// Copyright 2021 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include "gmock/gmock.h" #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/if_statement.h" #include "src/ast/intrinsic_texture_helper_test.h" #include "src/ast/loop_statement.h" #include "src/ast/return_statement.h" #include "src/ast/stage_decoration.h" #include "src/ast/switch_statement.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/resolver/resolver_test_helper.h" #include "src/sem/call.h" #include "src/sem/function.h" #include "src/sem/member_accessor_expression.h" #include "src/sem/sampled_texture_type.h" #include "src/sem/statement.h" #include "src/sem/variable.h" using ::testing::ElementsAre; using ::testing::HasSubstr; namespace tint { namespace resolver { namespace { using ResolverValidationTest = ResolverTest; class FakeStmt : public ast::Statement { public: FakeStmt(ProgramID program_id, Source source) : ast::Statement(program_id, source) {} FakeStmt* Clone(CloneContext*) const override { return nullptr; } void to_str(const sem::Info&, std::ostream& out, size_t) const override { out << "Fake"; } }; class FakeExpr : public ast::Expression { public: FakeExpr(ProgramID program_id, Source source) : ast::Expression(program_id, source) {} FakeExpr* Clone(CloneContext*) const override { return nullptr; } void to_str(const sem::Info&, std::ostream&, size_t) const override {} }; TEST_F(ResolverValidationTest, Error_WithEmptySource) { auto* s = create(); WrapInFunction(s); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "error: unknown statement type for type determination: Fake"); } TEST_F(ResolverValidationTest, Stmt_Error_Unknown) { auto* s = create(Source{Source::Location{2, 30}}); WrapInFunction(s); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "2:30 error: unknown statement type for type determination: Fake"); } TEST_F(ResolverValidationTest, Stmt_If_NonBool) { // if (1.23f) {} WrapInFunction(If(create(Source{{12, 34}}, Literal(1.23f)), Block())); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: if statement condition must be bool, got f32"); } TEST_F(ResolverValidationTest, Stmt_Else_NonBool) { // else (1.23f) {} WrapInFunction(If(Expr(true), Block(), Else(create( Source{{12, 34}}, Literal(1.23f)), Block()))); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: else statement condition must be bool, got f32"); } TEST_F(ResolverValidationTest, Expr_Error_Unknown) { auto* e = create(Source{Source::Location{2, 30}}); WrapInFunction(e); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "2:30 error: unknown expression for type determination"); } TEST_F(ResolverValidationTest, Expr_DontCall_Function) { Func("func", {}, ty.void_(), {}, {}); auto* ident = create( Source{{Source::Location{3, 3}, Source::Location{3, 8}}}, Symbols().Register("func")); WrapInFunction(ident); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "3:8 error: missing '(' for function call"); } TEST_F(ResolverValidationTest, Expr_DontCall_Intrinsic) { auto* ident = create( Source{{Source::Location{3, 3}, Source::Location{3, 8}}}, Symbols().Register("round")); WrapInFunction(ident); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "3:8 error: missing '(' for intrinsic call"); } TEST_F(ResolverValidationTest, UsingUndefinedVariable_Fail) { // b = 2; auto* lhs = Expr(Source{{12, 34}}, "b"); auto* rhs = Expr(2); auto* assign = Assign(lhs, rhs); WrapInFunction(assign); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: v-0006: identifier must be declared before use: b"); } TEST_F(ResolverValidationTest, UsingUndefinedVariableInBlockStatement_Fail) { // { // b = 2; // } auto* lhs = Expr(Source{{12, 34}}, "b"); auto* rhs = Expr(2); auto* body = Block(Assign(lhs, rhs)); WrapInFunction(body); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: v-0006: identifier must be declared before use: b"); } TEST_F(ResolverValidationTest, UsingUndefinedVariableGlobalVariableAfter_Fail) { // fn my_func() { // global_var = 3.14f; // } // var global_var: f32 = 2.1; auto* lhs = Expr(Source{{12, 34}}, "global_var"); auto* rhs = Expr(3.14f); Func("my_func", ast::VariableList{}, ty.void_(), ast::StatementList{ Assign(lhs, rhs), }, ast::DecorationList{Stage(ast::PipelineStage::kVertex)}); Global("global_var", ty.f32(), ast::StorageClass::kPrivate, Expr(2.1f)); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: v-0006: identifier must be declared before use: " "global_var"); } TEST_F(ResolverValidationTest, UsingUndefinedVariableGlobalVariable_Pass) { // var global_var: f32 = 2.1; // fn my_func() { // global_var = 3.14; // return; // } Global("global_var", ty.f32(), ast::StorageClass::kPrivate, Expr(2.1f)); Func("my_func", ast::VariableList{}, ty.void_(), ast::StatementList{ Assign(Expr(Source{Source::Location{12, 34}}, "global_var"), 3.14f), Return(), }); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, UsingUndefinedVariableInnerScope_Fail) { // { // if (true) { var a : f32 = 2.0; } // a = 3.14; // } auto* var = Var("a", ty.f32(), ast::StorageClass::kNone, Expr(2.0f)); auto* cond = Expr(true); auto* body = Block(Decl(var)); SetSource(Source{Source::Location{12, 34}}); auto* lhs = Expr(Source{{12, 34}}, "a"); auto* rhs = Expr(3.14f); auto* outer_body = Block(create(cond, body, ast::ElseStatementList{}), Assign(lhs, rhs)); WrapInFunction(outer_body); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: v-0006: identifier must be declared before use: a"); } TEST_F(ResolverValidationTest, UsingUndefinedVariableOuterScope_Pass) { // { // var a : f32 = 2.0; // if (true) { a = 3.14; } // } auto* var = Var("a", ty.f32(), ast::StorageClass::kNone, Expr(2.0f)); auto* lhs = Expr(Source{{12, 34}}, "a"); auto* rhs = Expr(3.14f); auto* cond = Expr(true); auto* body = Block(Assign(lhs, rhs)); auto* outer_body = Block(Decl(var), create(cond, body, ast::ElseStatementList{})); WrapInFunction(outer_body); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, UsingUndefinedVariableDifferentScope_Fail) { // { // { var a : f32 = 2.0; } // { a = 3.14; } // } auto* var = Var("a", ty.f32(), ast::StorageClass::kNone, Expr(2.0f)); auto* first_body = Block(Decl(var)); auto* lhs = Expr(Source{{12, 34}}, "a"); auto* rhs = Expr(3.14f); auto* second_body = Block(Assign(lhs, rhs)); auto* outer_body = Block(first_body, second_body); WrapInFunction(outer_body); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: v-0006: identifier must be declared before use: a"); } TEST_F(ResolverValidationTest, StorageClass_NonFunctionClassError) { auto* var = Var("var", ty.i32(), ast::StorageClass::kWorkgroup); auto* stmt = Decl(var); Func("func", ast::VariableList{}, ty.void_(), ast::StatementList{stmt}, ast::DecorationList{}); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "error: function variable has a non-function storage class"); } TEST_F(ResolverValidationTest, StorageClass_SamplerExplicitStorageClass) { auto* t = ty.sampler(ast::SamplerKind::kSampler); Global(Source{{12, 34}}, "var", t, ast::StorageClass::kUniformConstant, ast::DecorationList{ create(0), create(0), }); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), R"(12:34 error: variables of type 'sampler' must not have a storage class)"); } TEST_F(ResolverValidationTest, StorageClass_TextureExplicitStorageClass) { auto* t = ty.sampled_texture(ast::TextureDimension::k1d, ty.f32()); Global(Source{{12, 34}}, "var", t, ast::StorageClass::kUniformConstant, ast::DecorationList{ create(0), create(0), }); EXPECT_FALSE(r()->Resolve()) << r()->error(); EXPECT_EQ( r()->error(), R"(12:34 error: variables of type 'texture_1d' must not have a storage class)"); } TEST_F(ResolverValidationTest, Expr_MemberAccessor_VectorSwizzle_BadChar) { Global("my_vec", ty.vec3(), ast::StorageClass::kInput); auto* ident = create( Source{{Source::Location{3, 3}, Source::Location{3, 7}}}, Symbols().Register("xyqz")); auto* mem = MemberAccessor("my_vec", ident); WrapInFunction(mem); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "3:5 error: invalid vector swizzle character"); } TEST_F(ResolverValidationTest, Expr_MemberAccessor_VectorSwizzle_MixedChars) { Global("my_vec", ty.vec4(), ast::StorageClass::kInput); auto* ident = create( Source{{Source::Location{3, 3}, Source::Location{3, 7}}}, Symbols().Register("rgyw")); auto* mem = MemberAccessor("my_vec", ident); WrapInFunction(mem); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "3:3 error: invalid mixing of vector swizzle characters rgba with xyzw"); } TEST_F(ResolverValidationTest, Expr_MemberAccessor_VectorSwizzle_BadLength) { Global("my_vec", ty.vec3(), ast::StorageClass::kInput); auto* ident = create( Source{{Source::Location{3, 3}, Source::Location{3, 8}}}, Symbols().Register("zzzzz")); auto* mem = MemberAccessor("my_vec", ident); WrapInFunction(mem); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "3:3 error: invalid vector swizzle size"); } TEST_F(ResolverValidationTest, Expr_MemberAccessor_VectorSwizzle_BadIndex) { Global("my_vec", ty.vec2(), ast::StorageClass::kInput); auto* ident = create(Source{{3, 3}}, Symbols().Register("z")); auto* mem = MemberAccessor("my_vec", ident); WrapInFunction(mem); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "3:3 error: invalid vector swizzle member"); } TEST_F(ResolverValidationTest, Stmt_Loop_ContinueInLoopBodyBeforeDecl_UsageInContinuing) { // loop { // continue; // Bypasses z decl // var z : i32; // // continuing { // z = 2; // } // } auto error_loc = Source{Source::Location{12, 34}}; auto* body = Block(create(), Decl(Var("z", ty.i32(), ast::StorageClass::kNone))); auto* continuing = Block(Assign(Expr(error_loc, "z"), 2)); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_FALSE(r()->Resolve()) << r()->error(); EXPECT_EQ(r()->error(), "12:34 error: continue statement bypasses declaration of 'z' in " "continuing block"); } TEST_F(ResolverValidationTest, Stmt_Loop_ContinueInLoopBodyBeforeDeclAndAfterDecl_UsageInContinuing) { // loop { // continue; // Bypasses