// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/type_determiner.h" #include #include #include "src/ast/array_accessor_expression.h" #include "src/ast/assignment_statement.h" #include "src/ast/binary_expression.h" #include "src/ast/bitcast_expression.h" #include "src/ast/block_statement.h" #include "src/ast/break_statement.h" #include "src/ast/call_expression.h" #include "src/ast/call_statement.h" #include "src/ast/case_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/discard_statement.h" #include "src/ast/else_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/identifier_expression.h" #include "src/ast/if_statement.h" #include "src/ast/intrinsic.h" #include "src/ast/loop_statement.h" #include "src/ast/member_accessor_expression.h" #include "src/ast/return_statement.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/switch_statement.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/type/array_type.h" #include "src/type/bool_type.h" #include "src/type/depth_texture_type.h" #include "src/type/f32_type.h" #include "src/type/i32_type.h" #include "src/type/matrix_type.h" #include "src/type/multisampled_texture_type.h" #include "src/type/pointer_type.h" #include "src/type/sampled_texture_type.h" #include "src/type/storage_texture_type.h" #include "src/type/struct_type.h" #include "src/type/texture_type.h" #include "src/type/u32_type.h" #include "src/type/vector_type.h" #include "src/type/void_type.h" namespace tint { TypeDeterminer::TypeDeterminer(ast::Module* mod) : mod_(mod) {} TypeDeterminer::TypeDeterminer(Program* program) : TypeDeterminer(&program->module) {} TypeDeterminer::~TypeDeterminer() = default; void TypeDeterminer::set_error(const Source& src, const std::string& msg) { error_ = ""; if (src.range.begin.line > 0) { error_ += std::to_string(src.range.begin.line) + ":" + std::to_string(src.range.begin.column) + ": "; } error_ += msg; } void TypeDeterminer::set_referenced_from_function_if_needed(ast::Variable* var, bool local) { if (current_function_ == nullptr) { return; } if (var->storage_class() == ast::StorageClass::kNone || var->storage_class() == ast::StorageClass::kFunction) { return; } current_function_->add_referenced_module_variable(var); if (local) { current_function_->add_local_referenced_module_variable(var); } } bool TypeDeterminer::Determine() { std::vector storage_textures; for (auto& it : mod_->types()) { if (auto* storage = it.second->UnwrapIfNeeded()->As()) { storage_textures.emplace_back(storage); } } for (auto* storage : storage_textures) { if (!DetermineStorageTextureSubtype(storage)) { set_error(Source{}, "unable to determine storage texture subtype for: " + storage->type_name()); return false; } } for (auto* var : mod_->global_variables()) { variable_stack_.set_global(var->symbol(), var); if (var->has_constructor()) { if (!DetermineResultType(var->constructor())) { return false; } } } if (!DetermineFunctions(mod_->Functions())) { return false; } // Walk over the caller to callee information and update functions with which // entry points call those functions. for (auto* func : mod_->Functions()) { if (!func->IsEntryPoint()) { continue; } for (const auto& callee : caller_to_callee_[func->symbol()]) { set_entry_points(callee, func->symbol()); } } return true; } void TypeDeterminer::set_entry_points(const Symbol& fn_sym, Symbol ep_sym) { symbol_to_function_[fn_sym]->add_ancestor_entry_point(ep_sym); for (const auto& callee : caller_to_callee_[fn_sym]) { set_entry_points(callee, ep_sym); } } bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { for (auto* func : funcs) { if (!DetermineFunction(func)) { return false; } } return true; } bool TypeDeterminer::DetermineFunction(ast::Function* func) { symbol_to_function_[func->symbol()] = func; current_function_ = func; variable_stack_.push_scope(); for (auto* param : func->params()) { variable_stack_.set(param->symbol(), param); } if (!DetermineStatements(func->body())) { return false; } variable_stack_.pop_scope(); current_function_ = nullptr; return true; } bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) { for (auto* stmt : *stmts) { if (!DetermineVariableStorageClass(stmt)) { return false; } if (!DetermineResultType(stmt)) { return false; } } return true; } bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { auto* var_decl = stmt->As(); if (var_decl == nullptr) { return true; } auto* var = var_decl->variable(); // Nothing to do for const if (var->is_const()) { return true; } if (var->storage_class() == ast::StorageClass::kFunction) { return true; } if (var->storage_class() != ast::StorageClass::kNone) { set_error(stmt->source(), "function variable has a non-function storage class"); return false; } var->set_storage_class(ast::StorageClass::kFunction); return true; } bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { if (auto* a = stmt->As()) { return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); } if (auto* b = stmt->As()) { return DetermineStatements(b); } if (stmt->Is()) { return true; } if (auto* c = stmt->As()) { return DetermineResultType(c->expr()); } if (auto* c = stmt->As()) { return DetermineStatements(c->body()); } if (stmt->Is()) { return true; } if (stmt->Is()) { return true; } if (auto* e = stmt->As()) { return DetermineResultType(e->condition()) && DetermineStatements(e->body()); } if (stmt->Is()) { return true; } if (auto* i = stmt->As()) { if (!DetermineResultType(i->condition()) || !DetermineStatements(i->body())) { return false; } for (auto* else_stmt : i->else_statements()) { if (!DetermineResultType(else_stmt)) { return false; } } return true; } if (auto* l = stmt->As()) { return DetermineStatements(l->body()) && DetermineStatements(l->continuing()); } if (auto* r = stmt->As()) { return DetermineResultType(r->value()); } if (auto* s = stmt->As()) { if (!DetermineResultType(s->condition())) { return false; } for (auto* case_stmt : s->body()) { if (!DetermineResultType(case_stmt)) { return false; } } return true; } if (auto* v = stmt->As()) { variable_stack_.set(v->variable()->symbol(), v->variable()); return DetermineResultType(v->variable()->constructor()); } set_error(stmt->source(), "unknown statement type for type determination: " + stmt->str()); return false; } bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { for (auto* expr : list) { if (!DetermineResultType(expr)) { return false; } } return true; } bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { // This is blindly called above, so in some cases the expression won't exist. if (!expr) { return true; } if (auto* a = expr->As()) { return DetermineArrayAccessor(a); } if (auto* b = expr->As()) { return DetermineBinary(b); } if (auto* b = expr->As()) { return DetermineBitcast(b); } if (auto* c = expr->As()) { return DetermineCall(c); } if (auto* c = expr->As()) { return DetermineConstructor(c); } if (auto* i = expr->As()) { return DetermineIdentifier(i); } if (auto* m = expr->As()) { return DetermineMemberAccessor(m); } if (auto* u = expr->As()) { return DetermineUnaryOp(u); } set_error(expr->source(), "unknown expression for type determination"); return false; } bool TypeDeterminer::DetermineArrayAccessor( ast::ArrayAccessorExpression* expr) { if (!DetermineResultType(expr->array())) { return false; } if (!DetermineResultType(expr->idx_expr())) { return false; } auto* res = expr->array()->result_type(); auto* parent_type = res->UnwrapAll(); type::Type* ret = nullptr; if (auto* arr = parent_type->As()) { ret = arr->type(); } else if (auto* vec = parent_type->As()) { ret = vec->type(); } else if (auto* mat = parent_type->As()) { ret = mod_->create(mat->type(), mat->rows()); } else { set_error(expr->source(), "invalid parent type (" + parent_type->type_name() + ") in array accessor"); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = mod_->create(ret, ptr->storage_class()); } else if (auto* arr = parent_type->As()) { if (!arr->type()->is_scalar()) { // If we extract a non-scalar from an array then we also get a pointer. We // will generate a Function storage class variable to store this // into. ret = mod_->create(ret, ast::StorageClass::kFunction); } } expr->set_result_type(ret); return true; } bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) { if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->type()); return true; } bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) { if (!DetermineResultType(expr->func())) { return false; } if (!DetermineResultType(expr->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. if (auto* ident = expr->func()->As()) { if (ident->IsIntrinsic()) { if (!DetermineIntrinsic(ident, expr)) { return false; } } else { if (current_function_) { caller_to_callee_[current_function_->symbol()].push_back( ident->symbol()); auto* callee_func = mod_->Functions().Find(ident->symbol()); if (callee_func == nullptr) { set_error(expr->source(), "unable to find called function: " + mod_->SymbolToName(ident->symbol())); return false; } // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_variables()) { set_referenced_from_function_if_needed(var, false); } } // An identifier with a single name is a function call, not an import // lookup which we can handle with the regular identifier lookup. if (!DetermineResultType(ident)) { return false; } } } else { if (!DetermineResultType(expr->func())) { return false; } } if (!expr->func()->result_type()) { auto func_sym = expr->func()->As()->symbol(); set_error(expr->source(), "v-0005: function must be declared before use: '" + mod_->SymbolToName(func_sym) + "'"); return false; } expr->set_result_type(expr->func()->result_type()); return true; } namespace { enum class IntrinsicDataType { kFloatOrIntScalarOrVector, kFloatScalarOrVector, kIntScalarOrVector, kFloatVector, kMatrix, }; struct IntrinsicData { ast::Intrinsic intrinsic; uint8_t param_count; IntrinsicDataType data_type; uint8_t vector_size; }; // Note, this isn't all the intrinsics. Some are handled specially before // we get to the generic code. See the DetermineIntrinsic code below. constexpr const IntrinsicData kIntrinsicData[] = { {ast::Intrinsic::kAbs, 1, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kAcos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kAsin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kAtan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kAtan2, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kCeil, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kClamp, 3, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kCos, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kCosh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kCountOneBits, 1, IntrinsicDataType::kIntScalarOrVector, 0}, {ast::Intrinsic::kCross, 2, IntrinsicDataType::kFloatVector, 3}, {ast::Intrinsic::kDeterminant, 1, IntrinsicDataType::kMatrix, 0}, {ast::Intrinsic::kDistance, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kExp, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kExp2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFaceForward, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFloor, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFma, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFract, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kFrexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kInverseSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLdexp, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLength, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLog, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kLog2, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kMax, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kMin, 2, IntrinsicDataType::kFloatOrIntScalarOrVector, 0}, {ast::Intrinsic::kMix, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kModf, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kNormalize, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kPow, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kReflect, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kReverseBits, 1, IntrinsicDataType::kIntScalarOrVector, 0}, {ast::Intrinsic::kRound, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSign, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSin, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSinh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSmoothStep, 3, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kSqrt, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kStep, 2, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kTan, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kTanh, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, {ast::Intrinsic::kTrunc, 1, IntrinsicDataType::kFloatScalarOrVector, 0}, }; constexpr