u); } } } { uint innerRow = 0u; while (true) { if (!((innerRow < RowPerThread))) { break; } ACached = mm_Asub.arr[(tileRow + innerRow)].arr[k]; { uint innerCol = 0u; while (true) { if (!((innerCol < ColPerThread))) { break; } const uint index = ((innerRow * ColPerThread) + innerCol); acc.arr[index] = (acc.arr[index] + (ACached * BCached.arr[innerCol])); { innerCol = (innerCol + 1u); } } } { innerRow = (innerRow + 1u); } } } { k = (k + 1u); } } } GroupMemoryBarrierWithGroupSync(); { t = (t + 1u); } } } { uint innerRow = 0u; while (true) { if (!((innerRow < RowPerThread))) { break; } { uint innerCol = 0u; while (true) { if (!((innerCol < ColPerThread))) { break; } const uint index = ((innerRow * ColPerThread) + innerCol); mm_write((globalRow + innerRow), (globalCol + innerCol), acc.arr[index]); { innerCol = (innerCol + 1u); } } } { innerRow = (innerRow + 1u); } } } return; }