// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "gmock/gmock.h" #include "src/reader/spirv/function.h" #include "src/reader/spirv/parser_impl.h" #include "src/reader/spirv/parser_impl_test_helper.h" #include "src/reader/spirv/spirv_tools_helpers_test.h" namespace tint { namespace reader { namespace spirv { namespace { using ::testing::HasSubstr; std::string CommonTypes() { return R"( %void = OpTypeVoid %voidfn = OpTypeFunction %void %uint = OpTypeInt 32 0 %int = OpTypeInt 32 1 %float = OpTypeFloat 32 %uint_10 = OpConstant %uint 10 %uint_20 = OpConstant %uint 20 %int_30 = OpConstant %int 30 %int_40 = OpConstant %int 40 %float_50 = OpConstant %float 50 %float_60 = OpConstant %float 60 %ptr_uint = OpTypePointer Function %uint %ptr_int = OpTypePointer Function %int %ptr_float = OpTypePointer Function %float %v2uint = OpTypeVector %uint 2 %v2int = OpTypeVector %int 2 %v2float = OpTypeVector %float 2 %v2uint_10_20 = OpConstantComposite %v2uint %uint_10 %uint_20 %v2uint_20_10 = OpConstantComposite %v2uint %uint_20 %uint_10 %v2int_30_40 = OpConstantComposite %v2int %int_30 %int_40 %v2int_40_30 = OpConstantComposite %v2int %int_40 %int_30 %v2float_50_60 = OpConstantComposite %v2float %float_50 %float_60 %v2float_60_50 = OpConstantComposite %v2float %float_60 %float_50 %m2v2float = OpTypeMatrix %v2float 2 %m2v2float_a = OpConstantComposite %m2v2float %v2float_50_60 %v2float_60_50 %m2v2float_b = OpConstantComposite %m2v2float %v2float_60_50 %v2float_50_60 )"; } // Returns the AST dump for a given SPIR-V assembly constant. std::string AstFor(std::string assembly) { if (assembly == "v2uint_10_20") { return R"(TypeConstructor{ __vec_2__u32 ScalarConstructor{10} ScalarConstructor{20} })"; } if (assembly == "v2uint_20_10") { return R"(TypeConstructor{ __vec_2__u32 ScalarConstructor{20} ScalarConstructor{10} })"; } if (assembly == "v2int_30_40") { return R"(TypeConstructor{ __vec_2__i32 ScalarConstructor{30} ScalarConstructor{40} })"; } if (assembly == "v2int_40_30") { return R"(TypeConstructor{ __vec_2__i32 ScalarConstructor{40} ScalarConstructor{30} })"; } if (assembly == "cast_int_v2uint_10_20") { return R"(Bitcast<__vec_2__i32>{ TypeConstructor{ __vec_2__u32 ScalarConstructor{10} ScalarConstructor{20} } })"; } if (assembly == "v2float_50_60") { return R"(TypeConstructor{ __vec_2__f32 ScalarConstructor{50.000000} ScalarConstructor{60.000000} })"; } if (assembly == "v2float_60_50") { return R"(TypeConstructor{ __vec_2__f32 ScalarConstructor{60.000000} ScalarConstructor{50.000000} })"; } return "bad case"; } using SpvUnaryArithTest = SpvParserTestBase<::testing::Test>; TEST_F(SpvUnaryArithTest, SNegate_Int_Int) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %int %int_30 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __i32 { UnaryOp{ negation ScalarConstructor{30} } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, SNegate_Int_Uint) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %int %uint_10 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __i32 { UnaryOp{ negation Bitcast<__i32>{ ScalarConstructor{10} } } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, SNegate_Uint_Int) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %uint %int_30 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __u32 { Bitcast<__u32>{ UnaryOp{ negation ScalarConstructor{30} } } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, SNegate_Uint_Uint) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %uint %uint_10 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __u32 { Bitcast<__u32>{ UnaryOp{ negation Bitcast<__i32>{ ScalarConstructor{10} } } } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, SNegate_SignedVec_SignedVec) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %v2int %v2int_30_40 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __vec_2__i32 { UnaryOp{ negation TypeConstructor{ __vec_2__i32 ScalarConstructor{30} ScalarConstructor{40} } } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, SNegate_SignedVec_UnsignedVec) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %v2int %v2uint_10_20 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __vec_2__i32 { UnaryOp{ negation Bitcast<__vec_2__i32>{ TypeConstructor{ __vec_2__u32 ScalarConstructor{10} ScalarConstructor{20} } } } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, SNegate_UnsignedVec_SignedVec) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %v2uint %v2int_30_40 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __vec_2__u32 { Bitcast<__vec_2__u32>{ UnaryOp{ negation TypeConstructor{ __vec_2__i32 ScalarConstructor{30} ScalarConstructor{40} } } } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, SNegate_UnsignedVec_UnsignedVec) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSNegate %v2uint %v2uint_10_20 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __vec_2__u32 { Bitcast<__vec_2__u32>{ UnaryOp{ negation Bitcast<__vec_2__i32>{ TypeConstructor{ __vec_2__u32 ScalarConstructor{10} ScalarConstructor{20} } } } } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, FNegate_Scalar) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpFNegate %float %float_50 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __f32 { UnaryOp{ negation ScalarConstructor{50.000000} } } })")) << ToString(fe.ast_body()); } TEST_F(SpvUnaryArithTest, FNegate_Vector) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpFNegate %v2float %v2float_50_60 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()); FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __vec_2__f32 { UnaryOp{ negation TypeConstructor{ __vec_2__f32 ScalarConstructor{50.000000} ScalarConstructor{60.000000} } } } })")) << ToString(fe.ast_body()); } struct BinaryData { const std::string res_type; const std::string lhs; const std::string op; const std::string rhs; const std::string ast_type; const std::string ast_lhs; const std::string ast_op; const std::string ast_rhs; }; inline std::ostream& operator<<(std::ostream& out, BinaryData data) { out << "BinaryData{" << data.res_type << "," << data.lhs << "," << data.op << "," << data.rhs << "," << data.ast_type << "," << data.ast_lhs << "," << data.ast_op << "," << data.ast_rhs << "}"; return out; } using SpvBinaryArithTest = SpvParserTestBase<::testing::TestWithParam>; using SpvBinaryArithTestBasic = SpvParserTestBase<::testing::Test>; TEST_P(SpvBinaryArithTest, EmitExpression) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = )" + GetParam().op + " %" + GetParam().res_type + " %" + GetParam().lhs + " %" + GetParam().rhs + R"( OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); std::ostringstream ss; ss << R"(VariableConst{ x_1 none )" << GetParam().ast_type << "\n {\n Binary{" << "\n " << GetParam().ast_lhs << "\n " << GetParam().ast_op << "\n " << GetParam().ast_rhs; EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(ss.str())) << assembly; } INSTANTIATE_TEST_SUITE_P( SpvParserTest_IAdd, SpvBinaryArithTest, ::testing::Values( // Both uint BinaryData{"uint", "uint_10", "OpIAdd", "uint_20", "__u32", "ScalarConstructor{10}", "add", "ScalarConstructor{20}"}, // Both int BinaryData{"int", "int_30", "OpIAdd", "int_40", "__i32", "ScalarConstructor{30}", "add", "ScalarConstructor{40}"}, // Mixed, returning uint