const uint32_t kIntrinsicDataCount = sizeof(kIntrinsicData) / sizeof(IntrinsicData); } // namespace bool TypeDeterminer::DetermineIntrinsic(ast::IdentifierExpression* ident, ast::CallExpression* expr) { if (ast::intrinsic::IsDerivative(ident->intrinsic())) { if (expr->params().size() != 1) { set_error(expr->source(), "incorrect number of parameters for " + mod_->SymbolToName(ident->symbol())); return false; } // The result type must be the same as the type of the parameter. auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); expr->func()->set_result_type(param_type); return true; } if (ident->intrinsic() == ast::Intrinsic::kAny || ident->intrinsic() == ast::Intrinsic::kAll) { expr->func()->set_result_type(mod_->create()); return true; } if (ident->intrinsic() == ast::Intrinsic::kArrayLength) { expr->func()->set_result_type(mod_->create()); return true; } if (ast::intrinsic::IsFloatClassificationIntrinsic(ident->intrinsic())) { if (expr->params().size() != 1) { set_error(expr->source(), "incorrect number of parameters for " + mod_->SymbolToName(ident->symbol())); return false; } auto* bool_type = mod_->create(); auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); if (auto* vec = param_type->As()) { expr->func()->set_result_type( mod_->create(bool_type, vec->size())); } else { expr->func()->set_result_type(bool_type); } return true; } if (ast::intrinsic::IsTextureIntrinsic(ident->intrinsic())) { ast::intrinsic::TextureSignature::Parameters param; auto* texture_param = expr->params()[0]; if (!texture_param->result_type()->UnwrapAll()->Is()) { set_error(expr->source(), "invalid first argument for " + mod_->SymbolToName(ident->symbol())); return false; } type::Texture* texture = texture_param->result_type()->UnwrapAll()->As(); bool is_array = type::IsTextureArray(texture->dim()); bool is_multisampled = texture->Is(); switch (ident->intrinsic()) { case ast::Intrinsic::kTextureDimensions: param.idx.texture = param.count++; if (expr->params().size() > param.count) { param.idx.level = param.count++; } break; case ast::Intrinsic::kTextureNumLayers: case ast::Intrinsic::kTextureNumLevels: case ast::Intrinsic::kTextureNumSamples: param.idx.texture = param.count++; break; case ast::Intrinsic::kTextureLoad: param.idx.texture = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } if (expr->params().size() > param.count) { if (is_multisampled) { param.idx.sample_index = param.count++; } else { param.idx.level = param.count++; } } break; case ast::Intrinsic::kTextureSample: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } if (expr->params().size() > param.count) { param.idx.offset = param.count++; } break; case ast::Intrinsic::kTextureSampleBias: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.bias = param.count++; if (expr->params().size() > param.count) { param.idx.offset = param.count++; } break; case ast::Intrinsic::kTextureSampleLevel: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.level = param.count++; if (expr->params().size() > param.count) { param.idx.offset = param.count++; } break; case ast::Intrinsic::kTextureSampleCompare: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.depth_ref = param.count++; if (expr->params().size() > param.count) { param.idx.offset = param.count++; } break; case ast::Intrinsic::kTextureSampleGrad: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.ddx = param.count++; param.idx.ddy = param.count++; if (expr->params().size() > param.count) { param.idx.offset = param.count++; } break; case ast::Intrinsic::kTextureStore: param.idx.texture = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.value = param.count++; break; default: set_error(expr->source(), "Internal compiler error: Unreachable intrinsic " + std::to_string(static_cast(ident->intrinsic()))); return false; } if (expr->params().size() != param.count) { set_error(expr->source(), "incorrect number of parameters for " + mod_->SymbolToName(ident->symbol()) + ", got " + std::to_string(expr->params().size()) + " and expected " + std::to_string(param.count)); return false; } ident->set_intrinsic_signature( std::make_unique(param)); // Set the function return type type::Type* return_type = nullptr; switch (ident->intrinsic()) { case