// Copyright 2017 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dawn/native/Device.h" #include #include #include #include #include "dawn/common/Log.h" #include "dawn/common/Version_autogen.h" #include "dawn/native/Adapter.h" #include "dawn/native/AsyncTask.h" #include "dawn/native/AttachmentState.h" #include "dawn/native/BindGroup.h" #include "dawn/native/BindGroupLayout.h" #include "dawn/native/BlobCache.h" #include "dawn/native/Buffer.h" #include "dawn/native/ChainUtils_autogen.h" #include "dawn/native/CommandBuffer.h" #include "dawn/native/CommandEncoder.h" #include "dawn/native/CompilationMessages.h" #include "dawn/native/CreatePipelineAsyncTask.h" #include "dawn/native/DynamicUploader.h" #include "dawn/native/ErrorData.h" #include "dawn/native/ErrorInjector.h" #include "dawn/native/ErrorScope.h" #include "dawn/native/ExternalTexture.h" #include "dawn/native/Instance.h" #include "dawn/native/InternalPipelineStore.h" #include "dawn/native/ObjectType_autogen.h" #include "dawn/native/PipelineCache.h" #include "dawn/native/QuerySet.h" #include "dawn/native/Queue.h" #include "dawn/native/RenderBundleEncoder.h" #include "dawn/native/RenderPipeline.h" #include "dawn/native/Sampler.h" #include "dawn/native/Surface.h" #include "dawn/native/SwapChain.h" #include "dawn/native/Texture.h" #include "dawn/native/ValidationUtils_autogen.h" #include "dawn/native/utils/WGPUHelpers.h" #include "dawn/platform/DawnPlatform.h" #include "dawn/platform/tracing/TraceEvent.h" namespace dawn::native { // DeviceBase sub-structures // The caches are unordered_sets of pointers with special hash and compare functions // to compare the value of the objects, instead of the pointers. template using ContentLessObjectCache = std::unordered_set; struct DeviceBase::Caches { ~Caches() { ASSERT(attachmentStates.empty()); ASSERT(bindGroupLayouts.empty()); ASSERT(computePipelines.empty()); ASSERT(pipelineLayouts.empty()); ASSERT(renderPipelines.empty()); ASSERT(samplers.empty()); ASSERT(shaderModules.empty()); } ContentLessObjectCache attachmentStates; ContentLessObjectCache bindGroupLayouts; ContentLessObjectCache computePipelines; ContentLessObjectCache pipelineLayouts; ContentLessObjectCache renderPipelines; ContentLessObjectCache samplers; ContentLessObjectCache shaderModules; }; struct DeviceBase::DeprecationWarnings { std::unordered_set emitted; size_t count = 0; }; namespace { struct LoggingCallbackTask : CallbackTask { public: LoggingCallbackTask() = delete; LoggingCallbackTask(wgpu::LoggingCallback loggingCallback, WGPULoggingType loggingType, const char* message, void* userdata) : mCallback(loggingCallback), mLoggingType(loggingType), mMessage(message), mUserdata(userdata) { // Since the Finish() will be called in uncertain future in which time the message // may already disposed, we must keep a local copy in the CallbackTask. } void Finish() override { mCallback(mLoggingType, mMessage.c_str(), mUserdata); } void HandleShutDown() override { // Do the logging anyway mCallback(mLoggingType, mMessage.c_str(), mUserdata); } void HandleDeviceLoss() override { mCallback(mLoggingType, mMessage.c_str(), mUserdata); } private: // As all deferred callback tasks will be triggered before modifying the registered // callback or shutting down, we are ensured that callback function and userdata pointer // stored in tasks is valid when triggered. wgpu::LoggingCallback mCallback; WGPULoggingType mLoggingType; std::string mMessage; void* mUserdata; }; ResultOrError> ValidateLayoutAndGetComputePipelineDescriptorWithDefaults( DeviceBase* device, const ComputePipelineDescriptor& descriptor, ComputePipelineDescriptor* outDescriptor) { Ref layoutRef; *outDescriptor = descriptor; if (outDescriptor->layout == nullptr) { DAWN_TRY_ASSIGN(layoutRef, PipelineLayoutBase::CreateDefault( device, {{ SingleShaderStage::Compute, outDescriptor->compute.module, outDescriptor->compute.entryPoint, outDescriptor->compute.constantCount, outDescriptor->compute.constants, }})); outDescriptor->layout = layoutRef.Get(); } return layoutRef; } ResultOrError> ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults( DeviceBase* device, const RenderPipelineDescriptor& descriptor, RenderPipelineDescriptor* outDescriptor) { Ref layoutRef; *outDescriptor = descriptor; if (descriptor.layout == nullptr) { // Ref will keep the pipeline layout alive until the end of the function where // the pipeline will take another reference. DAWN_TRY_ASSIGN(layoutRef, PipelineLayoutBase::CreateDefault( device, GetRenderStagesAndSetPlaceholderShader(device, &descriptor))); outDescriptor->layout = layoutRef.Get(); } return layoutRef; } } // anonymous namespace // DeviceBase DeviceBase::DeviceBase(AdapterBase* adapter, const DeviceDescriptor* descriptor) : mInstance(adapter->GetInstance()), mAdapter(adapter), mNextPipelineCompatibilityToken(1) { mInstance->IncrementDeviceCountForTesting(); ASSERT(descriptor != nullptr); AdapterProperties adapterProperties; adapter->APIGetProperties(&adapterProperties); const DawnTogglesDeviceDescriptor* togglesDesc = nullptr; FindInChain(descriptor->nextInChain, &togglesDesc); if (togglesDesc != nullptr) { ApplyToggleOverrides(togglesDesc); } SetDefaultToggles(); ApplyFeatures(descriptor); DawnCacheDeviceDescriptor defaultCacheDesc = {}; const DawnCacheDeviceDescriptor* cacheDesc = nullptr; FindInChain(descriptor->nextInChain, &cacheDesc); if (cacheDesc == nullptr) { cacheDesc = &defaultCacheDesc; } if (descriptor->requiredLimits != nullptr) { mLimits.v1 = ReifyDefaultLimits(descriptor->requiredLimits->limits); } else { GetDefaultLimits(&mLimits.v1); } mFormatTable = BuildFormatTable(this); if (descriptor->label != nullptr && strlen(descriptor->label) != 0) { mLabel = descriptor->label; } // Record the cache key from the properties. Note that currently, if a new extension // descriptor is added (and probably handled here), the cache key recording needs to be // updated. StreamIn(&mDeviceCacheKey, kDawnVersion, adapterProperties, mEnabledFeatures.featuresBitSet, mEnabledToggles.toggleBitset, cacheDesc); } DeviceBase::DeviceBase() : mState(State::Alive) { mCaches = std::make_unique(); } DeviceBase::~DeviceBase() { // We need to explicitly release the Queue before we complete the destructor so that the // Queue does not get destroyed after the Device. mQueue = nullptr; // mInstance is not set for mock test devices. if (mInstance != nullptr) { mInstance->DecrementDeviceCountForTesting(); } } MaybeError DeviceBase::Initialize(Ref defaultQueue) { SetWGSLExtensionAllowList(); mQueue = std::move(defaultQueue); #if defined(DAWN_ENABLE_ASSERTS) mUncapturedErrorCallback = [](WGPUErrorType, char const*, void*) { static bool calledOnce = false; if (!calledOnce) { calledOnce = true; dawn::WarningLog() << "No Dawn device uncaptured error callback was set. This is " "probably not intended. If you really want to ignore errors " "and suppress this message, set the callback to null."; } }; mDeviceLostCallback = [](WGPUDeviceLostReason, char const*, void*) { static bool calledOnce = false; if (!calledOnce) { calledOnce = true; dawn::WarningLog() << "No Dawn device lost callback was set. This is probably not " "intended. If you really want to ignore device lost " "and suppress this message, set the callback to null."; } }; #endif // DAWN_ENABLE_ASSERTS mCaches = std::make_unique(); mErrorScopeStack = std::make_unique(); mDynamicUploader = std::make_unique(this); mCallbackTaskManager = std::make_unique(); mDeprecationWarnings = std::make_unique(); mInternalPipelineStore = std::make_unique(this); ASSERT(GetPlatform() != nullptr); mWorkerTaskPool = GetPlatform()->CreateWorkerTaskPool(); mAsyncTaskManager = std::make_unique(mWorkerTaskPool.get()); // Starting from now the backend can start doing reentrant calls so the device is marked as // alive. mState = State::Alive; DAWN_TRY_ASSIGN(mEmptyBindGroupLayout, CreateEmptyBindGroupLayout()); // If placeholder fragment shader module is needed, initialize it if (IsToggleEnabled(Toggle::UsePlaceholderFragmentInVertexOnlyPipeline)) { // The empty fragment shader, used as a work around for vertex-only render pipeline constexpr char kEmptyFragmentShader[] = R"( @fragment fn fs_empty_main() {} )"; ShaderModuleDescriptor descriptor; ShaderModuleWGSLDescriptor wgslDesc; wgslDesc.source = kEmptyFragmentShader; descriptor.nextInChain = &wgslDesc; DAWN_TRY_ASSIGN(mInternalPipelineStore->placeholderFragmentShader, CreateShaderModule(&descriptor)); } return {}; } void DeviceBase::WillDropLastExternalRef() { // DeviceBase uses RefCountedWithExternalCount to break refcycles. // // DeviceBase holds multiple Refs to various API objects (pipelines, buffers, etc.) which are // used to implement various device-level facilities. These objects are cached on the device, // so we want to keep them around instead of making transient allocations. However, many of // the objects also hold a Ref back to their parent device. // // In order to break this cycle and prevent leaks, when the application drops the last external // ref and WillDropLastExternalRef is called, the device clears out any member refs to API // objects that hold back-refs to the device - thus breaking any reference cycles. // // Currently, this is done by calling Destroy on the device to cease all in-flight work and // drop references to internal objects. We may want to lift this in the future, but it would // make things more complex because there might be pending tasks which hold a ref back to the // device - either directly or indirectly. We would need to ensure those tasks don't create new // reference cycles, and we would need to continuously try draining the pending tasks to clear // out all remaining refs. Destroy(); // Drop te device's reference to the queue. Because the application dropped the last external // references, they can no longer get the queue from APIGetQueue(). mQueue = nullptr; // Reset callbacks since after this, since after dropping the last external reference, the // application may have freed any device-scope memory needed to run the callback. mUncapturedErrorCallback = [](WGPUErrorType, char const* message, void*) { dawn::WarningLog() << "Uncaptured error after last external device reference dropped.\n" << message; }; mDeviceLostCallback = [](WGPUDeviceLostReason, char const* message, void*) { dawn::WarningLog() << "Device lost after last external device reference dropped.\n" << message; }; } void DeviceBase::DestroyObjects() { // List of object types in reverse "dependency" order so we can iterate and delete the // objects safely. We define dependent here such that if B has a ref to A, then B depends on // A. We therefore try to destroy B before destroying A. Note that this only considers the // immediate frontend dependencies, while backend objects could add complications and extra // dependencies. // // Note that AttachmentState is not an ApiObject so it cannot be eagerly destroyed. However, // since AttachmentStates are cached by the device, objects that hold references to // AttachmentStates should make sure to un-ref them in their Destroy operation so that we // can destroy the frontend cache. // clang-format off static constexpr std::array kObjectTypeDependencyOrder = { ObjectType::ComputePassEncoder, ObjectType::RenderPassEncoder, ObjectType::RenderBundleEncoder, ObjectType::RenderBundle, ObjectType::CommandEncoder, ObjectType::CommandBuffer, ObjectType::RenderPipeline, ObjectType::ComputePipeline, ObjectType::PipelineLayout, ObjectType::SwapChain, ObjectType::BindGroup, ObjectType::BindGroupLayout, ObjectType::ShaderModule, ObjectType::ExternalTexture, ObjectType::TextureView, ObjectType::Texture, ObjectType::QuerySet, ObjectType::Sampler, ObjectType::Buffer, }; // clang-format on // We first move all objects out from the tracking list into a separate list so that we can // avoid locking the same mutex twice. We can then iterate across the separate list to call // the actual destroy function. LinkedList objects; for (ObjectType type : kObjectTypeDependencyOrder) { ApiObjectList& objList = mObjectLists[type]; const std::lock_guard lock(objList.mutex); objList.objects.MoveInto(&objects); } while (!objects.empty()) { // The destroy call should also remove the object from the list. objects.head()->value()->Destroy(); } } void DeviceBase::Destroy() { // Skip if we are already destroyed. if (mState == State::Destroyed) { return; } // This function may be called re-entrantly inside APITick(). Tick triggers callbacks // inside which the application may destroy the device. Thus, we should be careful not // to delete objects that are needed inside Tick after callbacks have been called. // - mCallbackTaskManager is not deleted since we flush the callback queue at the end // of Tick(). Note: that flush should always be emtpy since all callbacks are drained // inside Destroy() so there should be no outstanding tasks holding objects alive. // - Similiarly, mAsyncTaskManager is not deleted since we use it to return a status // from Tick() whether or not there is any more pending work. // Skip handling device facilities if they haven't even been created (or failed doing so) if (mState != State::BeingCreated) { // The device is being destroyed so it will be lost, call the application callback. if (mDeviceLostCallback != nullptr) { mDeviceLostCallback(WGPUDeviceLostReason_Destroyed, "Device was destroyed.", mDeviceLostUserdata); mDeviceLostCallback = nullptr; } // Call all the callbacks immediately as the device is about to shut down. // TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible. mAsyncTaskManager->WaitAllPendingTasks(); auto callbackTasks = mCallbackTaskManager->AcquireCallbackTasks(); for (std::unique_ptr& callbackTask : callbackTasks) { callbackTask->HandleShutDown(); } } // Disconnect the device, depending on which state we are currently in. switch (mState) { case State::BeingCreated: // The GPU timeline was never started so we don't have to wait. break; case State::Alive: // Alive is the only state which can have GPU work happening. Wait for all of it to // complete before proceeding with destruction. // Ignore errors so that we can continue with destruction IgnoreErrors(WaitForIdleForDestruction()); AssumeCommandsComplete(); break; case State::BeingDisconnected: // Getting disconnected is a transient state happening in a single API call so there // is always an external reference keeping the Device alive, which means the // destructor cannot run while BeingDisconnected. UNREACHABLE(); break; case State::Disconnected: break; case State::Destroyed: // If we are already destroyed we should've skipped this work entirely. UNREACHABLE(); break; } ASSERT(mCompletedSerial == mLastSubmittedSerial); ASSERT(mFutureSerial <= mCompletedSerial); if (mState != State::BeingCreated) { // The GPU timeline is finished. // Finish destroying all objects owned by the device and tick the queue-related tasks // since they should be complete. This must be done before DestroyImpl() it may // relinquish resources that will be freed by backends in the DestroyImpl() call. DestroyObjects(); mQueue->Tick(GetCompletedCommandSerial()); // Call TickImpl once last time to clean up resources // Ignore errors so that we can continue with destruction IgnoreErrors(TickImpl()); } // At this point GPU operations are always finished, so we are in the disconnected state. // Note that currently this state change is required because some of the backend // implementations of DestroyImpl checks that we are disconnected before doing work. mState = State::Disconnected; // Note: mQueue is not released here since the