// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "dawn/tests/unittests/validation/ValidationTest.h" #include "dawn/utils/ComboRenderBundleEncoderDescriptor.h" #include "dawn/utils/ComboRenderPipelineDescriptor.h" #include "dawn/utils/WGPUHelpers.h" class VertexBufferValidationTest : public ValidationTest { protected: void SetUp() override { ValidationTest::SetUp(); // Placeholder vertex shader module vsModule = utils::CreateShaderModule(device, R"( @vertex fn main() -> @builtin(position) vec4f { return vec4f(0.0, 0.0, 0.0, 0.0); })"); fsModule = utils::CreateShaderModule(device, R"( @fragment fn main() -> @location(0) vec4f { return vec4f(0.0, 1.0, 0.0, 1.0); })"); } wgpu::Buffer MakeVertexBuffer() { wgpu::BufferDescriptor descriptor; descriptor.size = 256; descriptor.usage = wgpu::BufferUsage::Vertex; return device.CreateBuffer(&descriptor); } wgpu::ShaderModule MakeVertexShader(unsigned int bufferCount) { std::ostringstream vs; vs << "@vertex fn main(\n"; for (unsigned int i = 0; i < bufferCount; ++i) { // TODO(cwallez@chromium.org): remove this special handling of 0 once Tint supports // trailing commas in argument lists. if (i != 0) { vs << ", "; } vs << "@location(" << i << ") a_position" << i << " : vec3f\n"; } vs << ") -> @builtin(position) vec4f {"; vs << "return vec4f("; for (unsigned int i = 0; i < bufferCount; ++i) { vs << "a_position" << i; if (i != bufferCount - 1) { vs << " + "; } } vs << ", 1.0);"; vs << "}\n"; return utils::CreateShaderModule(device, vs.str().c_str()); } wgpu::RenderPipeline MakeRenderPipeline(const wgpu::ShaderModule& vsModule, const utils::ComboVertexState& state) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; descriptor.vertex.bufferCount = state.vertexBufferCount; descriptor.vertex.buffers = &state.cVertexBuffers[0]; return device.CreateRenderPipeline(&descriptor); } wgpu::RenderPipeline MakeRenderPipeline(const wgpu::ShaderModule& vsModule, unsigned int bufferCount) { utils::ComboRenderPipelineDescriptor descriptor; descriptor.vertex.module = vsModule; descriptor.cFragment.module = fsModule; for (unsigned int i = 0; i < bufferCount; ++i) { descriptor.cBuffers[i].attributeCount = 1; descriptor.cBuffers[i].attributes = &descriptor.cAttributes[i]; descriptor.cAttributes[i].shaderLocation = i; descriptor.cAttributes[i].format = wgpu::VertexFormat::Float32x3; } descriptor.vertex.bufferCount = bufferCount; return device.CreateRenderPipeline(&descriptor); } wgpu::ShaderModule vsModule; wgpu::ShaderModule fsModule; }; // Check that vertex buffers still count as bound if we switch the pipeline. TEST_F(VertexBufferValidationTest, VertexBuffersInheritedBetweenPipelines) { PlaceholderRenderPass renderPass(device); wgpu::ShaderModule vsModule2 = MakeVertexShader(2); wgpu::ShaderModule vsModule1 = MakeVertexShader(1); wgpu::RenderPipeline pipeline2 = MakeRenderPipeline(vsModule2, 2); wgpu::RenderPipeline pipeline1 = MakeRenderPipeline(vsModule1, 1); wgpu::Buffer vertexBuffer1 = MakeVertexBuffer(); wgpu::Buffer vertexBuffer2 = MakeVertexBuffer(); // Check failure when vertex buffer is not set wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.Draw(3); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); // Check success when vertex buffer is inherited from previous pipeline encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer1); pass.SetVertexBuffer(1, vertexBuffer2); pass.Draw(3); pass.SetPipeline(pipeline1); pass.Draw(3); pass.End(); } encoder.Finish(); } // Check that vertex buffers that are set are reset between render passes. TEST_F(VertexBufferValidationTest, VertexBuffersNotInheritedBetweenRenderPasses) { PlaceholderRenderPass renderPass(device); wgpu::ShaderModule vsModule2 = MakeVertexShader(2); wgpu::ShaderModule vsModule1 = MakeVertexShader(1); wgpu::RenderPipeline pipeline2 = MakeRenderPipeline(vsModule2, 2); wgpu::RenderPipeline pipeline1 = MakeRenderPipeline(vsModule1, 1); wgpu::Buffer vertexBuffer1 = MakeVertexBuffer(); wgpu::Buffer