// Copyright 2022 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/resolver/const_eval.h" #include #include #include #include #include #include #include #include "src/tint/program_builder.h" #include "src/tint/sem/abstract_float.h" #include "src/tint/sem/abstract_int.h" #include "src/tint/sem/array.h" #include "src/tint/sem/bool.h" #include "src/tint/sem/constant.h" #include "src/tint/sem/f16.h" #include "src/tint/sem/f32.h" #include "src/tint/sem/i32.h" #include "src/tint/sem/matrix.h" #include "src/tint/sem/member_accessor_expression.h" #include "src/tint/sem/type_constructor.h" #include "src/tint/sem/u32.h" #include "src/tint/sem/vector.h" #include "src/tint/utils/compiler_macros.h" #include "src/tint/utils/map.h" #include "src/tint/utils/transform.h" using namespace tint::number_suffixes; // NOLINT namespace tint::resolver { namespace { /// Returns the first element of a parameter pack template T First(T&& first, ...) { return std::forward(first); } /// Helper that calls `f` passing in the value of all `cs`. /// Assumes all `cs` are of the same type. template auto Dispatch_ia_iu32(F&& f, CONSTANTS&&... cs) { return Switch( First(cs...)->Type(), // [&](const sem::AbstractInt*) { return f(cs->template As()...); }, [&](const sem::I32*) { return f(cs->template As()...); }, [&](const sem::U32*) { return f(cs->template As()...); }); } /// Helper that calls `f` passing in the value of all `cs`. /// Assumes all `cs` are of the same type. template auto Dispatch_fia_fi32_f16(F&& f, CONSTANTS&&... cs) { return Switch( First(cs...)->Type(), // [&](const sem::AbstractInt*) { return f(cs->template As()...); }, [&](const sem::AbstractFloat*) { return f(cs->template As()...); }, [&](const sem::F32*) { return f(cs->template As()...); }, [&](const sem::I32*) { return f(cs->template As()...); }, [&](const sem::F16*) { return f(cs->template As()...); }); } /// Helper that calls `f` passing in the value of all `cs`. /// Assumes all `cs` are of the same type. template auto Dispatch_fia_fiu32_f16(F&& f, CONSTANTS&&... cs) { return Switch( First(cs...)->Type(), // [&](const sem::AbstractInt*) { return f(cs->template As()...); }, [&](const sem::AbstractFloat*) { return f(cs->template As()...); }, [&](const sem::F32*) { return f(cs->template As()...); }, [&](const sem::I32*) { return f(cs->template As()...); }, [&](const sem::U32*) { return f(cs->template As()...); }, [&](const sem::F16*) { return f(cs->template As()...); }); } /// Helper that calls `f` passing in the value of all `cs`. /// Assumes all `cs` are of the same type. template auto Dispatch_fa_f32_f16(F&& f, CONSTANTS&&... cs) { return Switch( First(cs...)->Type(), // [&](const sem::AbstractFloat*) { return f(cs->template As()...); }, [&](const sem::F32*) { return f(cs->template As()...); }, [&](const sem::F16*) { return f(cs->template As()...); }); } /// ZeroTypeDispatch is a helper for calling the function `f`, passing a single zero-value argument /// of the C++ type that corresponds to the sem::Type `type`. For example, calling /// `ZeroTypeDispatch()` with a type of `sem::I32*` will call the function f with a single argument /// of `i32(0)`. /// @returns the value returned by calling `f`. /// @note `type` must be a scalar or abstract numeric type. Other types will not call `f`, and will /// return the zero-initialized value of the return type for `f`. template auto ZeroTypeDispatch(const sem::Type* type, F&& f) { return Switch( type, // [&](const sem::AbstractInt*) { return f(AInt(0)); }, // [&](const sem::AbstractFloat*) { return f(AFloat(0)); }, // [&](const sem::I32*) { return f(i32(0)); }, // [&](const sem::U32*) { return f(u32(0)); }, // [&](const sem::F32*) { return f(f32(0)); }, // [&](const sem::F16*) { return f(f16(0)); }, // [&](const sem::Bool*) { return f(static_cast(0)); }); } /// @returns `value` if `T` is not a Number, otherwise ValueOf returns the inner value of the /// Number. template inline auto ValueOf(T value) { if constexpr (std::is_same_v, T>) { return value; } else { return value.value; } } /// @returns true if `value` is a positive