application may still get it after calling // Destroy() via APIGetQueue. mDynamicUploader = nullptr; mEmptyBindGroupLayout = nullptr; mInternalPipelineStore = nullptr; mExternalTexturePlaceholderView = nullptr; AssumeCommandsComplete(); // Now that the GPU timeline is empty, destroy the backend device. DestroyImpl(); mCaches = nullptr; mState = State::Destroyed; } void DeviceBase::APIDestroy() { Destroy(); } void DeviceBase::HandleError(InternalErrorType type, const char* message) { if (type == InternalErrorType::DeviceLost) { mState = State::Disconnected; // If the ErrorInjector is enabled, then the device loss might be fake and the device // still be executing commands. Force a wait for idle in this case, with State being // Disconnected so we can detect this case in WaitForIdleForDestruction. if (ErrorInjectorEnabled()) { IgnoreErrors(WaitForIdleForDestruction()); } // A real device lost happened. Set the state to disconnected as the device cannot be // used. Also tags all commands as completed since the device stopped running. AssumeCommandsComplete(); } else if (type == InternalErrorType::Internal) { // If we receive an internal error, assume the backend can't recover and proceed with // device destruction. We first wait for all previous commands to be completed so that // backend objects can be freed immediately, before handling the loss. // Move away from the Alive state so that the application cannot use this device // anymore. // TODO(crbug.com/dawn/831): Do we need atomics for this to become visible to other // threads in a multithreaded scenario? mState = State::BeingDisconnected; // Ignore errors so that we can continue with destruction // Assume all commands are complete after WaitForIdleForDestruction (because they were) IgnoreErrors(WaitForIdleForDestruction()); IgnoreErrors(TickImpl()); AssumeCommandsComplete(); ASSERT(mFutureSerial <= mCompletedSerial); mState = State::Disconnected; // Now everything is as if the device was lost. type = InternalErrorType::DeviceLost; } if (type == InternalErrorType::DeviceLost) { // The device was lost, call the application callback. if (mDeviceLostCallback != nullptr) { mDeviceLostCallback(WGPUDeviceLostReason_Undefined, message, mDeviceLostUserdata); mDeviceLostCallback = nullptr; } mQueue->HandleDeviceLoss(); // TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible. mAsyncTaskManager->WaitAllPendingTasks(); auto callbackTasks = mCallbackTaskManager->AcquireCallbackTasks(); for (std::unique_ptr& callbackTask : callbackTasks) { callbackTask->HandleDeviceLoss(); } // Still forward device loss errors to the error scopes so they all reject. mErrorScopeStack->HandleError(ToWGPUErrorType(type), message); } else { // Pass the error to the error scope stack and call the uncaptured error callback // if it isn't handled. DeviceLost is not handled here because it should be // handled by the lost callback. bool captured = mErrorScopeStack->HandleError(ToWGPUErrorType(type), message); if (!captured && mUncapturedErrorCallback != nullptr) { mUncapturedErrorCallback(static_cast(ToWGPUErrorType(type)), message, mUncapturedErrorUserdata); } } } void DeviceBase::ConsumeError(std::unique_ptr error) { ASSERT(error != nullptr); AppendDebugLayerMessages(error.get()); HandleError(error->GetType(), error->GetFormattedMessage().c_str()); } void DeviceBase::APISetLoggingCallback(wgpu::LoggingCallback callback, void* userdata) { // The registered callback function and userdata pointer are stored and used by deferred // callback tasks, and after setting a different callback (especially in the case of // resetting) the resources pointed by such pointer may be freed. Flush all deferred // callback tasks to guarantee we are never going to use the previous callback after // this call. if (IsLost()) { return; } FlushCallbackTaskQueue(); mLoggingCallback = callback; mLoggingUserdata = userdata; } void DeviceBase::APISetUncapturedErrorCallback(wgpu::ErrorCallback callback, void* userdata) { // The registered callback function and userdata pointer are stored and used by deferred // callback tasks, and after setting a different callback (especially in the case of // resetting) the resources pointed by such pointer may be freed. Flush all deferred // callback tasks to guarantee we are never going to use the previous callback after // this call. if (IsLost()) { return; } FlushCallbackTaskQueue(); mUncapturedErrorCallback = callback; mUncapturedErrorUserdata = userdata; } void DeviceBase::APISetDeviceLostCallback(wgpu::DeviceLostCallback callback, void* userdata) { // The registered callback function and userdata pointer are stored and used by deferred // callback tasks, and after setting a different callback (especially in the case of // resetting) the resources pointed by such pointer may be freed. Flush all deferred // callback tasks to guarantee we are never going to use the previous callback after // this call. if (IsLost()) { return; } FlushCallbackTaskQueue(); mDeviceLostCallback = callback; mDeviceLostUserdata = userdata; } void DeviceBase::APIPushErrorScope(wgpu::ErrorFilter filter) { if (ConsumedError(ValidateErrorFilter(filter))) { return; } mErrorScopeStack->Push(filter); } bool DeviceBase::APIPopErrorScope(wgpu::ErrorCallback callback, void* userdata) { // TODO(crbug.com/dawn/1324) Remove return and make function void when users are updated. bool returnValue = true; if (callback == nullptr) { static wgpu::ErrorCallback defaultCallback = [](WGPUErrorType, char const*, void*) {}; callback = defaultCallback; } // TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents if (IsLost()) { callback(WGPUErrorType_DeviceLost, "GPU device disconnected", userdata); return returnValue; } if (mErrorScopeStack->Empty()) { callback(WGPUErrorType_Unknown, "No error scopes to pop", userdata); return returnValue; } ErrorScope scope = mErrorScopeStack->Pop(); callback(static_cast(scope.GetErrorType()), scope.GetErrorMessage(), userdata); return returnValue; } BlobCache* DeviceBase::GetBlobCache() { #if TINT_BUILD_WGSL_WRITER // TODO(crbug.com/dawn/1481): Shader caching currently has a dependency on the WGSL writer to // generate cache keys. We can lift the dependency once we also cache frontend parsing, // transformations, and reflection. if (IsToggleEnabled(Toggle::EnableBlobCache)) { return mInstance->GetBlobCache(); } #endif return nullptr; } Blob DeviceBase::LoadCachedBlob(const CacheKey& key) { BlobCache* blobCache = GetBlobCache(); if (!blobCache) { return Blob(); } return blobCache->Load(key); } void DeviceBase::StoreCachedBlob(const CacheKey& key, const Blob& blob) { if (!blob.Empty()) { BlobCache* blobCache = GetBlobCache(); if (blobCache) { blobCache->Store(key, blob); } } } MaybeError DeviceBase::ValidateObject(const ApiObjectBase* object) const { ASSERT(object != nullptr); DAWN_INVALID_IF(object->GetDevice() != this, "%s is associated with %s, and cannot be used with %s.", object, object->GetDevice(), this); // TODO(dawn:563): Preserve labels for error objects. DAWN_INVALID_IF(object->IsError(), "%s is invalid.", object); return {}; } MaybeError DeviceBase::ValidateIsAlive() const { DAWN_INVALID_IF(mState != State::Alive, "%s is lost.", this); return {}; } void DeviceBase::APILoseForTesting() { if (mState != State::Alive) { return; } HandleError(InternalErrorType::Internal, "Device lost for testing"); } DeviceBase::State DeviceBase::GetState() const { return mState; } bool DeviceBase::IsLost() const { ASSERT(mState != State::BeingCreated); return mState != State::Alive; } void DeviceBase::TrackObject(ApiObjectBase* object) { ApiObjectList& objectList = mObjectLists[object->GetType()]; std::lock_guard lock(objectList.mutex); object->InsertBefore(objectList.objects.head()); } std::mutex* DeviceBase::GetObjectListMutex(ObjectType type) { return &mObjectLists[type].mutex; } AdapterBase* DeviceBase::GetAdapter() const { return mAdapter; } dawn::platform::Platform* DeviceBase::GetPlatform() const { return GetAdapter()->GetInstance()->GetPlatform(); } ExecutionSerial DeviceBase::GetCompletedCommandSerial() const { return mCompletedSerial; } ExecutionSerial DeviceBase::GetLastSubmittedCommandSerial() const { return mLastSubmittedSerial; } ExecutionSerial DeviceBase::GetFutureSerial() const { return mFutureSerial; } InternalPipelineStore* DeviceBase::GetInternalPipelineStore() { return mInternalPipelineStore.get(); } void DeviceBase::IncrementLastSubmittedCommandSerial() { mLastSubmittedSerial++; } void DeviceBase::AssumeCommandsComplete() { ExecutionSerial maxSerial = ExecutionSerial(std::max(mLastSubmittedSerial + ExecutionSerial(1), mFutureSerial)); mLastSubmittedSerial = maxSerial; mCompletedSerial = maxSerial; } bool DeviceBase::IsDeviceIdle() { if (mAsyncTaskManager->HasPendingTasks()) { return false; } ExecutionSerial maxSerial = std::max(mLastSubmittedSerial, mFutureSerial); if (mCompletedSerial == maxSerial) { return true; } return false; } ExecutionSerial DeviceBase::GetPendingCommandSerial() const { return mLastSubmittedSerial + ExecutionSerial(1); } void DeviceBase::AddFutureSerial(ExecutionSerial serial) { if (serial > mFutureSerial) { mFutureSerial = serial; } } MaybeError DeviceBase::CheckPassedSerials() { ExecutionSerial completedSerial; DAWN_TRY_ASSIGN(completedSerial, CheckAndUpdateCompletedSerials()); ASSERT(completedSerial <= mLastSubmittedSerial); // completedSerial should not be less than mCompletedSerial unless it is 0. // It can be 0 when there's no fences to check. ASSERT(completedSerial >= mCompletedSerial || completedSerial == ExecutionSerial(0)); if (completedSerial > mCompletedSerial) { mCompletedSerial = completedSerial; } return {}; } ResultOrError DeviceBase::GetInternalFormat(wgpu::TextureFormat format) const { FormatIndex index = ComputeFormatIndex(format); DAWN_INVALID_IF(index >= mFormatTable.size(), "Unknown texture format %s.", format); const Format* internalFormat = &mFormatTable[index]; DAWN_INVALID_IF(!internalFormat->isSupported, "Unsupported texture format %s.", format); return internalFormat; } const Format& DeviceBase::GetValidInternalFormat(wgpu::TextureFormat format) const { FormatIndex index = ComputeFormatIndex(format); ASSERT(index < mFormatTable.size()); ASSERT(mFormatTable[index].isSupported); return mFormatTable[index]; } const Format& DeviceBase::GetValidInternalFormat(FormatIndex index) const { ASSERT(index < mFormatTable.size()); ASSERT(mFormatTable[index].isSupported); return mFormatTable[index]; } ResultOrError> DeviceBase::GetOrCreateBindGroupLayout( const BindGroupLayoutDescriptor* descriptor, PipelineCompatibilityToken pipelineCompatibilityToken) { BindGroupLayoutBase blueprint(this, descriptor, pipelineCompatibilityToken, ApiObjectBase::kUntrackedByDevice); const size_t blueprintHash = blueprint.ComputeContentHash(); blueprint.SetContentHash(blueprintHash); Ref result; auto iter = mCaches->bindGroupLayouts.find(&blueprint); if (iter != mCaches->bindGroupLayouts.end()) { result = *iter; } else { DAWN_TRY_ASSIGN(result, CreateBindGroupLayoutImpl(descriptor, pipelineCompatibilityToken)); result->SetIsCachedReference(); result->SetContentHash(blueprintHash); mCaches->bindGroupLayouts.insert(result.Get()); } return std::move(result); } void DeviceBase::UncacheBindGroupLayout(BindGroupLayoutBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->bindGroupLayouts.erase(obj); ASSERT(removedCount == 1); } // Private function used at initialization ResultOrError> DeviceBase::CreateEmptyBindGroupLayout() { BindGroupLayoutDescriptor desc = {}; desc.entryCount = 0; desc.entries = nullptr; return GetOrCreateBindGroupLayout(&desc); } BindGroupLayoutBase* DeviceBase::GetEmptyBindGroupLayout() { ASSERT(mEmptyBindGroupLayout != nullptr); return mEmptyBindGroupLayout.Get(); } Ref DeviceBase::GetCachedComputePipeline( ComputePipelineBase* uninitializedComputePipeline) { Ref cachedPipeline; auto iter = mCaches->computePipelines.find(uninitializedComputePipeline); if (iter != mCaches->computePipelines.end()) { cachedPipeline = *iter; } return cachedPipeline; } Ref DeviceBase::GetCachedRenderPipeline( RenderPipelineBase* uninitializedRenderPipeline) { Ref cachedPipeline; auto iter = mCaches->renderPipelines.find(uninitializedRenderPipeline); if (iter != mCaches->renderPipelines.end()) { cachedPipeline = *iter; } return cachedPipeline; } Ref DeviceBase::AddOrGetCachedComputePipeline( Ref computePipeline) { auto [cachedPipeline, inserted] = mCaches->computePipelines.insert(computePipeline.Get()); if (inserted) { computePipeline->SetIsCachedReference(); return computePipeline; } else { return *cachedPipeline; } } Ref DeviceBase::AddOrGetCachedRenderPipeline( Ref renderPipeline) { auto [cachedPipeline, inserted] = mCaches->renderPipelines.insert(renderPipeline.Get()); if (inserted) { renderPipeline->SetIsCachedReference(); return renderPipeline; } else { return *cachedPipeline; } } void DeviceBase::UncacheComputePipeline(ComputePipelineBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->computePipelines.erase(obj); ASSERT(removedCount == 1); } ResultOrError> DeviceBase::GetOrCreatePlaceholderTextureViewForExternalTexture() { if (!mExternalTexturePlaceholderView.Get()) { Ref externalTexturePlaceholder; TextureDescriptor textureDesc; textureDesc.dimension = wgpu::TextureDimension::e2D; textureDesc.format = wgpu::TextureFormat::RGBA8Unorm; textureDesc.label = "Dawn_External_Texture_Placeholder_Texture"; textureDesc.size = {1, 1, 1}; textureDesc.usage = wgpu::TextureUsage::TextureBinding; DAWN_TRY_ASSIGN(externalTexturePlaceholder, CreateTexture(&textureDesc)); TextureViewDescriptor textureViewDesc; textureViewDesc.arrayLayerCount = 1; textureViewDesc.aspect = wgpu::TextureAspect::All; textureViewDesc.baseArrayLayer = 0; textureViewDesc.dimension = wgpu::TextureViewDimension::e2D; textureViewDesc.format = wgpu::TextureFormat::RGBA8Unorm; textureViewDesc.label = "Dawn_External_Texture_Placeholder_Texture_View"; textureViewDesc.mipLevelCount = 1; DAWN_TRY_ASSIGN(mExternalTexturePlaceholderView, CreateTextureView(externalTexturePlaceholder.Get(), &textureViewDesc)); } return mExternalTexturePlaceholderView; } ResultOrError> DeviceBase::GetOrCreatePipelineLayout( const PipelineLayoutDescriptor* descriptor) { PipelineLayoutBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); const size_t blueprintHash = blueprint.ComputeContentHash(); blueprint.SetContentHash(blueprintHash); Ref result; auto iter = mCaches->pipelineLayouts.find(&blueprint); if (iter != mCaches->pipelineLayouts.end()) { result = *iter; } else { DAWN_TRY_ASSIGN(result, CreatePipelineLayoutImpl(descriptor)); result->SetIsCachedReference(); result->SetContentHash(blueprintHash); mCaches->pipelineLayouts.insert(result.Get()); } return std::move(result); } void DeviceBase::UncachePipelineLayout(PipelineLayoutBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->pipelineLayouts.erase(obj); ASSERT(removedCount == 1); } void DeviceBase::UncacheRenderPipeline(RenderPipelineBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->renderPipelines.erase(obj); ASSERT(removedCount == 1); } ResultOrError> DeviceBase::GetOrCreateSampler( const SamplerDescriptor* descriptor) { SamplerBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); const size_t blueprintHash = blueprint.ComputeContentHash(); blueprint.SetContentHash(blueprintHash); Ref result; auto iter = mCaches->samplers.find(&blueprint); if (iter != mCaches->samplers.end()) { result = *iter; } else { DAWN_TRY_ASSIGN(result, CreateSamplerImpl(descriptor)); result->SetIsCachedReference(); result->SetContentHash(blueprintHash); mCaches->samplers.insert(result.Get()); } return