vertexBuffer2 = MakeVertexBuffer(); // Check success when vertex buffer is set for each render pass wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer1); pass.SetVertexBuffer(1, vertexBuffer2); pass.Draw(3); pass.End(); } { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer1); pass.Draw(3); pass.End(); } encoder.Finish(); // Check failure because vertex buffer is not inherited in second subpass encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer1); pass.SetVertexBuffer(1, vertexBuffer2); pass.Draw(3); pass.End(); } { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.Draw(3); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); } // Check validation of the vertex buffer slot for OOB. TEST_F(VertexBufferValidationTest, VertexBufferSlotValidation) { wgpu::Buffer buffer = MakeVertexBuffer(); PlaceholderRenderPass renderPass(device); // Control case: using the last vertex buffer slot in render passes is ok. { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(kMaxVertexBuffers - 1, buffer, 0); pass.End(); encoder.Finish(); } // Error case: using past the last vertex buffer slot in render pass fails. { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(kMaxVertexBuffers, buffer, 0); pass.End(); ASSERT_DEVICE_ERROR(encoder.Finish()); } utils::ComboRenderBundleEncoderDescriptor renderBundleDesc = {}; renderBundleDesc.colorFormatsCount = 1; renderBundleDesc.cColorFormats[0] = wgpu::TextureFormat::RGBA8Unorm; // Control case: using the last vertex buffer slot in render bundles is ok. { wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc); encoder.SetVertexBuffer(kMaxVertexBuffers - 1, buffer, 0); encoder.Finish(); } // Error case: using past the last vertex buffer slot in render bundle fails. { wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc); encoder.SetVertexBuffer(kMaxVertexBuffers, buffer, 0); ASSERT_DEVICE_ERROR(encoder.Finish()); } } // Test that for OOB validation of vertex buffer offset and size. TEST_F(VertexBufferValidationTest, VertexBufferOffsetOOBValidation) { wgpu::Buffer buffer = MakeVertexBuffer(); PlaceholderRenderPass renderPass(device); // Control case, using the full buffer, with or without an explicit size is valid. { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); // Explicit size pass.SetVertexBuffer(0, buffer, 0, 256); // Implicit size pass.SetVertexBuffer(0, buffer, 0, wgpu::kWholeSize); pass.SetVertexBuffer(0, buffer, 256 - 4, wgpu::kWholeSize); pass.SetVertexBuffer(0, buffer, 4, wgpu::kWholeSize); // Implicit size of zero pass.SetVertexBuffer(0, buffer, 256, wgpu::kWholeSize); pass.End(); encoder.Finish(); } // Bad case, offset + size is larger than the buffer { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(0, buffer, 4, 256); pass.End(); ASSERT_DEVICE_ERROR(encoder.Finish()); } // Bad case, size is 0 but the offset is larger than the buffer { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(0, buffer, 256 + 4, 0); pass.End(); ASSERT_DEVICE_ERROR(encoder.Finish()); } utils::ComboRenderBundleEncoderDescriptor renderBundleDesc = {}; renderBundleDesc.colorFormatsCount = 1; renderBundleDesc.cColorFormats[0] = wgpu::TextureFormat::RGBA8Unorm; // Control case, using the full buffer, with or without an explicit size is valid. { wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc); // Explicit size encoder.SetVertexBuffer(0, buffer, 0, 256); // Implicit size encoder.SetVertexBuffer(0, buffer, 0, wgpu::kWholeSize); encoder.SetVertexBuffer(0, buffer, 256 - 4, wgpu::kWholeSize); encoder.SetVertexBuffer(0, buffer, 4, wgpu::kWholeSize); // Implicit size of zero encoder.SetVertexBuffer(0, buffer, 256, wgpu::kWholeSize); encoder.Finish(); } // Bad case, offset + size is larger than the buffer { wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc); encoder.SetVertexBuffer(0, buffer, 4, 256); ASSERT_DEVICE_ERROR(encoder.Finish()); } // Bad case, size is 0 but the offset is larger than the buffer { wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc); encoder.SetVertexBuffer(0, buffer, 256 + 4, 0); ASSERT_DEVICE_ERROR(encoder.Finish()); } } // Check that the vertex buffer must have the Vertex usage. TEST_F(VertexBufferValidationTest, InvalidUsage) { wgpu::Buffer vertexBuffer = MakeVertexBuffer(); wgpu::Buffer indexBuffer = utils::CreateBufferFromData(device, wgpu::BufferUsage::Index, {0, 0, 0}); PlaceholderRenderPass renderPass(device); // Control case: using the vertex buffer is valid. { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(0, vertexBuffer); pass.End(); encoder.Finish(); } // Error case: using the index buffer is an error. { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(0, indexBuffer); pass.End(); ASSERT_DEVICE_ERROR(encoder.Finish()); } utils::ComboRenderBundleEncoderDescriptor renderBundleDesc = {}; renderBundleDesc.colorFormatsCount = 1; renderBundleDesc.cColorFormats[0] = wgpu::TextureFormat::RGBA8Unorm; // Control case: using the vertex buffer is valid. { wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc); encoder.SetVertexBuffer(0, vertexBuffer); encoder.Finish(); } // Error case: using the index buffer is an error. { wgpu::RenderBundleEncoder encoder = device.CreateRenderBundleEncoder(&renderBundleDesc); encoder.SetVertexBuffer(0, indexBuffer); ASSERT_DEVICE_ERROR(encoder.Finish()); } } // Check the alignment constraint on the index buffer offset. TEST_F(VertexBufferValidationTest, OffsetAlignment) { wgpu::Buffer vertexBuffer = MakeVertexBuffer(); PlaceholderRenderPass renderPass(device); // Control cases: vertex buffer offset is a multiple of 4 { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(0, vertexBuffer, 0); pass.SetVertexBuffer(0, vertexBuffer, 4); pass.SetVertexBuffer(0, vertexBuffer, 12); pass.End(); encoder.Finish(); } // Error case: vertex buffer offset isn't a multiple of 4 { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetVertexBuffer(0, vertexBuffer, 2); pass.End(); ASSERT_DEVICE_ERROR(encoder.Finish()); } } // Check vertex buffer stride requirements for draw command. TEST_F(VertexBufferValidationTest, DrawStrideLimitsVertex) { PlaceholderRenderPass renderPass(device); // Create a buffer of size 28, containing 4 float32 elements, array stride size = 8 // The last element doesn't have the full stride size wgpu::BufferDescriptor descriptor; descriptor.size = 28; descriptor.usage = wgpu::BufferUsage::Vertex; wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor); // Vertex attribute offset is 0 wgpu::RenderPipeline pipeline1; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 8; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex; state.cVertexBuffers[0].attributeCount = 1; state.cAttributes[0].offset = 0; pipeline1 = MakeRenderPipeline(vsModule, state); } // Vertex attribute offset is 4 wgpu::RenderPipeline pipeline2; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 8; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex; state.cVertexBuffers[0].attributeCount = 1; state.cAttributes[0].offset = 4; pipeline2 = MakeRenderPipeline(vsModule, state); } // Control case: draw 3 elements, 3 * 8 = 24 <= 28, is valid anyway wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(3); pass.End(); } encoder.Finish(); // Valid: draw 3 elements with firstVertex == 1, (2 + 1) * 8 + 4 = 28 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(3, 0, 1, 0); pass.End(); } encoder.Finish(); // Valid: draw 3 elements with offset == 4, 4 + 3 * 8 = 24 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(3); pass.End(); } encoder.Finish(); // Valid: draw 4 elements, 4 * 8 = 32 > 28 // But the last element does not require to have the full stride size // So 3 * 8 + 4 = 28 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(4); pass.End(); } encoder.Finish(); // Invalid: draw 4 elements with firstVertex == 1 // It requires a buffer with size of (3 + 1) * 8 + 4 = 36 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(4, 0, 1, 0); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); // Invalid: draw 4 elements with offset == 4 // It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(4); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); // Valid: stride count == 0 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(0); pass.End(); } encoder.Finish(); // Invalid: stride count == 4 // It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(0, 0, 4); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); } // Check instance buffer stride requirements with instanced attributes for draw command. TEST_F(VertexBufferValidationTest, DrawStrideLimitsInstance) { PlaceholderRenderPass renderPass(device); // Create a buffer of size 28, containing 4 float32 elements, array stride size = 8 // The last element doesn't have the full stride size wgpu::BufferDescriptor descriptor; descriptor.size = 28; descriptor.usage = wgpu::BufferUsage::Vertex; wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor); // Vertex attribute offset is 0 wgpu::RenderPipeline pipeline1; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 8; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance; state.cVertexBuffers[0].attributeCount = 1; state.cAttributes[0].offset = 0; pipeline1 = MakeRenderPipeline(vsModule, state); } // Vertex attribute offset is 4 wgpu::RenderPipeline pipeline2; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 8; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance; state.cVertexBuffers[0].attributeCount = 1; state.cAttributes[0].offset = 4; pipeline2 = MakeRenderPipeline(vsModule, state); } // Control case: draw 3 instances, 3 * 8 = 24 <= 28, is valid anyway wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 3); pass.End(); } encoder.Finish(); // Valid: draw 3 instances with firstInstance == 1, (2 + 1) * 8 + 4 = 28 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 3, 0, 1); pass.End(); } encoder.Finish(); // Valid: draw 3 instances with offset == 4, 4 + 3 * 8 = 24 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 3); pass.End(); } encoder.Finish(); // Valid: draw 4 instances, 4 * 8 = 32 > 28 // But the last element does not require to have the full stride size // So 3 * 8 + 4 = 28 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 4); pass.End(); } encoder.Finish(); // Invalid: draw 4 instances with firstInstance == 1 // It requires a buffer with size of (3 + 1) * 8 + 4 = 36 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 4, 0, 1); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); // Invalid: draw 4 instances with offset == 4 // It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 4); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); // Valid: stride count == 0 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 0); pass.End(); } encoder.Finish(); // Invalid, stride count == 4 // It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(1, 0, 0, 4); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); } // Check vertex buffer stride requirements with instanced attributes for draw indexed command. TEST_F(VertexBufferValidationTest, DrawIndexedStrideLimitsInstance) { PlaceholderRenderPass renderPass(device); // Create a buffer of size 28, containing 4 float32 elements, array stride size = 8 // The last element doesn't have the full stride size wgpu::BufferDescriptor descriptor; descriptor.size = 28; descriptor.usage = wgpu::BufferUsage::Vertex; wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor); wgpu::Buffer indexBuffer = utils::CreateBufferFromData(device, wgpu::BufferUsage::Index, {0, 1, 2}); // Vertex attribute offset is 0 wgpu::RenderPipeline pipeline1; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 8; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance; state.cVertexBuffers[0].attributeCount = 1; state.cAttributes[0].offset = 0; pipeline1 = MakeRenderPipeline(vsModule, state); } // Vertex attribute offset is 4 wgpu::RenderPipeline