BinaryData{"uint", "int_30", "OpIAdd", "uint_10", "__u32", "ScalarConstructor{30}", "add", "ScalarConstructor{10}"}, // Mixed, returning int BinaryData{"int", "int_30", "OpIAdd", "uint_10", "__i32", "ScalarConstructor{30}", "add", "ScalarConstructor{10}"}, // Both v2uint BinaryData{"v2uint", "v2uint_10_20", "OpIAdd", "v2uint_20_10", "__vec_2__u32", AstFor("v2uint_10_20"), "add", AstFor("v2uint_20_10")}, // Both v2int BinaryData{"v2int", "v2int_30_40", "OpIAdd", "v2int_40_30", "__vec_2__i32", AstFor("v2int_30_40"), "add", AstFor("v2int_40_30")}, // Mixed, returning v2uint BinaryData{"v2uint", "v2int_30_40", "OpIAdd", "v2uint_10_20", "__vec_2__u32", AstFor("v2int_30_40"), "add", AstFor("v2uint_10_20")}, // Mixed, returning v2int BinaryData{"v2int", "v2int_40_30", "OpIAdd", "v2uint_20_10", "__vec_2__i32", AstFor("v2int_40_30"), "add", AstFor("v2uint_20_10")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_FAdd, SpvBinaryArithTest, ::testing::Values( // Scalar float BinaryData{"float", "float_50", "OpFAdd", "float_60", "__f32", "ScalarConstructor{50.000000}", "add", "ScalarConstructor{60.000000}"}, // Vector float BinaryData{"v2float", "v2float_50_60", "OpFAdd", "v2float_60_50", "__vec_2__f32", AstFor("v2float_50_60"), "add", AstFor("v2float_60_50")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_ISub, SpvBinaryArithTest, ::testing::Values( // Both uint BinaryData{"uint", "uint_10", "OpISub", "uint_20", "__u32", "ScalarConstructor{10}", "subtract", "ScalarConstructor{20}"}, // Both int BinaryData{"int", "int_30", "OpISub", "int_40", "__i32", "ScalarConstructor{30}", "subtract", "ScalarConstructor{40}"}, // Mixed, returning uint BinaryData{"uint", "int_30", "OpISub", "uint_10", "__u32", "ScalarConstructor{30}", "subtract", "ScalarConstructor{10}"}, // Mixed, returning int BinaryData{"int", "int_30", "OpISub", "uint_10", "__i32", "ScalarConstructor{30}", "subtract", "ScalarConstructor{10}"}, // Both v2uint BinaryData{"v2uint", "v2uint_10_20", "OpISub", "v2uint_20_10", "__vec_2__u32", AstFor("v2uint_10_20"), "subtract", AstFor("v2uint_20_10")}, // Both v2int BinaryData{"v2int", "v2int_30_40", "OpISub", "v2int_40_30", "__vec_2__i32", AstFor("v2int_30_40"), "subtract", AstFor("v2int_40_30")}, // Mixed, returning v2uint BinaryData{"v2uint", "v2int_30_40", "OpISub", "v2uint_10_20", "__vec_2__u32", AstFor("v2int_30_40"), "subtract", AstFor("v2uint_10_20")}, // Mixed, returning v2int BinaryData{"v2int", "v2int_40_30", "OpISub", "v2uint_20_10", "__vec_2__i32", AstFor("v2int_40_30"), "subtract", AstFor("v2uint_20_10")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_FSub, SpvBinaryArithTest, ::testing::Values( // Scalar float BinaryData{"float", "float_50", "OpFSub", "float_60", "__f32", "ScalarConstructor{50.000000}", "subtract", "ScalarConstructor{60.000000}"}, // Vector float BinaryData{"v2float", "v2float_50_60", "OpFSub", "v2float_60_50", "__vec_2__f32", AstFor("v2float_50_60"), "subtract", AstFor("v2float_60_50")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_IMul, SpvBinaryArithTest, ::testing::Values( // Both uint BinaryData{"uint", "uint_10", "OpIMul", "uint_20", "__u32", "ScalarConstructor{10}", "multiply", "ScalarConstructor{20}"}, // Both int BinaryData{"int", "int_30", "OpIMul", "int_40", "__i32", "ScalarConstructor{30}", "multiply", "ScalarConstructor{40}"}, // Mixed, returning uint BinaryData{"uint", "int_30", "OpIMul", "uint_10", "__u32", "ScalarConstructor{30}", "multiply", "ScalarConstructor{10}"}, // Mixed, returning int BinaryData{"int", "int_30", "OpIMul", "uint_10", "__i32", "ScalarConstructor{30}", "multiply", "ScalarConstructor{10}"}, // Both v2uint