std::move(result); } void DeviceBase::UncacheSampler(SamplerBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->samplers.erase(obj); ASSERT(removedCount == 1); } ResultOrError> DeviceBase::GetOrCreateShaderModule( const ShaderModuleDescriptor* descriptor, ShaderModuleParseResult* parseResult, OwnedCompilationMessages* compilationMessages) { ASSERT(parseResult != nullptr); ShaderModuleBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); const size_t blueprintHash = blueprint.ComputeContentHash(); blueprint.SetContentHash(blueprintHash); Ref result; auto iter = mCaches->shaderModules.find(&blueprint); if (iter != mCaches->shaderModules.end()) { result = *iter; } else { if (!parseResult->HasParsedShader()) { // We skip the parse on creation if validation isn't enabled which let's us quickly // lookup in the cache without validating and parsing. We need the parsed module // now. ASSERT(!IsValidationEnabled()); DAWN_TRY( ValidateAndParseShaderModule(this, descriptor, parseResult, compilationMessages)); } DAWN_TRY_ASSIGN(result, CreateShaderModuleImpl(descriptor, parseResult, compilationMessages)); result->SetIsCachedReference(); result->SetContentHash(blueprintHash); mCaches->shaderModules.insert(result.Get()); } return std::move(result); } void DeviceBase::UncacheShaderModule(ShaderModuleBase* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->shaderModules.erase(obj); ASSERT(removedCount == 1); } Ref DeviceBase::GetOrCreateAttachmentState(AttachmentStateBlueprint* blueprint) { auto iter = mCaches->attachmentStates.find(blueprint); if (iter != mCaches->attachmentStates.end()) { return static_cast(*iter); } Ref attachmentState = AcquireRef(new AttachmentState(this, *blueprint)); attachmentState->SetIsCachedReference(); attachmentState->SetContentHash(attachmentState->ComputeContentHash()); mCaches->attachmentStates.insert(attachmentState.Get()); return attachmentState; } Ref DeviceBase::GetOrCreateAttachmentState( const RenderBundleEncoderDescriptor* descriptor) { AttachmentStateBlueprint blueprint(descriptor); return GetOrCreateAttachmentState(&blueprint); } Ref DeviceBase::GetOrCreateAttachmentState( const RenderPipelineDescriptor* descriptor) { AttachmentStateBlueprint blueprint(descriptor); return GetOrCreateAttachmentState(&blueprint); } Ref DeviceBase::GetOrCreateAttachmentState( const RenderPassDescriptor* descriptor) { AttachmentStateBlueprint blueprint(descriptor); return GetOrCreateAttachmentState(&blueprint); } void DeviceBase::UncacheAttachmentState(AttachmentState* obj) { ASSERT(obj->IsCachedReference()); size_t removedCount = mCaches->attachmentStates.erase(obj); ASSERT(removedCount == 1); } Ref DeviceBase::GetOrCreatePipelineCache(const CacheKey& key) { return GetOrCreatePipelineCacheImpl(key); } // Object creation API methods BindGroupBase* DeviceBase::APICreateBindGroup(const BindGroupDescriptor* descriptor) { Ref result; if (ConsumedError(CreateBindGroup(descriptor), &result, "calling %s.CreateBindGroup(%s).", this, descriptor)) { return BindGroupBase::MakeError(this); } return result.Detach(); } BindGroupLayoutBase* DeviceBase::APICreateBindGroupLayout( const BindGroupLayoutDescriptor* descriptor) { Ref result; if (ConsumedError(CreateBindGroupLayout(descriptor), &result, "calling %s.CreateBindGroupLayout(%s).", this, descriptor)) { return BindGroupLayoutBase::MakeError(this); } return result.Detach(); } BufferBase* DeviceBase::APICreateBuffer(const BufferDescriptor* descriptor) { Ref result = nullptr; if (ConsumedError(CreateBuffer(descriptor), &result, "calling %s.CreateBuffer(%s).", this, descriptor)) { ASSERT(result == nullptr); return BufferBase::MakeError(this, descriptor); } return result.Detach(); } CommandEncoder* DeviceBase::APICreateCommandEncoder(const CommandEncoderDescriptor* descriptor) { Ref result; if (ConsumedError(CreateCommandEncoder(descriptor), &result, "calling %s.CreateCommandEncoder(%s).", this, descriptor)) { return CommandEncoder::MakeError(this); } return result.Detach(); } ComputePipelineBase* DeviceBase::APICreateComputePipeline( const ComputePipelineDescriptor* descriptor) { TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipeline", "label", utils::GetLabelForTrace(descriptor->label)); Ref result; if (ConsumedError(CreateComputePipeline(descriptor), &result, "calling %s.CreateComputePipeline(%s).", this, descriptor)) { return ComputePipelineBase::MakeError(this); } return result.Detach(); } void DeviceBase::APICreateComputePipelineAsync(const ComputePipelineDescriptor* descriptor, WGPUCreateComputePipelineAsyncCallback callback, void* userdata) { TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipelineAsync", "label", utils::GetLabelForTrace(descriptor->label)); MaybeError maybeResult = CreateComputePipelineAsync(descriptor, callback, userdata); // Call the callback directly when a validation error has been found in the front-end // validations. If there is no error, then CreateComputePipelineAsync will call the // callback. if (maybeResult.IsError()) { std::unique_ptr error = maybeResult.AcquireError(); // TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents callback(WGPUCreatePipelineAsyncStatus_Error, nullptr, error->GetMessage().c_str(), userdata); } } PipelineLayoutBase* DeviceBase::APICreatePipelineLayout( const PipelineLayoutDescriptor* descriptor) { Ref result; if (ConsumedError(CreatePipelineLayout(descriptor), &result, "calling %s.CreatePipelineLayout(%s).", this, descriptor)) { return PipelineLayoutBase::MakeError(this); } return result.Detach(); } QuerySetBase* DeviceBase::APICreateQuerySet(const QuerySetDescriptor* descriptor) { Ref result; if (ConsumedError(CreateQuerySet(descriptor), &result, "calling %s.CreateQuerySet(%s).", this, descriptor)) { return QuerySetBase::MakeError(this, descriptor); } return result.Detach(); } SamplerBase* DeviceBase::APICreateSampler(const SamplerDescriptor* descriptor) { Ref result; if (ConsumedError(CreateSampler(descriptor), &result, "calling %s.CreateSampler(%s).", this, descriptor)) { return SamplerBase::MakeError(this); } return result.Detach(); } void DeviceBase::APICreateRenderPipelineAsync(const RenderPipelineDescriptor* descriptor, WGPUCreateRenderPipelineAsyncCallback callback, void* userdata) { TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipelineAsync", "label", utils::GetLabelForTrace(descriptor->label)); // TODO(dawn:563): Add validation error context. MaybeError maybeResult = CreateRenderPipelineAsync(descriptor, callback, userdata); // Call the callback directly when a validation error has been found in the front-end // validations. If there is no error, then CreateRenderPipelineAsync will call the // callback. if (maybeResult.IsError()) { std::unique_ptr error = maybeResult.AcquireError(); // TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents callback(WGPUCreatePipelineAsyncStatus_Error, nullptr, error->GetMessage().c_str(), userdata); } } RenderBundleEncoder* DeviceBase::APICreateRenderBundleEncoder( const RenderBundleEncoderDescriptor* descriptor) { Ref result; if (ConsumedError(CreateRenderBundleEncoder(descriptor), &result, "calling %s.CreateRenderBundleEncoder(%s).", this, descriptor)) { return RenderBundleEncoder::MakeError(this); } return result.Detach(); } RenderPipelineBase* DeviceBase::APICreateRenderPipeline( const RenderPipelineDescriptor* descriptor) { TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipeline", "label", utils::GetLabelForTrace(descriptor->label)); Ref result; if (ConsumedError(CreateRenderPipeline(descriptor), &result, "calling %s.CreateRenderPipeline(%s).", this, descriptor)) { return RenderPipelineBase::MakeError(this); } return result.Detach(); } ShaderModuleBase* DeviceBase::APICreateShaderModule(const