// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/type_determiner.h" #include #include "spirv/unified1/GLSL.std.450.h" #include "src/ast/array_accessor_expression.h" #include "src/ast/as_expression.h" #include "src/ast/assignment_statement.h" #include "src/ast/binary_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_expression.h" #include "src/ast/case_statement.h" #include "src/ast/cast_expression.h" #include "src/ast/continue_statement.h" #include "src/ast/else_statement.h" #include "src/ast/identifier_expression.h" #include "src/ast/if_statement.h" #include "src/ast/loop_statement.h" #include "src/ast/member_accessor_expression.h" #include "src/ast/return_statement.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/switch_statement.h" #include "src/ast/type/array_type.h" #include "src/ast/type/bool_type.h" #include "src/ast/type/f32_type.h" #include "src/ast/type/matrix_type.h" #include "src/ast/type/struct_type.h" #include "src/ast/type/vector_type.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/unary_derivative_expression.h" #include "src/ast/unary_method_expression.h" #include "src/ast/unary_op_expression.h" #include "src/ast/unless_statement.h" #include "src/ast/variable_decl_statement.h" namespace tint { TypeDeterminer::TypeDeterminer(Context* ctx, ast::Module* mod) : ctx_(*ctx), mod_(mod) {} TypeDeterminer::~TypeDeterminer() = default; void TypeDeterminer::set_error(const Source& src, const std::string& msg) { error_ = ""; if (src.line > 0) { error_ += std::to_string(src.line) + ":" + std::to_string(src.column) + ": "; } error_ += msg; } bool TypeDeterminer::Determine() { for (const auto& var : mod_->global_variables()) { variable_stack_.set_global(var->name(), var.get()); } for (const auto& func : mod_->functions()) { name_to_function_[func->name()] = func.get(); } if (!DetermineFunctions(mod_->functions())) { return false; } return true; } bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { for (const auto& func : funcs) { if (!DetermineFunction(func.get())) { return false; } } return true; } bool TypeDeterminer::DetermineFunction(ast::Function* func) { variable_stack_.push_scope(); if (!DetermineStatements(func->body())) { return false; } variable_stack_.pop_scope(); return true; } bool TypeDeterminer::DetermineStatements(const ast::StatementList& stmts) { for (const auto& stmt : stmts) { if (!DetermineVariableStorageClass(stmt.get())) { return false; } if (!DetermineResultType(stmt.get())) { return false; } } return true; } bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { if (!stmt->IsVariableDecl()) { return true; } auto* var = stmt->AsVariableDecl()->variable(); // Nothing to do for const if (var->is_const()) { return true; } if (var->storage_class() == ast::StorageClass::kFunction) { return true; } if (var->storage_class() != ast::StorageClass::kNone) { error_ = "function variable has a non-function storage class"; return false; } var->set_storage_class(ast::StorageClass::kFunction); return true; } bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { if (stmt->IsAssign()) { auto* a = stmt->AsAssign(); return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); } if (stmt->IsBreak()) { auto* b = stmt->AsBreak(); return DetermineResultType(b->conditional()); } if (stmt->IsCase()) { auto* c = stmt->AsCase(); return DetermineStatements(c->body()); } if (stmt->IsContinue()) { auto* c = stmt->AsContinue(); return DetermineResultType(c->conditional()); } if (stmt->IsElse()) { auto* e = stmt->AsElse(); return DetermineResultType(e->condition()) && DetermineStatements(e->body()); } if (stmt->IsFallthrough()) { return true; } if (stmt->IsIf()) { auto* i = stmt->AsIf(); if (!DetermineResultType(i->condition()) || !DetermineStatements(i->body())) { return false; } for (const auto& else_stmt : i->else_statements()) { if (!DetermineResultType(else_stmt.get())) { return false; } } return true; } if (stmt->IsKill()) { return true; } if (stmt->IsLoop()) { auto* l = stmt->AsLoop(); return DetermineStatements(l->body()) && DetermineStatements(l->continuing()); } if (stmt->IsNop()) { return true; } if (stmt->IsReturn()) { auto* r = stmt->AsReturn(); return DetermineResultType(r->value()); } if (stmt->IsSwitch()) { auto* s = stmt->AsSwitch(); if (!DetermineResultType(s->condition())) { return false; } for (const auto& case_stmt : s->body()) { if (!DetermineResultType(case_stmt.get())) { return false; } } return true; } if (stmt->IsUnless()) { auto* u = stmt->AsUnless(); return DetermineResultType(u->condition()) && DetermineStatements(u->body()); } if (stmt->IsVariableDecl()) { auto* v = stmt->AsVariableDecl(); variable_stack_.set(v->variable()->name(), v->variable()); return DetermineResultType(v->variable()->constructor()); } set_error(stmt->source(), "unknown statement type for type determination"); return false; } bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { for (const auto& expr : list) { if (!DetermineResultType(expr.get())) { return false; } } return true; } bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { // This is blindly called above, so in some cases the expression won't exist. if (!expr) { return true; } if (expr->IsArrayAccessor()) { return DetermineArrayAccessor(expr->AsArrayAccessor()); } if (expr->IsAs()) { return DetermineAs(expr->AsAs()); } if (expr->IsBinary()) { return DetermineBinary(expr->AsBinary()); } if (expr->IsCall()) { return DetermineCall(expr->AsCall()); } if (expr->IsCast()) { return DetermineCast(expr->AsCast()); } if (expr->IsConstructor()) { return DetermineConstructor(expr->AsConstructor()); } if (expr->IsIdentifier()) { return DetermineIdentifier(expr->AsIdentifier()); } if (expr->IsMemberAccessor()) { return DetermineMemberAccessor(expr->AsMemberAccessor()); } if (expr->IsUnaryDerivative()) { return DetermineUnaryDerivative(expr->AsUnaryDerivative()); } if (expr->IsUnaryMethod()) { return DetermineUnaryMethod(expr->AsUnaryMethod()); } if (expr->IsUnaryOp()) { return DetermineUnaryOp(expr->AsUnaryOp()); } set_error(expr->source(), "unknown expression for type determination"); return false; } bool TypeDeterminer::DetermineArrayAccessor( ast::ArrayAccessorExpression* expr) { if (!DetermineResultType(expr->array())) { return false; } auto* parent_type = expr->array()->result_type(); if (parent_type->IsArray()) { expr->set_result_type(parent_type->AsArray()->type()); } else if (parent_type->IsVector()) { expr->set_result_type(parent_type->AsVector()->type()); } else if (parent_type->IsMatrix()) { auto* m = parent_type->AsMatrix(); expr->set_result_type(ctx_.type_mgr().Get( std::make_unique(m->type(), m->rows()))); } else { set_error(expr->source(), "invalid parent type in array accessor"); return false; } return true; } bool TypeDeterminer::DetermineAs(ast::AsExpression* expr) { expr->set_result_type(expr->type()); return true; } bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) { if (!DetermineResultType(expr->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. if (expr->func()->IsIdentifier()) { auto* ident = expr->func()->AsIdentifier(); if (ident->has_path()) { auto* imp = mod_->FindImportByName(ident->path()); if (imp == nullptr) { error_ = "Unable to find import for " + ident->name(); return false; } uint32_t ext_id = 0; auto* result_type = GetImportData(imp->path(), ident->name(), expr->params(), &ext_id); if (result_type == nullptr) { return false; } imp->AddMethodId(ident->name(), ext_id); expr->func()->set_result_type(result_type); } else { // An identifier with a single name is a function call, not an import // lookup which we can handle with the regular identifier lookup. if (!DetermineResultType(ident)) { return false; } } } else { if (!DetermineResultType(expr->func())) { return false; } } expr->set_result_type(expr->func()->result_type()); return true; } bool TypeDeterminer::DetermineCast(ast::CastExpression* expr) { expr->set_result_type(expr->type()); return true; } bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { if (expr->IsTypeConstructor()) { expr->set_result_type(expr->AsTypeConstructor()->type()); } else { expr->set_result_type(expr->AsScalarConstructor()->literal()->type()); } return true; } bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { if (expr->has_path()) { set_error(expr->source(), "determine identifier should not be called with imports"); return false; } auto name = expr->name(); ast::Variable* var; if (variable_stack_.get(name, &var)) { expr->set_result_type(var->type()); return true; } auto iter = name_to_function_.find(name); if (iter != name_to_function_.end()) { expr->set_result_type(iter->second->return_type()); return true; } return true; } bool TypeDeterminer::DetermineMemberAccessor( ast::MemberAccessorExpression* expr) { if (!DetermineResultType(expr->structure())) { return false; } auto* data_type = expr->structure()->result_type(); if (data_type->IsStruct()) { auto* strct = data_type->AsStruct()->impl(); auto name = expr->member()->name(); for (const auto& member : strct->members()) { if (member->name() != name) { continue; } expr->set_result_type(member->type()); return true; } set_error(expr->source(), "struct member not found"); return false; } if (data_type->IsVector()) { auto* vec = data_type->AsVector(); // The vector will have a number of components equal to the length of the // swizzle. This assumes the validator will check that the swizzle // is correct. expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( vec->type(), expr->member()->name().size()))); return true; } set_error(expr->source(), "invalid type in member accessor"); return false; } bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsShiftRightArith() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { expr->set_result_type(expr->lhs()->result_type()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = ctx_.type_mgr().Get(std::make_unique()); auto* param_type = expr->lhs()->result_type(); if (param_type->IsVector()) { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( bool_type, param_type->AsVector()->size()))); } else { expr->set_result_type(bool_type); } return true; } if (expr->IsMultiply()) { auto* lhs_type = expr->lhs()->result_type(); auto* rhs_type = expr->rhs()->result_type(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. if (lhs_type->IsMatrix() && rhs_type->IsMatrix()) { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( lhs_type->AsMatrix()->type(), lhs_type->AsMatrix()->rows(), rhs_type->AsMatrix()->columns()))); } else if (lhs_type->IsMatrix() && rhs_type->IsVector()) { auto* mat = lhs_type->AsMatrix(); expr->set_result_type(ctx_.type_mgr().Get( std::make_unique(mat->type(), mat->rows()))); } else if (lhs_type->IsVector() && rhs_type->IsMatrix()) { auto* mat = rhs_type->AsMatrix(); expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( mat->type(), mat->columns()))); } else if (lhs_type->IsMatrix()) { // matrix * scalar expr->set_result_type(lhs_type); } else if (rhs_type->IsMatrix()) { // scalar * matrix expr->set_result_type(rhs_type); } else if (lhs_type->IsVector() && rhs_type->IsVector()) { expr->set_result_type(lhs_type); } else if (lhs_type->IsVector()) { // Vector * scalar expr->set_result_type(lhs_type); } else if (rhs_type->IsVector()) { // Scalar * vector expr->set_result_type(rhs_type); } else { // Scalar * Scalar expr->set_result_type(lhs_type); } return true; } return false; } bool TypeDeterminer::DetermineUnaryDerivative( ast::UnaryDerivativeExpression* expr) { // The result type must be the same as the type of the parameter. if (!DetermineResultType(expr->param())) { return false; } expr->set_result_type(expr->param()->result_type()); return true; } bool TypeDeterminer::DetermineUnaryMethod(ast::UnaryMethodExpression* expr) { if (!DetermineResultType(expr->params())) { return false; } switch (expr->op()) { case ast::UnaryMethod::kAny: case ast::UnaryMethod::kAll: { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique())); break; } case ast::UnaryMethod::kIsNan: case ast::UnaryMethod::kIsInf: case ast::UnaryMethod::kIsFinite: case ast::UnaryMethod::kIsNormal: { if (expr->params().empty()) { set_error(expr->source(), "incorrect number of parameters"); return false; } auto* bool_type = ctx_.type_mgr().Get(std::make_unique()); auto* param_type = expr->params()[0]->result_type(); if (param_type->IsVector()) { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( bool_type, param_type->AsVector()->size()))); } else { expr->set_result_type(bool_type); } break; } case ast::UnaryMethod::kDot: { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique())); break; } case ast::UnaryMethod::kOuterProduct: { if (expr->params().size() != 2) { set_error(expr->source(), "incorrect number of parameters for outer product"); return false; } auto* param0_type = expr->params()[0]->result_type(); auto* param1_type = expr->params()[1]->result_type(); if (!param0_type->IsVector() || !param1_type->IsVector()) { set_error(expr->source(), "invalid parameter type for outer product"); return false; } expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( ctx_.type_mgr().Get(std::make_unique()), param0_type->AsVector()->size(), param1_type->AsVector()->size()))); break; } } return true; } bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { // Result type matches the parameter type. if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->expr()->result_type()); return true; } ast::type::Type* TypeDeterminer::GetImportData( const std::string& path, const std::string& name, const ast::ExpressionList& params, uint32_t* id) { if (path != "GLSL.std.450") { return nullptr; } // Most of these are floating-point general except the below which are only // FP16 and FP32. We only have FP32 at this point so the below works, if we // get FP64 support or otherwise we'll need to differentiate. // * radians // * degrees // * sin, cos, tan // * asin, acos, atan // * sinh, cosh, tanh // * asinh, acosh, atanh // * exp, exp2 // * log, log2 if (name == "round" || name == "roundeven" || name == "trunc" || name == "fabs" || name == "fsign" || name == "floor" || name == "ceil" || name == "fract" || name == "radians" || name == "degrees" || name == "sin" || name == "cos" || name == "tan" || name == "asin" || name == "acos" || name == "atan" || name == "sinh" || name == "cosh" || name == "tanh" || name == "asinh" || name == "acosh" || name == "atanh" || name == "exp" || name == "log" || name == "exp2" || name == "log2" || name == "sqrt" || name == "inversesqrt") { if (params.size() != 1) { error_ = "incorrect number of parameters for " + name + ". Expected 1 got " + std::to_string(params.size()); return nullptr; } if (!params[0]->result_type()->is_float_scalar_or_vector()) { error_ = "incorrect type for " + name + ". Requires a float scalar or a float vector"; return nullptr; } if (name == "round") { *id = GLSLstd450Round; } else if (name == "roundeven") { *id = GLSLstd450RoundEven; } else if (name == "trunc") { *id = GLSLstd450Trunc; } else if (name == "fabs") { *id = GLSLstd450FAbs; } else if (name == "fsign") { *id = GLSLstd450FSign; } else if (name == "floor") { *id = GLSLstd450Floor; } else if (name == "ceil") { *id = GLSLstd450Ceil; } else if (name == "fract") { *id = GLSLstd450Fract; } else if (name == "radians") { *id = GLSLstd450Radians; } else if (name == "degrees") { *id = GLSLstd450Degrees; } else if (name == "sin") { *id = GLSLstd450Sin; } else if (name == "cos") { *id = GLSLstd450Cos; } else if (name == "tan") { *id = GLSLstd450Tan; } else if (name == "asin") { *id = GLSLstd450Asin; } else if (name == "acos") { *id = GLSLstd450Acos; } else if (name == "atan") { *id = GLSLstd450Atan; } else if (name == "sinh") { *id = GLSLstd450Sinh; } else if (name == "cosh") { *id = GLSLstd450Cosh; } else if (name == "tanh") { *id = GLSLstd450Tanh; } else if (name == "asinh") { *id = GLSLstd450Asinh; } else if (name == "acosh") { *id = GLSLstd450Acosh; } else if (name == "atanh") { *id = GLSLstd450Atanh; } else if (name == "exp") { *id = GLSLstd450Exp; } else if (name == "log") { *id = GLSLstd450Log; } else if (name == "exp2") { *id = GLSLstd450Exp2; } else if (name == "log2") { *id = GLSLstd450Log2; } else if (name == "sqrt") { *id = GLSLstd450Sqrt; } else if (name == "inversesqrt") { *id = GLSLstd450InverseSqrt; } return params[0]->result_type(); } return nullptr; } } // namespace tint