z decl // var z : i32; // continue; // Ok // // continuing { // z = 2; // } // } auto error_loc = Source{Source::Location{12, 34}}; auto* body = Block(create(), Decl(Var("z", ty.i32(), ast::StorageClass::kNone)), create()); auto* continuing = Block(Assign(Expr(error_loc, "z"), 2)); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_FALSE(r()->Resolve()) << r()->error(); EXPECT_EQ(r()->error(), "12:34 error: continue statement bypasses declaration of 'z' in " "continuing block"); } TEST_F(ResolverValidationTest, Stmt_Loop_ContinueInLoopBodySubscopeBeforeDecl_UsageInContinuing) { // loop { // if (true) { // continue; // Still bypasses z decl (if we reach here) // } // var z : i32; // continuing { // z = 2; // } // } auto error_loc = Source{Source::Location{12, 34}}; auto* body = Block(If(Expr(true), Block(create())), Decl(Var("z", ty.i32(), ast::StorageClass::kNone))); auto* continuing = Block(Assign(Expr(error_loc, "z"), 2)); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_FALSE(r()->Resolve()) << r()->error(); EXPECT_EQ(r()->error(), "12:34 error: continue statement bypasses declaration of 'z' in " "continuing block"); } TEST_F( ResolverValidationTest, Stmt_Loop_ContinueInLoopBodySubscopeBeforeDecl_UsageInContinuingSubscope) { // loop { // if (true) { // continue; // Still bypasses z decl (if we reach here) // } // var z : i32; // continuing { // if (true) { // z = 2; // Must fail even if z is in a sub-scope // } // } // } auto error_loc = Source{Source::Location{12, 34}}; auto* body = Block(If(Expr(true), Block(create())), Decl(Var("z", ty.i32(), ast::StorageClass::kNone))); auto* continuing = Block(If(Expr(true), Block(Assign(Expr(error_loc, "z"), 2)))); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_FALSE(r()->Resolve()) << r()->error(); EXPECT_EQ(r()->error(), "12:34 error: continue statement bypasses declaration of 'z' in " "continuing block"); } TEST_F(ResolverValidationTest, Stmt_Loop_ContinueInLoopBodySubscopeBeforeDecl_UsageInContinuingLoop) { // loop { // if (true) { // continue; // Still bypasses z decl (if we reach here) // } // var z : i32; // continuing { // loop { // z = 2; // Must fail even if z is in a sub-scope // } // } // } auto error_loc = Source{Source::Location{12, 34}}; auto* body = Block(If(Expr(true), Block(create())), Decl(Var("z", ty.i32(), ast::StorageClass::kNone))); auto* continuing = Block(Loop(Block(Assign(Expr(error_loc, "z"), 2)))); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_FALSE(r()->Resolve()) << r()->error(); EXPECT_EQ(r()->error(), "12:34 error: continue statement bypasses declaration of 'z' in " "continuing block"); } TEST_F(ResolverValidationTest, Stmt_Loop_ContinueInNestedLoopBodyBeforeDecl_UsageInContinuing) { // loop { // loop { // continue; // OK: not part of the outer loop // } // var z : i32; // // continuing { // z = 2; // } // } auto* inner_loop = Loop(Block(create())); auto* body = Block(inner_loop, Decl(Var("z", ty.i32(), ast::StorageClass::kNone))); auto* continuing = Block(Assign("z", 2)); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Stmt_Loop_ContinueInNestedLoopBodyBeforeDecl_UsageInContinuingSubscope) { // loop { // loop { // continue; // OK: not part of the outer loop // } // var z : i32; // // continuing { // if (true) { // z = 2; // } // } // } auto* inner_loop = Loop(Block(create())); auto* body = Block(inner_loop, Decl(Var("z", ty.i32(), ast::StorageClass::kNone))); auto* continuing = Block(If(Expr(true), Block(Assign("z", 2)))); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Stmt_Loop_ContinueInNestedLoopBodyBeforeDecl_UsageInContinuingLoop) { // loop { // loop { // continue; // OK: not part of the outer loop // } // var z : i32; // // continuing { // loop { // z = 2; // } // } // } auto* inner_loop = Loop(Block(create())); auto* body = Block(inner_loop, Decl(Var("z", ty.i32(), ast::StorageClass::kNone))); auto* continuing = Block(Loop(Block(Assign("z", 2)))); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverTest, Stmt_Loop_ContinueInLoopBodyAfterDecl_UsageInContinuing) { // loop { // var z : i32; // continue; // // continuing { // z = 2; // } // } auto error_loc = Source{Source::Location{12, 34}}; auto* body = Block(Decl(Var("z", ty.i32(), ast::StorageClass::kNone)), create()); auto* continuing = Block(Assign(Expr(error_loc, "z"), 2)); auto* loop_stmt = Loop(body, continuing); WrapInFunction(loop_stmt); EXPECT_TRUE(r()->Resolve()); } TEST_F(ResolverValidationTest, Stmt_ContinueInLoop) { WrapInFunction(Loop(Block(create(Source{{12, 34}})))); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Stmt_ContinueNotInLoop) { WrapInFunction(create(Source{{12, 34}})); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: continue statement must be in a loop"); } TEST_F(ResolverValidationTest, Stmt_BreakInLoop) { WrapInFunction(Loop(Block(create(Source{{12, 34}})))); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Stmt_BreakInSwitch) { WrapInFunction(Loop(Block(Switch( Expr(1), Case(Literal(1), Block(create(Source{{12, 