ShaderModuleDescriptor* descriptor) { TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateShaderModule", "label", utils::GetLabelForTrace(descriptor->label)); Ref result; std::unique_ptr compilationMessages( std::make_unique()); if (ConsumedError(CreateShaderModule(descriptor, compilationMessages.get()), &result, "calling %s.CreateShaderModule(%s).", this, descriptor)) { DAWN_ASSERT(result == nullptr); result = ShaderModuleBase::MakeError(this); } // Move compilation messages into ShaderModuleBase and emit tint errors and warnings // after all other operations are finished, even if any of them is failed and result // is an error shader module. result->InjectCompilationMessages(std::move(compilationMessages)); return result.Detach(); } SwapChainBase* DeviceBase::APICreateSwapChain(Surface* surface, const SwapChainDescriptor* descriptor) { Ref result; if (ConsumedError(CreateSwapChain(surface, descriptor), &result, "calling %s.CreateSwapChain(%s).", this, descriptor)) { return SwapChainBase::MakeError(this); } return result.Detach(); } TextureBase* DeviceBase::APICreateTexture(const TextureDescriptor* descriptor) { Ref result; if (ConsumedError(CreateTexture(descriptor), &result, "calling %s.CreateTexture(%s).", this, descriptor)) { return TextureBase::MakeError(this, descriptor); } return result.Detach(); } // For Dawn Wire BufferBase* DeviceBase::APICreateErrorBuffer() { BufferDescriptor desc = {}; return BufferBase::MakeError(this, &desc); } ExternalTextureBase* DeviceBase::APICreateErrorExternalTexture() { return ExternalTextureBase::MakeError(this); } TextureBase* DeviceBase::APICreateErrorTexture(const TextureDescriptor* desc) { return TextureBase::MakeError(this, desc); } // Other Device API methods // Returns true if future ticking is needed. bool DeviceBase::APITick() { // Tick may trigger callbacks which drop a ref to the device itself. Hold a Ref to ourselves // to avoid deleting |this| in the middle of this function call. Ref self(this); if (IsLost() || ConsumedError(Tick())) { return false; } TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APITick::IsDeviceIdle", "isDeviceIdle", IsDeviceIdle()); return !IsDeviceIdle(); } MaybeError DeviceBase::Tick() { DAWN_TRY(ValidateIsAlive()); // to avoid overly ticking, we only want to tick when: // 1. the last submitted serial has moved beyond the completed serial // 2. or the completed serial has not reached the future serial set by the trackers if (mLastSubmittedSerial > mCompletedSerial || mCompletedSerial < mFutureSerial) { DAWN_TRY(CheckPassedSerials()); DAWN_TRY(TickImpl()); // There is no GPU work in flight, we need to move the serials forward so that // so that CPU operations waiting on GPU completion can know they don't have to wait. // AssumeCommandsComplete will assign the max serial we must tick to in order to // fire the awaiting callbacks. if (mCompletedSerial == mLastSubmittedSerial) { AssumeCommandsComplete(); } // TODO(crbug.com/dawn/833): decouple TickImpl from updating the serial so that we can // tick the dynamic uploader before the backend resource allocators. This would allow // reclaiming resources one tick earlier. mDynamicUploader->Deallocate(mCompletedSerial); mQueue->Tick(mCompletedSerial); } // We have to check callback tasks in every Tick because it is not related to any global // serials. FlushCallbackTaskQueue(); return {}; } AdapterBase* DeviceBase::APIGetAdapter() { mAdapter->Reference(); return mAdapter; } QueueBase* DeviceBase::APIGetQueue() { // Backends gave the primary queue during initialization. ASSERT(mQueue != nullptr); // Returns a new reference to the queue. mQueue->Reference(); return mQueue.Get(); } ExternalTextureBase* DeviceBase::APICreateExternalTexture( const ExternalTextureDescriptor* descriptor) { Ref result = nullptr; if (ConsumedError(CreateExternalTextureImpl(descriptor), &result, "calling %s.CreateExternalTexture(%s).", this, descriptor)) { return ExternalTextureBase::MakeError(this); } return result.Detach(); } void DeviceBase::ApplyFeatures(const DeviceDescriptor* deviceDescriptor) { ASSERT(deviceDescriptor); ASSERT(GetAdapter()->SupportsAllRequiredFeatures( {deviceDescriptor->requiredFeatures, deviceDescriptor->requiredFeaturesCount})); for (uint32_t i = 0; i < deviceDescriptor->requiredFeaturesCount; ++i) { mEnabledFeatures.EnableFeature(deviceDescriptor->requiredFeatures[i]); } } bool DeviceBase::IsFeatureEnabled(Feature feature) const { return mEnabledFeatures.IsEnabled(feature); } void DeviceBase::SetWGSLExtensionAllowList() { // Set the WGSL extensions allow list based on device's enabled features and other // propority. For example: // mWGSLExtensionAllowList.insert("InternalExtensionForTesting"); if (IsFeatureEnabled(Feature::ChromiumExperimentalDp4a)) { mWGSLExtensionAllowList.insert("chromium_experimental_dp4a"); } } WGSLExtensionSet DeviceBase::GetWGSLExtensionAllowList() const { return mWGSLExtensionAllowList; } bool DeviceBase::IsValidationEnabled() const { return !IsToggleEnabled(Toggle::SkipValidation); } bool DeviceBase::IsRobustnessEnabled() const { return !IsToggleEnabled(Toggle::DisableRobustness); } size_t DeviceBase::GetLazyClearCountForTesting() { return mLazyClearCountForTesting; } void DeviceBase::IncrementLazyClearCountForTesting() { ++mLazyClearCountForTesting; } size_t DeviceBase::GetDeprecationWarningCountForTesting() { return mDeprecationWarnings->count; } void DeviceBase::EmitDeprecationWarning(const char* warning) { mDeprecationWarnings->count++; if (mDeprecationWarnings->emitted.insert(warning).second) { dawn::WarningLog() << warning; } } void DeviceBase::EmitLog(const char* message) { this->EmitLog(WGPULoggingType_Info, message); } void DeviceBase::EmitLog(WGPULoggingType loggingType, const char* message) { if (mLoggingCallback != nullptr) { // Use the thread-safe CallbackTaskManager routine std::unique_ptr callbackTask = std::make_unique( mLoggingCallback, loggingType, message, mLoggingUserdata); mCallbackTaskManager->AddCallbackTask(std::move(callbackTask)); } } bool DeviceBase::APIGetLimits(SupportedLimits* limits) const { ASSERT(limits != nullptr); if (limits->nextInChain != nullptr) { return false; } limits->limits = mLimits.v1; return true; } bool DeviceBase::APIHasFeature(wgpu::FeatureName feature) const { return mEnabledFeatures.IsEnabled(feature); } size_t DeviceBase::APIEnumerateFeatures(wgpu::FeatureName* features) const { return mEnabledFeatures.EnumerateFeatures(features); } void DeviceBase::APIInjectError(wgpu::ErrorType type, const char* message) { if (ConsumedError(ValidateErrorType(type))) { return; } // This method should only be used to make error scope reject. For DeviceLost there is the // LoseForTesting function that can be used instead. if (type != wgpu::ErrorType::Validation && type != wgpu::ErrorType::OutOfMemory) { HandleError(InternalErrorType::Validation, "Invalid injected error, must be Validation or OutOfMemory"); return; } HandleError(FromWGPUErrorType(type), message); } QueueBase* DeviceBase::GetQueue() const { ASSERT(mQueue != nullptr); return mQueue.Get(); } // Implementation details of object creation ResultOrError> DeviceBase::CreateBindGroup(const BindGroupDescriptor* descriptor, UsageValidationMode mode) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateBindGroupDescriptor(this, descriptor, mode), "validating %s against %s", descriptor, descriptor->layout); } return CreateBindGroupImpl(descriptor); } ResultOrError> DeviceBase::CreateBindGroupLayout( const BindGroupLayoutDescriptor* descriptor, bool allowInternalBinding) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateBindGroupLayoutDescriptor(this, descriptor, allowInternalBinding), "validating %s", descriptor); } return GetOrCreateBindGroupLayout(descriptor); } ResultOrError> DeviceBase::CreateBuffer(const BufferDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateBufferDescriptor(this, descriptor), "validating %s", descriptor); } Ref buffer; DAWN_TRY_ASSIGN(buffer, CreateBufferImpl(descriptor)); if (descriptor->mappedAtCreation) { DAWN_TRY(buffer->MapAtCreation()); } return std::move(buffer); } ResultOrError> DeviceBase::CreateComputePipeline( const ComputePipelineDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor)); } // Ref will keep the pipeline layout alive until the end of the function where // the pipeline will take another reference. Ref layoutRef; ComputePipelineDescriptor appliedDescriptor; DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetComputePipelineDescriptorWithDefaults( this, *descriptor, &appliedDescriptor)); Ref uninitializedComputePipeline = CreateUninitializedComputePipelineImpl(&appliedDescriptor); Ref cachedComputePipeline = GetCachedComputePipeline(uninitializedComputePipeline.Get()); if (cachedComputePipeline.Get() != nullptr) { return cachedComputePipeline; } DAWN_TRY(uninitializedComputePipeline->Initialize()); return AddOrGetCachedComputePipeline(std::move(uninitializedComputePipeline)); } ResultOrError> DeviceBase::CreateCommandEncoder( const CommandEncoderDescriptor* descriptor) { const CommandEncoderDescriptor defaultDescriptor = {}; if (descriptor == nullptr) { descriptor = &defaultDescriptor; } DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateCommandEncoderDescriptor(this, descriptor)); } return CommandEncoder::Create(this, descriptor); } // Overwritten on the backends to return pipeline caches if supported. Ref DeviceBase::GetOrCreatePipelineCacheImpl(const CacheKey& key) { UNREACHABLE(); } MaybeError DeviceBase::CreateComputePipelineAsync(const ComputePipelineDescriptor* descriptor, WGPUCreateComputePipelineAsyncCallback callback, void* userdata) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor)); } Ref layoutRef; ComputePipelineDescriptor appliedDescriptor; DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetComputePipelineDescriptorWithDefaults( this, *descriptor, &appliedDescriptor)); Ref uninitializedComputePipeline = CreateUninitializedComputePipelineImpl(&appliedDescriptor); // Call the callback directly when we can get a cached compute pipeline object. Ref cachedComputePipeline = GetCachedComputePipeline(uninitializedComputePipeline.Get()); if (cachedComputePipeline.Get() != nullptr) { // TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents callback(WGPUCreatePipelineAsyncStatus_Success, ToAPI(cachedComputePipeline.Detach()), "", userdata); } else { // Otherwise we will create the pipeline object in InitializeComputePipelineAsyncImpl(), // where the pipeline object may be initialized asynchronously and the result will be // saved to mCreatePipelineAsyncTracker. InitializeComputePipelineAsyncImpl(std::move(uninitializedComputePipeline), callback, userdata); } return {}; } // This function is overwritten with the async version on the backends that supports // initializing compute pipelines asynchronously. void DeviceBase::InitializeComputePipelineAsyncImpl(Ref computePipeline, WGPUCreateComputePipelineAsyncCallback callback, void* userdata) { Ref result; std::string errorMessage; MaybeError maybeError = computePipeline->Initialize(); if (maybeError.IsError()) { std::unique_ptr error = maybeError.AcquireError(); errorMessage = error->GetMessage(); } else { result = AddOrGetCachedComputePipeline(std::move(computePipeline)); } std::unique_ptr callbackTask = std::make_unique(std::move(result), errorMessage, callback, userdata); mCallbackTaskManager->AddCallbackTask(std::move(callbackTask)); } // This function is overwritten with the async version on the backends // that supports initializing render pipeline asynchronously void DeviceBase::InitializeRenderPipelineAsyncImpl(Ref renderPipeline, WGPUCreateRenderPipelineAsyncCallback callback, void* userdata) { Ref result; std::string errorMessage; MaybeError maybeError = renderPipeline->Initialize(); if (maybeError.IsError()) { std::unique_ptr error = maybeError.AcquireError(); errorMessage = error->GetMessage(); } else { result = AddOrGetCachedRenderPipeline(std::move(renderPipeline)); } std::unique_ptr callbackTask = std::make_unique(std::move(result), errorMessage, callback, userdata); mCallbackTaskManager->AddCallbackTask(std::move(callbackTask)); } ResultOrError> DeviceBase::CreatePipelineLayout( const PipelineLayoutDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidatePipelineLayoutDescriptor(this, descriptor)); } return GetOrCreatePipelineLayout(descriptor); } ResultOrError> DeviceBase::CreateExternalTextureImpl( const ExternalTextureDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateExternalTextureDescriptor(this, descriptor), "validating %s", descriptor); } return ExternalTextureBase::Create(this, descriptor); } ResultOrError> DeviceBase::CreateQuerySet(const QuerySetDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateQuerySetDescriptor(this, descriptor), "validating %s", descriptor); } return CreateQuerySetImpl(descriptor); } ResultOrError> DeviceBase::CreateRenderBundleEncoder( const RenderBundleEncoderDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateRenderBundleEncoderDescriptor(this, descriptor)); } return RenderBundleEncoder::Create(this, descriptor); } ResultOrError> DeviceBase::CreateRenderPipeline( const RenderPipelineDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor)); } // Ref will keep the pipeline layout alive until the end of the function where // the pipeline will take another reference. Ref layoutRef; RenderPipelineDescriptor appliedDescriptor; DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults( this, *descriptor, &appliedDescriptor)); Ref uninitializedRenderPipeline = CreateUninitializedRenderPipelineImpl(&appliedDescriptor); Ref cachedRenderPipeline = GetCachedRenderPipeline(uninitializedRenderPipeline.Get()); if (cachedRenderPipeline != nullptr) { return cachedRenderPipeline; } DAWN_TRY(uninitializedRenderPipeline->Initialize()); return AddOrGetCachedRenderPipeline(std::move(uninitializedRenderPipeline)); } MaybeError DeviceBase::CreateRenderPipelineAsync(const RenderPipelineDescriptor* descriptor, WGPUCreateRenderPipelineAsyncCallback callback, void* userdata) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor)); } // Ref will keep the pipeline layout alive until the end of the function where // the pipeline will take another reference. Ref layoutRef; RenderPipelineDescriptor appliedDescriptor; DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults( this, *descriptor, &appliedDescriptor)); Ref uninitializedRenderPipeline = CreateUninitializedRenderPipelineImpl(&appliedDescriptor); // Call the callback directly when we can get a cached render pipeline object. Ref cachedRenderPipeline = GetCachedRenderPipeline(uninitializedRenderPipeline.Get()); if (cachedRenderPipeline != nullptr) { // TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents callback(WGPUCreatePipelineAsyncStatus_Success, ToAPI(cachedRenderPipeline.Detach()), "", userdata); } else { // Otherwise we will create the pipeline object in InitializeRenderPipelineAsyncImpl(), // where the pipeline object may be initialized asynchronously and the result will be // saved to mCreatePipelineAsyncTracker. InitializeRenderPipelineAsyncImpl(std::move(uninitializedRenderPipeline), callback, userdata); } return {}; } ResultOrError> DeviceBase::CreateSampler(const SamplerDescriptor* descriptor) { const SamplerDescriptor defaultDescriptor = {}; DAWN_TRY(ValidateIsAlive()); descriptor = descriptor != nullptr ? descriptor : &defaultDescriptor; if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateSamplerDescriptor(this, descriptor), "validating %s", descriptor); } return GetOrCreateSampler(descriptor); } ResultOrError> DeviceBase::CreateShaderModule( const