ast::Intrinsic::kTextureDimensions: { auto* i32 = mod_->create(); switch (texture->dim()) { default: set_error(expr->source(), "invalid texture dimensions"); break; case type::TextureDimension::k1d: case type::TextureDimension::k1dArray: return_type = i32; break; case type::TextureDimension::k2d: case type::TextureDimension::k2dArray: return_type = mod_->create(i32, 2); break; case type::TextureDimension::k3d: case type::TextureDimension::kCube: case type::TextureDimension::kCubeArray: return_type = mod_->create(i32, 3); break; } break; } case ast::Intrinsic::kTextureNumLayers: case ast::Intrinsic::kTextureNumLevels: case ast::Intrinsic::kTextureNumSamples: return_type = mod_->create(); break; case ast::Intrinsic::kTextureStore: return_type = mod_->create(); break; default: { if (texture->Is()) { return_type = mod_->create(); } else { type::Type* type = nullptr; if (auto* storage = texture->As()) { type = storage->type(); } else if (auto* sampled = texture->As()) { type = sampled->type(); } else if (auto* msampled = texture->As()) { type = msampled->type(); } else { set_error(expr->source(), "unknown texture type for texture sampling"); return false; } return_type = mod_->create(type, 4); } } } expr->func()->set_result_type(return_type); return true; } if (ident->intrinsic() == ast::Intrinsic::kDot) { expr->func()->set_result_type(mod_->create()); return true; } if (ident->intrinsic() == ast::Intrinsic::kSelect) { if (expr->params().size() != 3) { set_error(expr->source(), "incorrect number of parameters for " + mod_->SymbolToName(ident->symbol()) + " expected 3 got " + std::to_string(expr->params().size())); return false; } // The result type must be the same as the type of the parameter. auto* param_type = expr->params()[0]->result_type()->UnwrapPtrIfNeeded(); expr->func()->set_result_type(param_type); return true; } const IntrinsicData* data = nullptr; for (uint32_t i = 0; i < kIntrinsicDataCount; ++i) { if (ident->intrinsic() == kIntrinsicData[i].intrinsic) { data = &kIntrinsicData[i]; break; } } if (data == nullptr) { error_ = "unable to find intrinsic " + mod_->SymbolToName(ident->symbol()); return false; } if (expr->params().size() != data->param_count) { set_error(expr->source(), "incorrect number of parameters for " + mod_->SymbolToName(ident->symbol()) + ". Expected " + std::to_string(data->param_count) + " got " + std::to_string(expr->params().size())); return false; } std::vector result_types; for (uint32_t i = 0; i < data->param_count; ++i) { result_types.push_back( expr->params()[i]->result_type()->UnwrapPtrIfNeeded()); switch (data->data_type) { case IntrinsicDataType::kFloatOrIntScalarOrVector: if (!result_types.back()->is_float_scalar_or_vector() && !result_types.back()->is_integer_scalar_or_vector()) { set_error(expr->source(), "incorrect type for " + mod_->SymbolToName(ident->symbol()) + ". " + "Requires float or int, scalar or vector values"); return false; } break; case IntrinsicDataType::kFloatScalarOrVector: if (!result_types.back()->is_float_scalar_or_vector()) { set_error(expr->source(), "incorrect type for " + mod_->SymbolToName(ident->symbol()) + ". " + "Requires float scalar or float vector values"); return false; } break; case IntrinsicDataType::kIntScalarOrVector: if (!result_types.back()->is_integer_scalar_or_vector()) { set_error(expr->source(), "incorrect type for " + mod_->SymbolToName(ident->symbol()) + ". " + "Requires integer scalar or integer vector values"); return false; } break; case IntrinsicDataType::kFloatVector: if (!result_types.back()->is_float_vector()) { set_error(expr->source(), "incorrect type for " + mod_->SymbolToName(ident->symbol()) + ". " + "Requires float vector values"); return false; } if (data->vector_size > 0 && result_types.back()->As()->size() != data->vector_size) { set_error(expr->source(), "incorrect vector size for " + mod_->SymbolToName(ident->symbol()) + ". " + "Requires " + std::to_string(data->vector_size) + " elements"); return false; } break; case IntrinsicDataType::kMatrix: if (!result_types.back()->Is()) { set_error(expr->source(), "incorrect type for " + mod_->SymbolToName(ident->symbol()) + ". Requires matrix value"); return false; } break; } } // Verify all the parameter types match for (size_t i = 