BinaryData{"v2uint", "v2uint_10_20", "OpIMul", "v2uint_20_10", "__vec_2__u32", AstFor("v2uint_10_20"), "multiply", AstFor("v2uint_20_10")}, // Both v2int BinaryData{"v2int", "v2int_30_40", "OpIMul", "v2int_40_30", "__vec_2__i32", AstFor("v2int_30_40"), "multiply", AstFor("v2int_40_30")}, // Mixed, returning v2uint BinaryData{"v2uint", "v2int_30_40", "OpIMul", "v2uint_10_20", "__vec_2__u32", AstFor("v2int_30_40"), "multiply", AstFor("v2uint_10_20")}, // Mixed, returning v2int BinaryData{"v2int", "v2int_40_30", "OpIMul", "v2uint_20_10", "__vec_2__i32", AstFor("v2int_40_30"), "multiply", AstFor("v2uint_20_10")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_FMul, SpvBinaryArithTest, ::testing::Values( // Scalar float BinaryData{"float", "float_50", "OpFMul", "float_60", "__f32", "ScalarConstructor{50.000000}", "multiply", "ScalarConstructor{60.000000}"}, // Vector float BinaryData{"v2float", "v2float_50_60", "OpFMul", "v2float_60_50", "__vec_2__f32", AstFor("v2float_50_60"), "multiply", AstFor("v2float_60_50")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_UDiv, SpvBinaryArithTest, ::testing::Values( // Both uint BinaryData{"uint", "uint_10", "OpUDiv", "uint_20", "__u32", "ScalarConstructor{10}", "divide", "ScalarConstructor{20}"}, // Both v2uint BinaryData{"v2uint", "v2uint_10_20", "OpUDiv", "v2uint_20_10", "__vec_2__u32", AstFor("v2uint_10_20"), "divide", AstFor("v2uint_20_10")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_SDiv, SpvBinaryArithTest, ::testing::Values( // Both int BinaryData{"int", "int_30", "OpSDiv", "int_40", "__i32", "ScalarConstructor{30}", "divide", "ScalarConstructor{40}"}, // Both v2int BinaryData{"v2int", "v2int_30_40", "OpSDiv", "v2int_40_30", "__vec_2__i32", AstFor("v2int_30_40"), "divide", AstFor("v2int_40_30")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_SDiv_MixedSignednessOperands, SpvBinaryArithTest, ::testing::Values( // Mixed, returning int, second arg uint BinaryData{"int", "int_30", "OpSDiv", "uint_10", "__i32", "ScalarConstructor{30}", "divide", R"(Bitcast<__i32>{ ScalarConstructor{10} })"}, // Mixed, returning int, first arg uint BinaryData{"int", "uint_10", "OpSDiv", "int_30", "__i32", R"(Bitcast<__i32>{ ScalarConstructor{10} })", "divide", "ScalarConstructor{30}"}, // Mixed, returning v2int, first arg v2uint BinaryData{"v2int", "v2uint_10_20", "OpSDiv", "v2int_30_40", "__vec_2__i32", AstFor("cast_int_v2uint_10_20"), "divide", AstFor("v2int_30_40")}, // Mixed, returning v2int, second arg v2uint BinaryData{"v2int", "v2int_30_40", "OpSDiv", "v2uint_10_20", "__vec_2__i32", AstFor("v2int_30_40"), "divide", AstFor("cast_int_v2uint_10_20")})); TEST_F(SpvBinaryArithTestBasic, SDiv_Scalar_UnsignedResult) { // The WGSL signed division operator expects both operands to be signed // and the result is signed as well. // In this test SPIR-V demands an unsigned result, so we have to // wrap the result with an as-cast. const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSDiv %uint %int_30 %int_40 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __u32 { Bitcast<__u32>{ Binary{ ScalarConstructor{30} divide ScalarConstructor{40} } } } })")); } TEST_F(SpvBinaryArithTestBasic, SDiv_Vector_UnsignedResult) { // The WGSL signed division operator expects both operands to be signed // and the result is signed as well. // In this test SPIR-V demands an unsigned result, so we have to // wrap the result with an as-cast. const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSDiv %v2uint %v2int_30_40 %v2int_40_30 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __vec_2__u32 { Bitcast<__vec_2__u32>{ Binary{ TypeConstructor{ __vec_2__i32 