zero. template inline bool IsPositiveZero(T value) { using N = UnwrapNumber; return Number(value) == Number(0); // Considers sign bit } /// Constant inherits from sem::Constant to add an private implementation method for conversion. struct Constant : public sem::Constant { /// Convert attempts to convert the constant value to the given type. On error, Convert() /// creates a new diagnostic message and returns a Failure. virtual utils::Result Convert(ProgramBuilder& builder, const sem::Type* target_ty, const Source& source) const = 0; }; // Forward declaration const Constant* CreateComposite(ProgramBuilder& builder, const sem::Type* type, utils::VectorRef elements); /// Element holds a single scalar or abstract-numeric value. /// Element implements the Constant interface. template struct Element : Constant { static_assert(!std::is_same_v, T> || std::is_same_v, "T must be a Number or bool"); Element(const sem::Type* t, T v) : type(t), value(v) {} ~Element() override = default; const sem::Type* Type() const override { return type; } std::variant Value() const override { if constexpr (IsFloatingPoint>) { return static_cast(value); } else { return static_cast(value); } } const sem::Constant* Index(size_t) const override { return nullptr; } bool AllZero() const override { return IsPositiveZero(value); } bool AnyZero() const override { return IsPositiveZero(value); } bool AllEqual() const override { return true; } size_t Hash() const override { return utils::Hash(type, ValueOf(value)); } utils::Result Convert(ProgramBuilder& builder, const sem::Type* target_ty, const Source& source) const override { TINT_BEGIN_DISABLE_WARNING(UNREACHABLE_CODE); if (target_ty == type) { // If the types are identical, then no conversion is needed. return this; } bool failed = false; auto* res = ZeroTypeDispatch(target_ty, [&](auto zero_to) -> const Constant* { // `T` is the source type, `value` is the source value. // `TO` is the target type. using TO = std::decay_t; if constexpr (std::is_same_v) { // [x -> bool] return builder.create>(target_ty, !IsPositiveZero(value)); } else if constexpr (std::is_same_v) { // [bool -> x] return builder.create>(target_ty, TO(value ? 1 : 0)); } else if (auto conv = CheckedConvert(value)) { // Conversion success return builder.create>(target_ty, conv.Get()); // --- Below this point are the failure cases --- } else if constexpr (std::is_same_v || std::is_same_v) { // [abstract-numeric -> x] - materialization failure std::stringstream ss; ss << "value " << value << " cannot be represented as "; ss << "'" << builder.FriendlyName(target_ty) << "'"; builder.Diagnostics().add_error(tint::diag::System::Resolver, ss.str(), source); failed = true; } else if constexpr (IsFloatingPoint>) { // [x -> floating-point] - number not exactly representable // https://www.w3.org/TR/WGSL/#floating-point-conversion switch (conv.Failure()) { case ConversionFailure::kExceedsNegativeLimit: return builder.create>(target_ty, -TO::Inf()); case ConversionFailure::kExceedsPositiveLimit: return builder.create>(target_ty, TO::Inf()); } } else { // [x -> integer] - number not exactly representable // https://www.w3.org/TR/WGSL/#floating-point-conversion switch (conv.Failure()) { case ConversionFailure::kExceedsNegativeLimit: return builder.create>(target_ty, TO::Lowest()); case ConversionFailure::kExceedsPositiveLimit: return builder.create>(target_ty, TO::Highest()); } } return nullptr; // Expression is not constant. }); if (failed) { // A diagnostic error has been raised, and resolving should abort. return utils::Failure; } return res; TINT_END_DISABLE_WARNING(UNREACHABLE_CODE); } sem::Type const* const type; const T value; }; /// Splat holds a single Constant value, duplicated as all children. /// Splat is used for zero-initializers, 'splat' constructors, or constructors where each element is /// identical. Splat may be of a vector, matrix or array type. /// Splat implements the Constant interface. struct Splat : Constant { Splat(const sem::Type* t, const sem::Constant* e, size_t n) : type(t), el(e), count(n) {} ~Splat() override = default; const sem::Type* Type() const override { return type; } std::variant Value() const override { return {}; } const sem::Constant* Index(size_t i) const override { return i < count ? el : nullptr; } bool AllZero() const override { return el->AllZero(); } bool AnyZero() const override { return el->AnyZero(); } bool AllEqual() const override { return true; } size_t Hash() const override { return utils::Hash(type, el->Hash(), count); } utils::Result Convert(ProgramBuilder& builder, const sem::Type* target_ty, const Source& source) const override { // Convert the single splatted element type. // Note: This file is the only place where `sem::Constant`s are created, so this static_cast // is safe. auto conv_el = static_cast(el)->Convert( builder, sem::Type::ElementOf(target_ty), source); if (!conv_el) { return utils::Failure; } if (!conv_el.Get()) { return nullptr; } return builder.create(target_ty, conv_el.Get(), count); } sem::Type const* const type; const sem::Constant* el; const size_t count; }; /// Composite holds a number of mixed child Constant values. /// Composite may be of a vector, matrix or array type. /// If each element is the same type and value, then a Splat would be a more efficient constant /// implementation. Use CreateComposite() to create the appropriate Constant type. /// Composite implements the Constant interface. struct Composite : Constant { Composite(const sem::Type* t, utils::VectorRef els, bool all_0, bool any_0) : type(t), elements(std::move(els)), all_zero(all_0), any_zero(any_0), hash(CalcHash()) {} ~Composite() override = default; const sem::Type* Type() const override { return type; } std::variant Value() const override { return {}; } const sem::Constant* Index(size_t i) const override { return i < elements.Length() ? elements[i] : nullptr; } bool AllZero() const override { return all_zero; } bool AnyZero() const override { return any_zero; } bool AllEqual() const override { return false; /* otherwise this should be a Splat */ } size_t Hash() const override { return hash; } utils::Result Convert(ProgramBuilder& builder, const sem::Type* target_ty, const Source& source) const override { // Convert each of the composite element types. auto* el_ty = sem::Type::ElementOf(target_ty); utils::Vector conv_els; conv_els.Reserve(elements.Length()); for (auto* el : elements) { // Note: This file is the only place where `sem::Constant`s are created, so this // static_cast is safe. auto conv_el = static_cast(el)->Convert(builder, el_ty, source); if (!conv_el) { return utils::Failure; } if (!conv_el.Get()) { return nullptr; } conv_els.Push(conv_el.Get()); } return CreateComposite(builder, target_ty, std::move(conv_els)); } size_t CalcHash() { auto h = utils::Hash(type, all_zero, any_zero); for (auto* el : elements) { utils::HashCombine(&h, el->Hash()); } return h; } sem::Type const* const type; const utils::Vector elements; const bool all_zero; const bool any_zero; const size_t hash; }; /// CreateElement constructs and returns an Element. template const Constant* CreateElement(ProgramBuilder& builder, const sem::Type* t, T v) { return builder.create>(t, v); } /// ZeroValue returns a Constant for the zero-value of the type `type`. const Constant* ZeroValue(ProgramBuilder& builder, const sem::Type* type) { return Switch( type, // [&](const sem::Vector* v) -> const Constant* { auto* zero_el = ZeroValue(builder, v->type()); return builder.create(type, zero_el, v->Width()); }, [&](const sem::Matrix* m) -> const Constant* { auto* zero_el = ZeroValue(builder, m->ColumnType()); return builder.create(type, zero_el, m->columns()); }, [&](const sem::Array* a) -> const Constant* { if (auto* zero_el = ZeroValue(builder, a->ElemType())) { return builder.create(type, zero_el, a->Count()); } return nullptr; }, [&](const sem::Struct* s) -> const Constant* { std::unordered_map zero_by_type; utils::Vector zeros; zeros.Reserve(s->Members().size()); for (auto* member : s->Members()) { auto* zero = utils::GetOrCreate(zero_by_type, member->Type(), [&] { return ZeroValue(builder, member->Type()); }); if (!zero) { return