1; i < data->param_count; ++i) { if (result_types[0] != result_types[i]) { set_error(expr->source(), "mismatched parameter types for " + mod_->SymbolToName(ident->symbol())); return false; } } // Handle functions which aways return the type, even if a vector is // provided. if (ident->intrinsic() == ast::Intrinsic::kLength || ident->intrinsic() == ast::Intrinsic::kDistance) { expr->func()->set_result_type( result_types[0]->is_float_scalar() ? result_types[0] : result_types[0]->As()->type()); return true; } // The determinant returns the component type of the columns if (ident->intrinsic() == ast::Intrinsic::kDeterminant) { expr->func()->set_result_type(result_types[0]->As()->type()); return true; } expr->func()->set_result_type(result_types[0]); return true; } bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { if (auto* ty = expr->As()) { for (auto* value : ty->values()) { if (!DetermineResultType(value)) { return false; } } expr->set_result_type(ty->type()); } else { expr->set_result_type( expr->As()->literal()->type()); } return true; } bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { auto symbol = expr->symbol(); ast::Variable* var; if (variable_stack_.get(symbol, &var)) { // A constant is the type, but a variable is always a pointer so synthesize // the pointer around the variable type. if (var->is_const()) { expr->set_result_type(var->type()); } else if (var->type()->Is()) { expr->set_result_type(var->type()); } else { expr->set_result_type( mod_->create(var->type(), var->storage_class())); } set_referenced_from_function_if_needed(var, true); return true; } auto iter = symbol_to_function_.find(symbol); if (iter != symbol_to_function_.end()) { expr->set_result_type(iter->second->return_type()); return true; } if (!SetIntrinsicIfNeeded(expr)) { set_error(expr->source(), "v-0006: identifier must be declared before use: " + mod_->SymbolToName(symbol)); return false; } return true; } bool TypeDeterminer::SetIntrinsicIfNeeded(ast::IdentifierExpression* ident) { auto name = mod_->SymbolToName(ident->symbol()); if (name == "abs") { ident->set_intrinsic(ast::Intrinsic::kAbs); } else if (name == "acos") { ident->set_intrinsic(ast::Intrinsic::kAcos); } else if (name == "all") { ident->set_intrinsic(ast::Intrinsic::kAll); } else if (name == "any") { ident->set_intrinsic(ast::Intrinsic::kAny); } else if (name == "arrayLength") { ident->set_intrinsic(ast::Intrinsic::kArrayLength); } else if (name == "asin") { ident->set_intrinsic(ast::Intrinsic::kAsin); } else if (name == "atan") { ident->set_intrinsic(ast::Intrinsic::kAtan); } else if (name == "atan2") { ident->set_intrinsic(ast::Intrinsic::kAtan2); } else if (name == "ceil") { ident->set_intrinsic(ast::Intrinsic::kCeil); } else if (name == "clamp") { ident->set_intrinsic(ast::Intrinsic::kClamp); } else if (name == "cos") { ident->set_intrinsic(ast::Intrinsic::kCos); } else if (name == "cosh") { ident->set_intrinsic(ast::Intrinsic::kCosh); } else if (name == "countOneBits") { ident->set_intrinsic(ast::Intrinsic::kCountOneBits); } else if (name == "cross") { ident->set_intrinsic(ast::Intrinsic::kCross); } else if (name == "determinant") { ident->set_intrinsic(ast::Intrinsic::kDeterminant); } else if (name == "distance") { ident->set_intrinsic(ast::Intrinsic::kDistance); } else if (name == "dot") { ident->set_intrinsic(ast::Intrinsic::kDot); } else if (name == "dpdx") { ident->set_intrinsic(ast::Intrinsic::kDpdx); } else if (name == "dpdxCoarse") { ident->set_intrinsic(ast::Intrinsic::kDpdxCoarse); } else if (name == "dpdxFine") { ident->set_intrinsic(ast::Intrinsic::kDpdxFine); } else if (name == "dpdy") { ident->set_intrinsic(ast::Intrinsic::kDpdy); } else if (name == "dpdyCoarse") { ident->set_intrinsic(ast::Intrinsic::kDpdyCoarse); } else if (name == "dpdyFine") { ident->set_intrinsic(ast::Intrinsic::kDpdyFine); } else if (name == "exp") { ident->set_intrinsic(ast::Intrinsic::kExp); } else if (name == "exp2") { ident->set_intrinsic(ast::Intrinsic::kExp2); } else if (name == "faceForward") { ident->set_intrinsic(ast::Intrinsic::kFaceForward); } else if (name == "floor") { ident->set_intrinsic(ast::Intrinsic::kFloor); } else if (name == "fma") { ident->set_intrinsic(ast::Intrinsic::kFma); } else if (name == "fract") { ident->set_intrinsic(ast::Intrinsic::kFract); } else if (name == "frexp") { ident->set_intrinsic(ast::Intrinsic::kFrexp); } else if (name == "fwidth") { ident->set_intrinsic(ast::Intrinsic::kFwidth); } else if (name == "fwidthCoarse") { ident->set_intrinsic(ast::Intrinsic::kFwidthCoarse); } else if (name == "fwidthFine") { ident->set_intrinsic(ast::Intrinsic::kFwidthFine); } else if (name == "inverseSqrt") { ident->set_intrinsic(ast::Intrinsic::kInverseSqrt); } else if (name == "isFinite") { ident->set_intrinsic(ast::Intrinsic::kIsFinite); } else if (name == "isInf") { ident->set_intrinsic(ast::Intrinsic::kIsInf); } else if (name == "isNan") { ident->set_intrinsic(ast::Intrinsic::kIsNan); } else if (name == "isNormal") { ident->set_intrinsic(ast::Intrinsic::kIsNormal); } else if (name == "ldexp") { ident->set_intrinsic(ast::Intrinsic::kLdexp); } else if (name == "length") { ident->set_intrinsic(ast::Intrinsic::kLength); } else if (name == "log") { ident->set_intrinsic(ast::Intrinsic::kLog); } else if (name == "log2") { ident->set_intrinsic(ast::Intrinsic::kLog2); } else if (name == "max") { ident->set_intrinsic(ast::Intrinsic::kMax); } else if (name == "min") { ident->set_intrinsic(ast::Intrinsic::kMin); } else if (name == "mix") { ident->set_intrinsic(ast::Intrinsic::kMix); } else if (name == "modf") { ident->set_intrinsic(ast::Intrinsic::kModf); } else if (name == "normalize") { ident->set_intrinsic(ast::Intrinsic::kNormalize); } else if (name == "pow") { ident->set_intrinsic(ast::Intrinsic::kPow); } else if (name == "reflect") { ident->set_intrinsic(ast::Intrinsic::kReflect); } else if (name == "reverseBits") { ident->set_intrinsic(ast::Intrinsic::kReverseBits); } else if (name == "round") { ident->set_intrinsic(ast::Intrinsic::kRound); } else if (name == "select") { ident->set_intrinsic(ast::Intrinsic::kSelect); } else if (name == "sign") { ident->set_intrinsic(ast::Intrinsic::kSign); } else if (name == "sin") { ident->set_intrinsic(ast::Intrinsic::kSin); } else if (name == "sinh") { ident->set_intrinsic(ast::Intrinsic::kSinh); } else if (name == "smoothStep") { ident->set_intrinsic(ast::Intrinsic::kSmoothStep); } else if (name == "sqrt") { ident->set_intrinsic(ast::Intrinsic::kSqrt); } else if (name == "step") { ident->set_intrinsic(ast::Intrinsic::kStep); } else if (name == "tan") { ident->set_intrinsic(ast::Intrinsic::kTan); } else if (name == "tanh") { ident->set_intrinsic(ast::Intrinsic::kTanh); } else if (name == "textureDimensions") { ident->set_intrinsic(ast::Intrinsic::kTextureDimensions); } else if (name == "textureNumLayers") { ident->set_intrinsic(ast::Intrinsic::kTextureNumLayers); } else if (name == "textureNumLevels") { ident->set_intrinsic(ast::Intrinsic::kTextureNumLevels); } else if (name == "textureNumSamples") { ident->set_intrinsic(ast::Intrinsic::kTextureNumSamples); } else if (name == "textureLoad") { ident->set_intrinsic(ast::Intrinsic::kTextureLoad); } else if (name == "textureStore") { ident->set_intrinsic(ast::Intrinsic::kTextureStore); } else if (name == "textureSample") { ident->set_intrinsic(ast::Intrinsic::kTextureSample); } else if (name == "textureSampleBias") { ident->set_intrinsic(ast::Intrinsic::kTextureSampleBias); } else if (name == "textureSampleCompare") { ident->set_intrinsic(ast::Intrinsic::kTextureSampleCompare); } else if (name == "textureSampleGrad") { ident->set_intrinsic(ast::Intrinsic::kTextureSampleGrad); } else if (name == "textureSampleLevel") { ident->set_intrinsic(ast::Intrinsic::kTextureSampleLevel); } else if (name == "trunc") { ident->set_intrinsic(ast::Intrinsic::kTrunc); } else { return false; } return true; } bool TypeDeterminer::DetermineMemberAccessor( ast::MemberAccessorExpression* expr) { if (!DetermineResultType(expr->structure())) { return false; } auto* res = expr->structure()->result_type(); auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); type::Type* ret = nullptr; if (auto* ty = data_type->As()) { auto* strct = ty->impl(); auto symbol = expr->member()->symbol(); for (auto* member : strct->members()) { if (member->symbol() == symbol) { ret = member->type(); break; } } if (ret == nullptr) { set_error(expr->source(), "struct member " + mod_->SymbolToName(symbol) + " not