ShaderModuleDescriptor* descriptor, OwnedCompilationMessages* compilationMessages) { DAWN_TRY(ValidateIsAlive()); // CreateShaderModule can be called from inside dawn_native. If that's the case handle the // error directly in Dawn and no compilationMessages held in the shader module. It is ok as // long as dawn_native don't use the compilationMessages of these internal shader modules. ShaderModuleParseResult parseResult; if (IsValidationEnabled()) { DAWN_TRY_CONTEXT( ValidateAndParseShaderModule(this, descriptor, &parseResult, compilationMessages), "validating %s", descriptor); } return GetOrCreateShaderModule(descriptor, &parseResult, compilationMessages); } ResultOrError> DeviceBase::CreateSwapChain( Surface* surface, const SwapChainDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateSwapChainDescriptor(this, surface, descriptor), "validating %s", descriptor); } // TODO(dawn:269): Remove this code path once implementation-based swapchains are removed. if (surface == nullptr) { return CreateSwapChainImpl(descriptor); } else { ASSERT(descriptor->implementation == 0); NewSwapChainBase* previousSwapChain = surface->GetAttachedSwapChain(); ResultOrError> maybeNewSwapChain = CreateSwapChainImpl(surface, previousSwapChain, descriptor); if (previousSwapChain != nullptr) { previousSwapChain->DetachFromSurface(); } Ref newSwapChain; DAWN_TRY_ASSIGN(newSwapChain, std::move(maybeNewSwapChain)); newSwapChain->SetIsAttached(); surface->SetAttachedSwapChain(newSwapChain.Get()); return newSwapChain; } } ResultOrError> DeviceBase::CreateTexture(const TextureDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateTextureDescriptor(this, descriptor), "validating %s.", descriptor); } return CreateTextureImpl(descriptor); } ResultOrError> DeviceBase::CreateTextureView( TextureBase* texture, const TextureViewDescriptor* descriptor) { DAWN_TRY(ValidateIsAlive()); DAWN_TRY(ValidateObject(texture)); TextureViewDescriptor desc; DAWN_TRY_ASSIGN(desc, GetTextureViewDescriptorWithDefaults(texture, descriptor)); if (IsValidationEnabled()) { DAWN_TRY_CONTEXT(ValidateTextureViewDescriptor(this, texture, &desc), "validating %s against %s.", &desc, texture); } return CreateTextureViewImpl(texture, &desc); } // Other implementation details DynamicUploader* DeviceBase::GetDynamicUploader() const { return mDynamicUploader.get(); } // The Toggle device facility std::vector DeviceBase::GetTogglesUsed() const { return mEnabledToggles.GetContainedToggleNames(); } bool DeviceBase::IsToggleEnabled(Toggle toggle) const { return mEnabledToggles.Has(toggle); } void DeviceBase::SetToggle(Toggle toggle, bool isEnabled) { if (!mOverridenToggles.Has(toggle)) { mEnabledToggles.Set(toggle, isEnabled); } } void DeviceBase::ForceSetToggle(Toggle toggle, bool isEnabled) { if (mOverridenToggles.Has(toggle) && mEnabledToggles.Has(toggle) != isEnabled) { dawn::WarningLog() << "Forcing toggle \"" << ToggleEnumToName(toggle) << "\" to " << isEnabled << " when it was overriden to be " << !isEnabled; } mEnabledToggles.Set(toggle, isEnabled); } void DeviceBase::SetDefaultToggles() { SetToggle(Toggle::LazyClearResourceOnFirstUse, true); SetToggle(Toggle::DisallowUnsafeAPIs, true); } void DeviceBase::ApplyToggleOverrides(const DawnTogglesDeviceDescriptor* togglesDescriptor) { ASSERT(togglesDescriptor != nullptr); for (uint32_t i = 0; i < togglesDescriptor->forceEnabledTogglesCount; ++i) { Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum( togglesDescriptor->forceEnabledToggles[i]); if (toggle != Toggle::InvalidEnum) { mEnabledToggles.Set(toggle, true); mOverridenToggles.Set(toggle, true); } } for (uint32_t i = 0; i < togglesDescriptor->forceDisabledTogglesCount; ++i) { Toggle toggle = GetAdapter()->GetInstance()->ToggleNameToEnum( togglesDescriptor->forceDisabledToggles[i]); if (toggle != Toggle::InvalidEnum) { mEnabledToggles.Set(toggle, false); mOverridenToggles.Set(toggle, true); } } } void DeviceBase::FlushCallbackTaskQueue() { if (!mCallbackTaskManager->IsEmpty()) { // If a user calls Queue::Submit inside the callback, then the device will be ticked, // which in turns ticks the tracker, causing reentrance and dead lock here. To prevent // such reentrant call, we remove all the callback tasks from mCallbackTaskManager, // update mCallbackTaskManager, then call all the callbacks. auto callbackTasks = mCallbackTaskManager->AcquireCallbackTasks(); for (std::unique_ptr& callbackTask : callbackTasks) { callbackTask->Finish(); } } } const CombinedLimits& DeviceBase::GetLimits() const { return mLimits; } AsyncTaskManager* DeviceBase::GetAsyncTaskManager() const { return mAsyncTaskManager.get(); } CallbackTaskManager* DeviceBase::GetCallbackTaskManager() const { return mCallbackTaskManager.get(); } dawn::platform::WorkerTaskPool* DeviceBase::GetWorkerTaskPool() const { return mWorkerTaskPool.get(); } void DeviceBase::AddComputePipelineAsyncCallbackTask( Ref pipeline, std::string errorMessage, WGPUCreateComputePipelineAsyncCallback callback, void* userdata) { // CreateComputePipelineAsyncWaitableCallbackTask is declared as an internal class as it // needs to call the private member function DeviceBase::AddOrGetCachedComputePipeline(). struct CreateComputePipelineAsyncWaitableCallbackTask final : CreateComputePipelineAsyncCallbackTask { using CreateComputePipelineAsyncCallbackTask::CreateComputePipelineAsyncCallbackTask; void Finish() final { // TODO(dawn:529): call AddOrGetCachedComputePipeline() asynchronously in // CreateComputePipelineAsyncTaskImpl::Run() when the front-end pipeline cache is // thread-safe. if (mPipeline.Get() != nullptr) { mPipeline = mPipeline->GetDevice()->AddOrGetCachedComputePipeline(mPipeline); } CreateComputePipelineAsyncCallbackTask::Finish(); } }; mCallbackTaskManager->AddCallbackTask( std::make_unique( std::move(pipeline), errorMessage, callback, userdata)); } void DeviceBase::AddRenderPipelineAsyncCallbackTask(Ref pipeline, std::string errorMessage, WGPUCreateRenderPipelineAsyncCallback callback, void* userdata) { // CreateRenderPipelineAsyncWaitableCallbackTask is declared as an internal class as it // needs to call the private member function DeviceBase::AddOrGetCachedRenderPipeline(). struct CreateRenderPipelineAsyncWaitableCallbackTask final : CreateRenderPipelineAsyncCallbackTask { using CreateRenderPipelineAsyncCallbackTask::CreateRenderPipelineAsyncCallbackTask; void Finish() final { // TODO(dawn:529): call AddOrGetCachedRenderPipeline() asynchronously in // CreateRenderPipelineAsyncTaskImpl::Run() when the front-end pipeline cache is // thread-safe. if (mPipeline.Get() != nullptr) { mPipeline = mPipeline->GetDevice()->AddOrGetCachedRenderPipeline(mPipeline); } CreateRenderPipelineAsyncCallbackTask::Finish(); } }; mCallbackTaskManager->AddCallbackTask( std::make_unique( std::move(pipeline), errorMessage, callback, userdata)); } PipelineCompatibilityToken DeviceBase::GetNextPipelineCompatibilityToken() { return PipelineCompatibilityToken(mNextPipelineCompatibilityToken++); } const CacheKey& DeviceBase::GetCacheKey() const { return mDeviceCacheKey; } const std::string& DeviceBase::GetLabel() const { return mLabel; } void DeviceBase::APISetLabel(const char* label) { mLabel = label; SetLabelImpl(); } void DeviceBase::SetLabelImpl() {} bool DeviceBase::ShouldDuplicateNumWorkgroupsForDispatchIndirect( ComputePipelineBase* computePipeline) const { return false; } bool DeviceBase::MayRequireDuplicationOfIndirectParameters() const { return false; } bool DeviceBase::ShouldDuplicateParametersForDrawIndirect( const RenderPipelineBase* renderPipelineBase) const { return false; } uint64_t DeviceBase::GetBufferCopyOffsetAlignmentForDepthStencil() const { // For depth-stencil texture, buffer offset must be a multiple of 4, which is required // by WebGPU and Vulkan SPEC. return 4u; } } // namespace dawn::native