34}}))), DefaultCase())))); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Stmt_BreakNotInLoopOrSwitch) { WrapInFunction(create(Source{{12, 34}})); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: break statement must be in a loop or switch case"); } TEST_F(ResolverValidationTest, NonPOTStructMemberAlignDecoration) { Structure("S", { Member("a", ty.f32(), {MemberAlign(Source{{12, 34}}, 3)}), }); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: align value must be a positive, power-of-two integer"); } TEST_F(ResolverValidationTest, ZeroStructMemberAlignDecoration) { Structure("S", { Member("a", ty.f32(), {MemberAlign(Source{{12, 34}}, 0)}), }); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: align value must be a positive, power-of-two integer"); } TEST_F(ResolverValidationTest, ZeroStructMemberSizeDecoration) { Structure("S", { Member("a", ty.f32(), {MemberSize(Source{{12, 34}}, 0)}), }); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: size must be at least as big as the type's size (4)"); } TEST_F(ResolverValidationTest, OffsetAndSizeDecoration) { Structure("S", { Member(Source{{12, 34}}, "a", ty.f32(), {MemberOffset(0), MemberSize(4)}), }); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: offset decorations cannot be used with align or size " "decorations"); } TEST_F(ResolverValidationTest, OffsetAndAlignDecoration) { Structure("S", { Member(Source{{12, 34}}, "a", ty.f32(), {MemberOffset(0), MemberAlign(4)}), }); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: offset decorations cannot be used with align or size " "decorations"); } TEST_F(ResolverValidationTest, OffsetAndAlignAndSizeDecoration) { Structure("S", { Member(Source{{12, 34}}, "a", ty.f32(), {MemberOffset(0), MemberAlign(4), MemberSize(4)}), }); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: offset decorations cannot be used with align or size " "decorations"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2F32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec2( create(Source{{12, 34}}, Literal(1)), 1.0f); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'f32', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2U32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec2(1u, create( Source{{12, 34}}, Literal(1))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'u32', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2I32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec2( create(Source{{12, 34}}, Literal(1u)), 1); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'i32', found 'u32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2Bool_Error_ScalarArgumentTypeMismatch) { auto* tc = vec2(true, create( Source{{12, 34}}, Literal(1))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'bool', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Error_Vec3ArgumentCardinalityTooLarge) { auto* tc = vec2(create( Source{{12, 34}}, ty.vec3(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec2' with 3 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Error_Vec4ArgumentCardinalityTooLarge) { auto* tc = vec2(create( Source{{12, 34}}, ty.vec4(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec2' with 4 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Error_TooManyArgumentsScalar) { auto* tc = vec2( create(Source{{12, 34}}, Literal(1.0f)), create(Source{{12, 40}}, Literal(1.0f)), create(Source{{12, 46}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec2' with 3 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Error_TooManyArgumentsVector) { auto* tc = vec2(create( Source{{12, 34}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, ty.vec2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec2' with 4 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Error_TooManyArgumentsVectorAndScalar) { auto* tc = vec2(create( Source{{12, 34}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec2' with 3 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Error_InvalidConversionFromVec2Bool) { SetSource(Source::Location({12, 34})); auto* tc = vec2(create( Source{{12, 34}}, ty.vec2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'f32', found 'bool'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Error_InvalidArgumentType) { auto* tc = vec2(create( Source{{12, 34}}, ty.mat2x2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: expected vector or scalar type in vector " "constructor; found: mat2x2"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Success_ZeroValue) { auto* tc = vec2(); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2F32_Success_Scalar) { auto* tc = vec2(1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2U32_Success_Scalar) { auto* tc = vec2(1u, 1u); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2I32_Success_Scalar) { auto* tc = vec2(1, 1); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2Bool_Success_Scalar) { auto* tc = vec2(true, false); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Success_Identity) { auto* tc = vec2(vec2()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec2_Success_Vec2TypeConversion) { auto* tc = vec2(vec2()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3F32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec3( 1.0f, 1.0f, create(Source{{12, 34}}, Literal(1))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'f32', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3U32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec3( 1u, create(Source{{12, 34}}, Literal(1)), 1u); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'u32', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3I32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec3( 1, create(Source{{12, 34}}, Literal(1u)), 1); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'i32', found 'u32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3Bool_Error_ScalarArgumentTypeMismatch) { auto* tc = vec3( true, create(Source{{12, 34}}, Literal(1)), false); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'bool', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_Vec4ArgumentCardinalityTooLarge) { auto* tc = vec3(create( Source{{12, 34}}, ty.vec4(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 4 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_TooFewArgumentsScalar) { auto* tc = vec3( create(Source{{12, 34}}, Literal(1.0f)), create(Source{{12, 40}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 2 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_TooManyArgumentsScalar) { auto* tc = vec3( create(Source{{12, 34}}, Literal(1.0f)), create(Source{{12, 40}}, Literal(1.0f)), create(Source{{12, 46}}, Literal(1.0f)), create(Source{{12, 52}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 4 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_TooFewArgumentsVec2) { auto* tc = vec3(create( Source{{12, 34}}, ty.vec2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 2 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_TooManyArgumentsVec2) { auto* tc = vec3(create( Source{{12, 34}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, ty.vec2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 4 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_TooManyArgumentsVec2AndScalar) { auto* tc = vec3( create(Source{{12, 34}}, ty.vec2(), ExprList()), create(Source{{12, 40}}, Literal(1.0f)), create(Source{{12, 46}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 4 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_TooManyArgumentsVec3) { auto* tc = vec3(create( Source{{12, 34}}, ty.vec3(), ExprList()), create( Source{{12, 40}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 4 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_InvalidConversionFromVec3Bool) { auto* tc = vec3(create( Source{{12, 34}}, ty.vec3(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'f32', found 'bool'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Error_InvalidArgumentType) { auto* tc = vec3(create( Source{{12, 34}}, ty.mat2x2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: expected vector or scalar type in vector " "constructor; found: mat2x2"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Success_ZeroValue) { auto* tc = vec3(); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3F32_Success_Scalar) { auto* tc = vec3(1.0f, 1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3U32_Success_Scalar) { auto* tc = vec3(1u, 1u, 1u); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3I32_Success_Scalar) { auto* tc = vec3(1, 1, 1); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3Bool_Success_Scalar) { auto* tc = vec3(true, false, true); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Success_Vec2AndScalar) { auto* tc = vec3(vec2(), 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Success_ScalarAndVec2) { auto* tc = vec3(1.0f, vec2()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Success_Identity) { auto* tc = vec3(vec3()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec3_Success_Vec3TypeConversion) { auto* tc = vec3(vec3()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4F32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec4( 1.0f, 1.0f, create(Source{{12, 34}}, Literal(1)), 1.0f); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'f32', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4U32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec4( 1u, 1u, create(Source{{12, 34}}, Literal(1)), 1u); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'u32', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4I32_Error_ScalarArgumentTypeMismatch) { auto* tc = vec4( 1, 1, create(Source{{12, 34}}, Literal(1u)), 1); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'i32', found 'u32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4Bool_Error_ScalarArgumentTypeMismatch) { auto* tc = vec4( true, false, create(Source{{12, 