// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file is a copy of Chromium's /src/base/containers/linked_list.h #ifndef COMMON_LINKED_LIST_H #define COMMON_LINKED_LIST_H #include "common/Assert.h" // Simple LinkedList type. (See the Q&A section to understand how this // differs from std::list). // // To use, start by declaring the class which will be contained in the linked // list, as extending LinkNode (this gives it next/previous pointers). // // class MyNodeType : public LinkNode { // ... // }; // // Next, to keep track of the list's head/tail, use a LinkedList instance: // // LinkedList list; // // To add elements to the list, use any of LinkedList::Append, // LinkNode::InsertBefore, or LinkNode::InsertAfter: // // LinkNode* n1 = ...; // LinkNode* n2 = ...; // LinkNode* n3 = ...; // // list.Append(n1); // list.Append(n3); // n3->InsertBefore(n3); // // Lastly, to iterate through the linked list forwards: // // for (LinkNode* node = list.head(); // node != list.end(); // node = node->next()) { // MyNodeType* value = node->value(); // ... // } // // Or to iterate the linked list backwards: // // for (LinkNode* node = list.tail(); // node != list.end(); // node = node->previous()) { // MyNodeType* value = node->value(); // ... // } // // Questions and Answers: // // Q. Should I use std::list or base::LinkedList? // // A. The main reason to use base::LinkedList over std::list is // performance. If you don't care about the performance differences // then use an STL container, as it makes for better code readability. // // Comparing the performance of base::LinkedList to std::list: // // * Erasing an element of type T* from base::LinkedList is // an O(1) operation. Whereas for std::list it is O(n). // That is because with std::list you must obtain an // iterator to the T* element before you can call erase(iterator). // // * Insertion operations with base::LinkedList never require // heap allocations. // // Q. How does base::LinkedList implementation differ from std::list? // // A. Doubly-linked lists are made up of nodes that contain "next" and // "previous" pointers that reference other nodes in the list. // // With base::LinkedList, the type being inserted already reserves // space for the "next" and "previous" pointers (base::LinkNode*). // Whereas with std::list the type can be anything, so the implementation // needs to glue on the "next" and "previous" pointers using // some internal node type. template class LinkNode { public: LinkNode() : previous_(nullptr), next_(nullptr) { } LinkNode(LinkNode* previous, LinkNode* next) : previous_(previous), next_(next) { } LinkNode(LinkNode&& rhs) { next_ = rhs.next_; rhs.next_ = nullptr; previous_ = rhs.previous_; rhs.previous_ = nullptr; // If the node belongs to a list, next_ and previous_ are both non-null. // Otherwise, they are both null. if (next_) { next_->previous_ = this; previous_->next_ = this; } } // Insert |this| into the linked list, before |e|. void InsertBefore(LinkNode* e) { this->next_ = e; this->previous_ = e->previous_; e->previous_->next_ = this; e->previous_ = this; } // Insert |this| into the linked list, after |e|. void InsertAfter(LinkNode* e) { this->next_ = e->next_; this->previous_ = e; e->next_->previous_ = this; e->next_ = this; } // Check if |this| is in a list. bool IsInList() const { ASSERT((this->previous_ == nullptr) == (this->next_ == nullptr)); return this->next_ != nullptr; } // Remove |this| from the linked list. void RemoveFromList() { this->previous_->next_ = this->next_; this->next_->previous_ = this->previous_; // next() and previous() return non-null if and only this node is not in any // list. this->next_ = nullptr; this->previous_ = nullptr; } LinkNode* previous() const { return previous_; } LinkNode* next() const { return next_; } // Cast from the node-type to the value type. const T* value() const { return static_cast(this); } T* value() { return static_cast(this); } private: LinkNode* previous_; LinkNode* next_; }; template class LinkedList { public: // The "root" node is self-referential, and forms the basis of a circular // list (root_.next() will point back to the start of the list, // and root_->previous() wraps around to the end of the list). LinkedList() : root_(&root_, &root_) { } ~LinkedList() { // If any LinkNodes still exist in the LinkedList, there will be outstanding references to // root_ even after it has been freed. We should remove root_ from the list to prevent any // future access. root_.RemoveFromList(); } // Appends |e| to the end of the linked list. void Append(LinkNode* e) { e->InsertBefore(&root_); } LinkNode* head() const { return root_.next(); } LinkNode* tail() const { return root_.previous(); } const LinkNode* end() const { return &root_; } bool empty() const { return head() == end(); } private: LinkNode root_; }; #endif // COMMON_LINKED_LIST_H