ScalarConstructor{30} ScalarConstructor{40} } divide TypeConstructor{ __vec_2__i32 ScalarConstructor{40} ScalarConstructor{30} } } } } })")) << ToString(fe.ast_body()); } INSTANTIATE_TEST_SUITE_P( SpvParserTest_FDiv, SpvBinaryArithTest, ::testing::Values( // Scalar float BinaryData{"float", "float_50", "OpFDiv", "float_60", "__f32", "ScalarConstructor{50.000000}", "divide", "ScalarConstructor{60.000000}"}, // Vector float BinaryData{"v2float", "v2float_50_60", "OpFDiv", "v2float_60_50", "__vec_2__f32", AstFor("v2float_50_60"), "divide", AstFor("v2float_60_50")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_UMod, SpvBinaryArithTest, ::testing::Values( // Both uint BinaryData{"uint", "uint_10", "OpUMod", "uint_20", "__u32", "ScalarConstructor{10}", "modulo", "ScalarConstructor{20}"}, // Both v2uint BinaryData{"v2uint", "v2uint_10_20", "OpUMod", "v2uint_20_10", "__vec_2__u32", AstFor("v2uint_10_20"), "modulo", AstFor("v2uint_20_10")})); // Currently WGSL is missing a mapping for OpSRem // https://github.com/gpuweb/gpuweb/issues/702 INSTANTIATE_TEST_SUITE_P( SpvParserTest_SMod, SpvBinaryArithTest, ::testing::Values( // Both int BinaryData{"int", "int_30", "OpSMod", "int_40", "__i32", "ScalarConstructor{30}", "modulo", "ScalarConstructor{40}"}, // Both v2int BinaryData{"v2int", "v2int_30_40", "OpSMod", "v2int_40_30", "__vec_2__i32", AstFor("v2int_30_40"), "modulo", AstFor("v2int_40_30")})); INSTANTIATE_TEST_SUITE_P( SpvParserTest_SMod_MixedSignednessOperands, SpvBinaryArithTest, ::testing::Values( // Mixed, returning int, second arg uint BinaryData{"int", "int_30", "OpSMod", "uint_10", "__i32", "ScalarConstructor{30}", "modulo", R"(Bitcast<__i32>{ ScalarConstructor{10} })"}, // Mixed, returning int, first arg uint BinaryData{"int", "uint_10", "OpSMod", "int_30", "__i32", R"(Bitcast<__i32>{ ScalarConstructor{10} })", "modulo", "ScalarConstructor{30}"}, // Mixed, returning v2int, first arg v2uint BinaryData{"v2int", "v2uint_10_20", "OpSMod", "v2int_30_40", "__vec_2__i32", AstFor("cast_int_v2uint_10_20"), "modulo", AstFor("v2int_30_40")}, // Mixed, returning v2int, second arg v2uint BinaryData{"v2int", "v2int_30_40", "OpSMod", "v2uint_10_20", "__vec_2__i32", AstFor("v2int_30_40"), "modulo", AstFor("cast_int_v2uint_10_20")})); TEST_F(SpvBinaryArithTestBasic, SMod_Scalar_UnsignedResult) { // The WGSL signed modulus operator expects both operands to be signed // and the result is signed as well. // In this test SPIR-V demands an unsigned result, so we have to // wrap the result with an as-cast. const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSMod %uint %int_30 %int_40 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __u32 { Bitcast<__u32>{ Binary{ ScalarConstructor{30} modulo ScalarConstructor{40} } } } })")); } TEST_F(SpvBinaryArithTestBasic, SMod_Vector_UnsignedResult) { // The WGSL signed modulus operator expects both operands to be signed // and the result is signed as well. // In this test SPIR-V demands an unsigned result, so we have to // wrap the result with an as-cast. const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpSMod %v2uint %v2int_30_40 %v2int_40_30 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"( VariableConst{ x_1 none __vec_2__u32 { Bitcast<__vec_2__u32>{ Binary{ TypeConstructor{ __vec_2__i32 ScalarConstructor{30} ScalarConstructor{40} } modulo TypeConstructor{ __vec_2__i32 ScalarConstructor{40} ScalarConstructor{30} } } } } })")) << ToString(fe.ast_body()); } INSTANTIATE_TEST_SUITE_P( SpvParserTest_FMod, SpvBinaryArithTest, ::testing::Values( // Scalar float BinaryData{"float", "float_50", "OpFMod", "float_60", "__f32", "ScalarConstructor{50.000000}", "modulo", "ScalarConstructor{60.000000}"}, // Vector