34}}, Literal(1)), true); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'bool', found 'i32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooFewArgumentsScalar) { auto* tc = vec4( create(Source{{12, 34}}, Literal(1.0f)), create(Source{{12, 40}}, Literal(1.0f)), create(Source{{12, 46}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 3 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsScalar) { auto* tc = vec4( create(Source{{12, 34}}, Literal(1.0f)), create(Source{{12, 40}}, Literal(1.0f)), create(Source{{12, 46}}, Literal(1.0f)), create(Source{{12, 52}}, Literal(1.0f)), create(Source{{12, 58}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 5 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooFewArgumentsVec2AndScalar) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 3 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsVec2AndScalars) { auto* tc = vec4( create(Source{{12, 34}}, ty.vec2(), ExprList()), create(Source{{12, 40}}, Literal(1.0f)), create(Source{{12, 46}}, Literal(1.0f)), create(Source{{12, 52}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 5 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsVec2Vec2Scalar) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, ty.vec2(), ExprList()), create( Source{{12, 46}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 5 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsVec2Vec2Vec2) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, ty.vec2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 6 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooFewArgumentsVec3) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec3(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 3 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndScalars) { auto* tc = vec4( create(Source{{12, 34}}, ty.vec3(), ExprList()), create(Source{{12, 40}}, Literal(1.0f)), create(Source{{12, 46}}, Literal(1.0f))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 5 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndVec2) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec3(), ExprList()), create( Source{{12, 40}}, ty.vec2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 5 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsVec2AndVec3) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec2(), ExprList()), create( Source{{12, 40}}, ty.vec3(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 5 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_TooManyArgumentsVec3AndVec3) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec3(), ExprList()), create( Source{{12, 40}}, ty.vec3(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec4' with 6 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_InvalidConversionFromVec4Bool) { auto* tc = vec4(create( Source{{12, 34}}, ty.vec4(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'f32', found 'bool'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Error_InvalidArgumentType) { auto* tc = vec4(create( Source{{12, 34}}, ty.mat2x2(), ExprList())); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: expected vector or scalar type in vector " "constructor; found: mat2x2"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_ZeroValue) { auto* tc = vec4(); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4F32_Success_Scalar) { auto* tc = vec4(1.0f, 1.0f, 1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4U32_Success_Scalar) { auto* tc = vec4(1u, 1u, 1u, 1u); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4I32_Success_Scalar) { auto* tc = vec4(1, 1, 1, 1); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4Bool_Success_Scalar) { auto* tc = vec4(true, false, true, false); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_Vec2ScalarScalar) { auto* tc = vec4(vec2(), 1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_ScalarVec2Scalar) { auto* tc = vec4(1.0f, vec2(), 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_ScalarScalarVec2) { auto* tc = vec4(1.0f, 1.0f, vec2()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_Vec2AndVec2) { auto* tc = vec4(vec2(), vec2()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_Vec3AndScalar) { auto* tc = vec4(vec3(), 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_ScalarAndVec3) { auto* tc = vec4(1.0f, vec3()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_Identity) { auto* tc = vec4(vec4()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vec4_Success_Vec4TypeConversion) { auto* tc = vec4(vec4()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_NestedVectorConstructors_InnerError) { auto* tc = vec4(vec4(1.0f, 1.0f, vec3(Expr(Source{{12, 34}}, 1.0f), Expr(Source{{12, 34}}, 1.0f))), 1.0f); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ( r()->error(), "12:34 error: attempted to construct 'vec3' with 2 component(s)"); } TEST_F(ResolverValidationTest, Expr_Constructor_NestedVectorConstructors_Success) { auto* tc = vec4(vec3(vec2(1.0f, 1.0f), 1.0f), 