pipeline2; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 8; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Instance; state.cVertexBuffers[0].attributeCount = 1; state.cAttributes[0].offset = 4; pipeline2 = MakeRenderPipeline(vsModule, state); } // Control case: draw 3 instances, 3 * 8 = 24 <= 28, is valid anyway wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32); pass.DrawIndexed(3, 3); pass.End(); } encoder.Finish(); // Valid: draw 3 instances with firstInstance == 1, (2 + 1) * 8 + 4 = 28 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32); pass.Draw(3, 3, 0, 1); pass.End(); } encoder.Finish(); // Valid: draw 3 instances with offset == 4, 4 + 3 * 8 = 24 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32); pass.Draw(3, 3); pass.End(); } encoder.Finish(); // Valid: draw 4 instances, 4 * 8 = 32 > 28 // But the last element does not require to have the full stride size // So 3 * 8 + 4 = 28 <= 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32); pass.Draw(3, 4); pass.End(); } encoder.Finish(); // Invalid: draw 4 instances with firstInstance == 1 // It requires a buffer with size of (3 + 1) * 8 + 4 = 36 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32); pass.Draw(3, 4, 0, 1); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); // Invalid: draw 4 instances with offset == 4 // It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32); pass.Draw(3, 4); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); // Valid: stride count == 0 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(3, 0); pass.End(); } encoder.Finish(); // Invalid, stride count == 4 // It requires a buffer with size of 4 + 3 * 8 + 4 = 32 > 28 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.SetIndexBuffer(indexBuffer, wgpu::IndexFormat::Uint32); pass.Draw(3, 0, 0, 4); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); } // Check last stride is computed correctly for vertex buffer with multiple attributes. TEST_F(VertexBufferValidationTest, DrawStrideLimitsVertexMultipleAttributes) { PlaceholderRenderPass renderPass(device); // Create a buffer of size 44, array stride size = 12 wgpu::BufferDescriptor descriptor; descriptor.size = 44; descriptor.usage = wgpu::BufferUsage::Vertex; wgpu::Buffer vertexBuffer = device.CreateBuffer(&descriptor); // lastStride = attribute[1].offset + sizeof(attribute[1].format) = 8 wgpu::RenderPipeline pipeline1; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 12; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex; state.cVertexBuffers[0].attributeCount = 2; state.cAttributes[0].format = wgpu::VertexFormat::Float32; state.cAttributes[0].offset = 0; state.cAttributes[0].shaderLocation = 0; state.cAttributes[1].format = wgpu::VertexFormat::Float32; state.cAttributes[1].offset = 4; state.cAttributes[1].shaderLocation = 1; pipeline1 = MakeRenderPipeline(vsModule, state); } // lastStride = attribute[1].offset + sizeof(attribute[1].format) = 12 wgpu::RenderPipeline pipeline2; { utils::ComboVertexState state; state.vertexBufferCount = 1; state.cVertexBuffers[0].arrayStride = 12; state.cVertexBuffers[0].stepMode = wgpu::VertexStepMode::Vertex; state.cVertexBuffers[0].attributeCount = 2; state.cAttributes[0].format = wgpu::VertexFormat::Float32; state.cAttributes[0].offset = 0; state.cAttributes[0].shaderLocation = 0; state.cAttributes[1].format = wgpu::VertexFormat::Float32x2; state.cAttributes[1].offset = 4; state.cAttributes[1].shaderLocation = 1; pipeline2 = MakeRenderPipeline(vsModule, state); } // Valid: draw 4 elements, last stride is 8, 3 * 12 + 8 = 44 <= 44 wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline1); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(4); pass.End(); } encoder.Finish(); // Invalid: draw 4 elements, last stride is 12, 3 * 12 + 12 = 48 > 44 encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); pass.SetPipeline(pipeline2); pass.SetVertexBuffer(0, vertexBuffer); pass.Draw(4); pass.End(); } ASSERT_DEVICE_ERROR(encoder.Finish()); }