float BinaryData{"v2float", "v2float_50_60", "OpFMod", "v2float_60_50", "__vec_2__f32", AstFor("v2float_50_60"), "modulo", AstFor("v2float_60_50")})); TEST_F(SpvBinaryArithTestBasic, VectorTimesScalar) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpCopyObject %v2float %v2float_50_60 %2 = OpCopyObject %float %float_50 %10 = OpVectorTimesScalar %v2float %1 %2 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableConst{ x_10 none __vec_2__f32 { Binary{ Identifier{x_1} multiply Identifier{x_2} } } })")) << ToString(fe.ast_body()); } TEST_F(SpvBinaryArithTestBasic, MatrixTimesScalar) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpCopyObject %m2v2float %m2v2float_a %2 = OpCopyObject %float %float_50 %10 = OpMatrixTimesScalar %m2v2float %1 %2 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableConst{ x_10 none __mat_2_2__f32 { Binary{ Identifier{x_1} multiply Identifier{x_2} } } })")) << ToString(fe.ast_body()); } TEST_F(SpvBinaryArithTestBasic, VectorTimesMatrix) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpCopyObject %v2float %v2float_50_60 %2 = OpCopyObject %m2v2float %m2v2float_a %10 = OpMatrixTimesVector %m2v2float %1 %2 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableConst{ x_10 none __mat_2_2__f32 { Binary{ Identifier{x_1} multiply Identifier{x_2} } } })")) << ToString(fe.ast_body()); } TEST_F(SpvBinaryArithTestBasic, MatrixTimesVector) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpCopyObject %m2v2float %m2v2float_a %2 = OpCopyObject %v2float %v2float_50_60 %10 = OpMatrixTimesVector %m2v2float %1 %2 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableConst{ x_10 none __mat_2_2__f32 { Binary{ Identifier{x_1} multiply Identifier{x_2} } } })")) << ToString(fe.ast_body()); } TEST_F(SpvBinaryArithTestBasic, MatrixTimesMatrix) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpCopyObject %m2v2float %m2v2float_a %2 = OpCopyObject %m2v2float %m2v2float_b %10 = OpMatrixTimesMatrix %m2v2float %1 %2 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableConst{ x_10 none __mat_2_2__f32 { Binary{ Identifier{x_1} multiply Identifier{x_2} } } })")) << ToString(fe.ast_body()); } TEST_F(SpvBinaryArithTestBasic, Dot) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpCopyObject %v2float %v2float_50_60 %2 = OpCopyObject %v2float %v2float_60_50 %3 = OpDot %float %1 %2 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableConst{ x_3 none __f32 { Call{ Identifier{dot} ( Identifier{x_1} Identifier{x_2} ) } } })")) << ToString(fe.ast_body()); } TEST_F(SpvBinaryArithTestBasic, OuterProduct) { const auto assembly = CommonTypes() + R"( %100 = OpFunction %void None %voidfn %entry = OpLabel %1 = OpCopyObject %v2float %v2float_50_60 %2 = OpCopyObject %v2float %v2float_60_50 %3 = OpOuterProduct %m2v2float %1 %2 OpReturn OpFunctionEnd )"; auto* p = parser(test::Assemble(assembly)); ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; FunctionEmitter fe(p, *spirv_function(100)); EXPECT_TRUE(fe.EmitBody()) << p->error(); EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(VariableConst{ x_3 none __mat_2_2__f32 { Call{ Identifier{outerProduct} ( Identifier{x_1} Identifier{x_2} ) } } })")) << ToString(fe.ast_body()); } // TODO(dneto): OpSRem. Missing from WGSL // https://github.com/gpuweb/gpuweb/issues/702 // TODO(dneto): OpFRem. Missing from WGSL // https://github.com/gpuweb/gpuweb/issues/702 // TODO(dneto): OpIAddCarry // TODO(dneto): OpISubBorrow // TODO(dneto): OpIMulExtended // TODO(dneto): OpSMulExtended } // namespace } // namespace spirv } // namespace reader } // namespace tint