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverValidationTest, Expr_Constructor_Vector_Alias_Argument_Error) { auto* alias = Alias("UnsignedInt", ty.u32()); Global("uint_var", ty.Of(alias), ast::StorageClass::kInput); auto* tc = vec2(Expr(Source{{12, 34}}, "uint_var")); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'f32', found 'UnsignedInt'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vector_Alias_Argument_Success) { auto* f32_alias = Alias("Float32", ty.f32()); auto* vec2_alias = Alias("VectorFloat2", ty.vec2()); Global("my_f32", ty.Of(f32_alias), ast::StorageClass::kInput); Global("my_vec2", ty.Of(vec2_alias), ast::StorageClass::kInput); auto* tc = vec3("my_vec2", "my_f32"); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Expr_Constructor_Vector_ElementTypeAlias_Error) { auto* f32_alias = Alias("Float32", ty.f32()); // vec2(1.0f, 1u) auto* vec_type = ty.vec(ty.Of(f32_alias), 2); auto* tc = create( Source{{12, 34}}, vec_type, ExprList(1.0f, create(Source{{12, 40}}, Literal(1u)))); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:40 error: type in vector constructor does not match vector " "type: expected 'f32', found 'u32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vector_ElementTypeAlias_Success) { auto* f32_alias = Alias("Float32", ty.f32()); // vec2(1.0f, 1.0f) auto* vec_type = ty.vec(ty.Of(f32_alias), 2); auto* tc = create(Source{{12, 34}}, vec_type, ExprList(1.0f, 1.0f)); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Expr_Constructor_Vector_ArgumentElementTypeAlias_Error) { auto* f32_alias = Alias("Float32", ty.f32()); // vec3(vec(), 1.0f) auto* vec_type = ty.vec(ty.Of(f32_alias), 2); auto* tc = vec3(create( Source{{12, 34}}, vec_type, ExprList()), 1.0f); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: type in vector constructor does not match vector " "type: expected 'u32', found 'f32'"); } TEST_F(ResolverValidationTest, Expr_Constructor_Vector_ArgumentElementTypeAlias_Success) { auto* f32_alias = Alias("Float32", ty.f32()); // vec3(vec(), 1.0f) auto* vec_type = ty.vec(ty.Of(f32_alias), 2); auto* tc = vec3(create( Source{{12, 34}}, vec_type, ExprList()), 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } struct MatrixDimensions { uint32_t rows; uint32_t columns; }; std::string MatrixStr(const MatrixDimensions& dimensions, std::string subtype = "f32") { return "mat" + std::to_string(dimensions.columns) + "x" + std::to_string(dimensions.rows) + "<" + subtype + ">"; } std::string VecStr(uint32_t dimensions, std::string subtype = "f32") { return "vec" + std::to_string(dimensions) + "<" + subtype + ">"; } using MatrixConstructorTest = ResolverTestWithParam; TEST_P(MatrixConstructorTest, Expr_Constructor_Error_TooFewArguments) { // matNxM(vecM(), ...); with N - 1 arguments const auto param = GetParam(); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns - 1; i++) { auto* vec_type = ty.vec(param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:1 error: expected " + std::to_string(param.columns) + " '" + VecStr(param.rows) + "' arguments in '" + MatrixStr(param) + "' constructor, found " + std::to_string(param.columns - 1)); } TEST_P(MatrixConstructorTest, Expr_Constructor_Error_TooManyArguments) { // matNxM(vecM(), ...); with N + 1 arguments const auto param = GetParam(); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns + 1; i++) { auto* vec_type = ty.vec(param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:1 error: expected " + std::to_string(param.columns) + " '" + VecStr(param.rows) + "' arguments in '" + MatrixStr(param) + "' constructor, found " + std::to_string(param.columns + 1)); } TEST_P(MatrixConstructorTest, Expr_Constructor_Error_InvalidArgumentType) { // matNxM(1.0, 1.0, ...); N arguments const auto param = GetParam(); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { args.push_back(create(Source{{12, i}}, Literal(1.0f))); } auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:1 error: expected argument type '" + VecStr(param.rows) + "' in '" + MatrixStr(param) + "' constructor, found 'f32'"); } TEST_P(MatrixConstructorTest, Expr_Constructor_Error_TooFewRowsInVectorArgument) { // matNxM(vecM(),...,vecM-1()); const auto param = GetParam(); // Skip the test if parameters would have resuled in an invalid vec1 type. if (param.rows == 2) { return; } ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns - 1; i++) { auto* valid_vec_type = ty.vec(param.rows); args.push_back(create( Source{{12, i}}, valid_vec_type, ExprList())); } const size_t kInvalidLoc = 2 * (param.columns - 1); auto* invalid_vec_type = ty.vec(param.rows - 1); args.push_back(create( Source{{12, kInvalidLoc}}, invalid_vec_type, ExprList())); auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:" + std::to_string(kInvalidLoc) + " error: expected argument type '" + VecStr(param.rows) + "' in '" + MatrixStr(param) + "' constructor, found '" + VecStr(param.rows - 1) + "'"); } TEST_P(MatrixConstructorTest, Expr_Constructor_Error_TooManyRowsInVectorArgument) { // matNxM(vecM(),...,vecM+1()); const