nullptr; } zeros.Push(zero); } if (zero_by_type.size() == 1) { // All members were of the same type, so the zero value is the same for all members. return builder.create(type, zeros[0], s->Members().size()); } return CreateComposite(builder, s, std::move(zeros)); }, [&](Default) -> const Constant* { return ZeroTypeDispatch(type, [&](auto zero) -> const Constant* { return CreateElement(builder, type, zero); }); }); } /// Equal returns true if the constants `a` and `b` are of the same type and value. bool Equal(const sem::Constant* a, const sem::Constant* b) { if (a->Hash() != b->Hash()) { return false; } if (a->Type() != b->Type()) { return false; } return Switch( a->Type(), // [&](const sem::Vector* vec) { for (size_t i = 0; i < vec->Width(); i++) { if (!Equal(a->Index(i), b->Index(i))) { return false; } } return true; }, [&](const sem::Matrix* mat) { for (size_t i = 0; i < mat->columns(); i++) { if (!Equal(a->Index(i), b->Index(i))) { return false; } } return true; }, [&](const sem::Array* arr) { for (size_t i = 0; i < arr->Count(); i++) { if (!Equal(a->Index(i), b->Index(i))) { return false; } } return true; }, [&](Default) { return a->Value() == b->Value(); }); } /// CreateComposite is used to construct a constant of a vector, matrix or array type. /// CreateComposite examines the element values and will return either a Composite or a Splat, /// depending on the element types and values. const Constant* CreateComposite(ProgramBuilder& builder, const sem::Type* type, utils::VectorRef elements) { if (elements.IsEmpty()) { return nullptr; } bool any_zero = false; bool all_zero = true; bool all_equal = true; auto* first = elements.Front(); for (auto* el : elements) { if (!el) { return nullptr; } if (!any_zero && el->AnyZero()) { any_zero = true; } if (all_zero && !el->AllZero()) { all_zero = false; } if (all_equal && el != first) { if (!Equal(el, first)) { all_equal = false; } } } if (all_equal) { return builder.create(type, elements[0], elements.Length()); } else { return builder.create(type, std::move(elements), all_zero, any_zero); } } /// TransformElements constructs a new constant by applying the transformation function 'f' on each /// of the most deeply nested elements of 'cs'. template const Constant* TransformElements(ProgramBuilder& builder, F&& f, CONSTANTS&&... cs) { uint32_t n = 0; auto* ty = First(cs...)->Type(); auto* el_ty = sem::Type::ElementOf(ty, &n); if (el_ty == ty) { return f(cs...); } utils::Vector els; els.Reserve(n); for (uint32_t i = 0; i < n; i++) { els.Push(TransformElements(builder, f, cs->Index(i)...)); } return CreateComposite(builder, ty, std::move(els)); } } // namespace ConstEval::ConstEval(ProgramBuilder& b) : builder(b) {} const sem::Constant* ConstEval::Literal(const sem::Type* ty, const ast::LiteralExpression* literal) { return Switch( literal, [&](const ast::BoolLiteralExpression* lit) { return CreateElement(builder, ty, lit->value); }, [&](const ast::IntLiteralExpression* lit) -> const Constant* { switch (lit->suffix) { case ast::IntLiteralExpression::Suffix::kNone: return CreateElement(builder, ty, AInt(lit->value)); case ast::IntLiteralExpression::Suffix::kI: return CreateElement(builder, ty, i32(lit->value)); case ast::IntLiteralExpression::Suffix::kU: return CreateElement(builder, ty, u32(lit->value)); } return nullptr; }, [&](const ast::FloatLiteralExpression* lit) -> const Constant* { switch (lit->suffix) { case ast::FloatLiteralExpression::Suffix::kNone: return CreateElement(builder, ty, AFloat(lit->value)); case ast::FloatLiteralExpression::Suffix::kF: return CreateElement(builder, ty, f32(lit->value)); case ast::FloatLiteralExpression::Suffix::kH: return CreateElement(builder, ty, f16(lit->value)); } return nullptr; }); } const sem::Constant* ConstEval::ArrayOrStructCtor( const sem::Type* ty, utils::ConstVectorRef args) { if (args.IsEmpty()) { return ZeroValue(builder, ty); } if (args.Length() == 1 && args[0]->Type() == ty) { // Identity constructor. return args[0]->ConstantValue(); } // Multiple arguments. Must be a type constructor. utils::Vector