found"); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = mod_->create(ret, ptr->storage_class()); } } else if (auto* vec = data_type->As()) { // TODO(dsinclair): Swizzle, record into the identifier experesion auto size = mod_->SymbolToName(expr->member()->symbol()).size(); if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = mod_->create(ret, ptr->storage_class()); } } else { // The vector will have a number of components equal to the length of the // swizzle. This assumes the validator will check that the swizzle // is correct. ret = mod_->create(vec->type(), static_cast(size)); } } else { set_error( expr->source(), "v-0007: invalid use of member accessor on a non-vector/non-struct " + data_type->type_name()); return false; } expr->set_result_type(ret); return true; } bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { expr->set_result_type(expr->lhs()->result_type()->UnwrapPtrIfNeeded()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = mod_->create(); auto* param_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); if (auto* vec = param_type->As()) { expr->set_result_type(mod_->create(bool_type, vec->size())); } else { expr->set_result_type(bool_type); } return true; } if (expr->IsMultiply()) { auto* lhs_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); auto* rhs_type = expr->rhs()->result_type()->UnwrapPtrIfNeeded(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. auto* lhs_mat = lhs_type->As(); auto* rhs_mat = rhs_type->As(); auto* lhs_vec = lhs_type->As(); auto* rhs_vec = rhs_type->As(); if (lhs_mat && rhs_mat) { expr->set_result_type(mod_->create( lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns())); } else if (lhs_mat && rhs_vec) { expr->set_result_type( mod_->create(lhs_mat->type(), lhs_mat->rows())); } else if (lhs_vec && rhs_mat) { expr->set_result_type( mod_->create(rhs_mat->type(), rhs_mat->columns())); } else if (lhs_mat) { // matrix * scalar expr->set_result_type(lhs_type); } else if (rhs_mat) { // scalar * matrix expr->set_result_type(rhs_type); } else if (lhs_vec && rhs_vec) { expr->set_result_type(lhs_type); } else if (lhs_vec) { // Vector * scalar expr->set_result_type(lhs_type); } else if (rhs_vec) { // Scalar * vector expr->set_result_type(rhs_type); } else { // Scalar * Scalar expr->set_result_type(lhs_type); } return true; } set_error(expr->source(), "Unknown binary expression"); return false; } bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { // Result type matches the parameter type. if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->expr()->result_type()->UnwrapPtrIfNeeded()); return true; } bool TypeDeterminer::DetermineStorageTextureSubtype(type::StorageTexture* tex) { if (tex->type() != nullptr) { return true; } switch (tex->image_format()) { case type::ImageFormat::kR8Uint: case type::ImageFormat::kR16Uint: case type::ImageFormat::kRg8Uint: case type::ImageFormat::kR32Uint: case type::ImageFormat::kRg16Uint: case type::ImageFormat::kRgba8Uint: case type::ImageFormat::kRg32Uint: case type::ImageFormat::kRgba16Uint: case type::ImageFormat::kRgba32Uint: { tex->set_type(mod_->create()); return true; } case type::ImageFormat::kR8Sint: case type::ImageFormat::kR16Sint: case type::ImageFormat::kRg8Sint: case type::ImageFormat::kR32Sint: case type::ImageFormat::kRg16Sint: case type::ImageFormat::kRgba8Sint: case type::ImageFormat::kRg32Sint: case type::ImageFormat::kRgba16Sint: case type::ImageFormat::kRgba32Sint: { tex->set_type(mod_->create()); return true; } case type::ImageFormat::kR8Unorm: case type::ImageFormat::kRg8Unorm: case type::ImageFormat::kRgba8Unorm: case type::ImageFormat::kRgba8UnormSrgb: case type::ImageFormat::kBgra8Unorm: case type::ImageFormat::kBgra8UnormSrgb: case type::ImageFormat::kRgb10A2Unorm: case type::ImageFormat::kR8Snorm: case type::ImageFormat::kRg8Snorm: case type::ImageFormat::kRgba8Snorm: case type::ImageFormat::kR16Float: case type::ImageFormat::kR32Float: case type::ImageFormat::kRg16Float: case type::ImageFormat::kRg11B10Float: case type::ImageFormat::kRg32Float: case type::ImageFormat::kRgba16Float: case type::ImageFormat::kRgba32Float: { tex->set_type(mod_->create()); return true; } case type::ImageFormat::kNone: break; } return false; } } // namespace tint