auto param = GetParam(); // Skip the test if parameters would have resuled in an invalid vec5 type. if (param.rows == 4) { return; } ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns - 1; i++) { auto* valid_vec_type = ty.vec(param.rows); args.push_back(create( Source{{12, i}}, valid_vec_type, ExprList())); } const size_t kInvalidLoc = 2 * (param.columns - 1); auto* invalid_vec_type = ty.vec(param.rows + 1); args.push_back(create( Source{{12, kInvalidLoc}}, invalid_vec_type, ExprList())); auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:" + std::to_string(kInvalidLoc) + " error: expected argument type '" + VecStr(param.rows) + "' in '" + MatrixStr(param) + "' constructor, found '" + VecStr(param.rows + 1) + "'"); } TEST_P(MatrixConstructorTest, Expr_Constructor_Error_ArgumentVectorElementTypeMismatch) { // matNxM(vecM(), ...); with N arguments const auto param = GetParam(); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { auto* vec_type = ty.vec(param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:1 error: expected argument type '" + VecStr(param.rows) + "' in '" + MatrixStr(param) + "' constructor, found '" + VecStr(param.rows, "u32") + "'"); } TEST_P(MatrixConstructorTest, Expr_Constructor_ZeroValue_Success) { // matNxM(); const auto param = GetParam(); auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{{12, 40}}, matrix_type, ExprList()); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, Expr_Constructor_WithArguments_Success) { // matNxM(vecM(), ...); with N arguments const auto param = GetParam(); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { auto* vec_type = ty.vec(param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, Expr_Constructor_ElementTypeAlias_Error) { // matNxM(vecM(), ...); with N arguments const auto param = GetParam(); auto* f32_alias = Alias("Float32", ty.f32()); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { auto* vec_type = ty.vec(ty.u32(), param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* matrix_type = ty.mat(ty.Of(f32_alias), param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:1 error: expected argument type '" + VecStr(param.rows) + "' in '" + MatrixStr(param, "Float32") + "' constructor, found '" + VecStr(param.rows, "u32") + "'"); } TEST_P(MatrixConstructorTest, Expr_Constructor_ElementTypeAlias_Success) { // matNxM(vecM(), ...); with N arguments const auto param = GetParam(); auto* f32_alias = Alias("Float32", ty.f32()); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { auto* vec_type = ty.vec(param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* matrix_type = ty.mat(ty.Of(f32_alias), param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverValidationTest, Expr_MatrixConstructor_ArgumentTypeAlias_Error) { auto* alias = Alias("VectorUnsigned2", ty.vec2()); auto* tc = mat2x2(create( Source{{12, 34}}, ty.Of(alias), ExprList()), vec2()); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:34 error: expected argument type 'vec2' in 'mat2x2' " "constructor, found 'VectorUnsigned2'"); } TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentTypeAlias_Success) { const auto param = GetParam(); auto* matrix_type = ty.mat(param.columns, param.rows); auto* vec_type = ty.vec(param.rows); auto* vec_alias = Alias("VectorFloat2", vec_type); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { args.push_back(create( Source{{12, i}}, ty.Of(vec_alias), ExprList())); } auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentElementTypeAlias_Error) { const auto param = GetParam(); auto* matrix_type = ty.mat(param.columns, param.rows); auto* f32_alias = Alias("UnsignedInt", ty.u32()); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { auto* vec_type = ty.vec(ty.Of(f32_alias), param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_FALSE(r()->Resolve()); EXPECT_EQ(r()->error(), "12:1 error: expected argument type '" + VecStr(param.rows) + "' in '" + MatrixStr(param) + "' constructor, found '" + VecStr(param.rows, "UnsignedInt") + "'"); } TEST_P(MatrixConstructorTest, Expr_Constructor_ArgumentElementTypeAlias_Success) { const auto param = GetParam(); auto* f32_alias = Alias("Float32", ty.f32()); ast::ExpressionList args; for (uint32_t i = 1; i <= param.columns; i++) { auto* vec_type = ty.vec(ty.Of(f32_alias), param.rows); args.push_back(create( Source{{12, i}}, vec_type, ExprList())); } auto* matrix_type = ty.mat(param.columns, param.rows); auto* tc = create(Source{}, matrix_type, std::move(args)); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); } INSTANTIATE_TEST_SUITE_P(ResolverValidationTest, MatrixConstructorTest, testing::Values(MatrixDimensions{2, 2}, MatrixDimensions{3, 2}, MatrixDimensions{4, 2}, MatrixDimensions{2, 3}, MatrixDimensions{3, 3}, MatrixDimensions{4, 3}, MatrixDimensions{2, 4}, MatrixDimensions{3, 4}, MatrixDimensions{4, 4})); } // namespace } // namespace resolver } // namespace tint