els; els.Reserve(args.Length()); for (auto* arg : args) { els.Push(arg->ConstantValue()); } return CreateComposite(builder, ty, std::move(els)); } const sem::Constant* ConstEval::Conv(const sem::Type* ty, utils::ConstVectorRef args) { uint32_t el_count = 0; auto* el_ty = sem::Type::ElementOf(ty, &el_count); if (!el_ty) { return nullptr; } auto& src = args[0]->Declaration()->source; auto* arg = args[0]->ConstantValue(); if (!arg) { return nullptr; // Single argument is not constant. } if (auto conv = Convert(ty, arg, src)) { return conv.Get(); } return nullptr; } const sem::Constant* ConstEval::Zero(const sem::Type* ty, utils::ConstVectorRef) { return ZeroValue(builder, ty); } const sem::Constant* ConstEval::Identity(const sem::Type*, utils::ConstVectorRef args) { return args[0]->ConstantValue(); } const sem::Constant* ConstEval::VecSplat(const sem::Type* ty, utils::ConstVectorRef args) { if (auto* arg = args[0]->ConstantValue()) { return builder.create(ty, arg, static_cast(ty)->Width()); } return nullptr; } const sem::Constant* ConstEval::VecCtorS(const sem::Type* ty, utils::ConstVectorRef args) { utils::Vector els; for (auto* arg : args) { els.Push(arg->ConstantValue()); } return CreateComposite(builder, ty, std::move(els)); } const sem::Constant* ConstEval::VecCtorM(const sem::Type* ty, utils::ConstVectorRef args) { utils::Vector els; for (auto* arg : args) { auto* val = arg->ConstantValue(); if (!val) { return nullptr; } auto* arg_ty = arg->Type(); if (auto* arg_vec = arg_ty->As()) { // Extract out vector elements. for (uint32_t j = 0; j < arg_vec->Width(); j++) { auto* el = val->Index(j); if (!el) { return nullptr; } els.Push(el); } } else { els.Push(val); } } return CreateComposite(builder, ty, std::move(els)); } const sem::Constant* ConstEval::MatCtorS(const sem::Type* ty, utils::ConstVectorRef args) { auto* m = static_cast(ty); utils::Vector els; for (uint32_t c = 0; c < m->columns(); c++) { utils::Vector column; for (uint32_t r = 0; r < m->rows(); r++) { auto i = r + c * m->rows(); column.Push(args[i]->ConstantValue()); } els.Push(CreateComposite(builder, m->ColumnType(), std::move(column))); } return CreateComposite(builder, ty, std::move(els)); } const sem::Constant* ConstEval::MatCtorV(const sem::Type* ty, utils::ConstVectorRef args) { utils::Vector els; for (auto* arg : args) { els.Push(arg->ConstantValue()); } return CreateComposite(builder, ty, std::move(els)); } const sem::Constant* ConstEval::Index(const sem::Expression* obj_expr, const sem::Expression* idx_expr) { auto obj_val = obj_expr->ConstantValue(); if (!obj_val) { return {}; } auto idx_val = idx_expr->ConstantValue(); if (!idx_val) { return {}; } uint32_t el_count = 0; sem::Type::ElementOf(obj_val->Type(), &el_count); AInt idx = idx_val->As(); if (idx < 0 || idx >= el_count) { auto clamped = std::min(std::max(idx, 0), el_count - 1); AddWarning("index " + std::to_string(idx) + " out of bounds [0.." + std::to_string(el_count - 1) + "]. Clamping index to " + std::to_string(clamped), idx_expr->Declaration()->source); idx = clamped; } return obj_val->Index(static_cast(idx)); } const sem::Constant* ConstEval::MemberAccess(const sem::Expression* obj_expr, const sem::StructMember* member) { auto obj_val = obj_expr->ConstantValue(); if (!obj_val) { return {}; } return obj_val->Index(static_cast(member->Index())); } const sem::Constant* ConstEval::Swizzle(const sem::Type* ty, const sem::Expression* vec_expr, utils::ConstVectorRef indices) { auto* vec_val = vec_expr->ConstantValue(); if (!vec_val) { return nullptr; } if (indices.Length() == 1) { return vec_val->Index(static_cast(indices[0])); } else { auto values = utils::Transform<4>( indices, [&](uint32_t i) { return vec_val->Index(static_cast(i)); }); return CreateComposite(builder, ty, std::move(values)); } } const sem::Constant* ConstEval::Bitcast(const sem::Type*, const sem::Expression*) { // TODO(crbug.com/tint/1581): Implement @const intrinsics return nullptr; } const sem::Constant* ConstEval::OpComplement(const sem::Type*, utils::ConstVectorRef args) { auto transform = [&](const sem::Constant* c) { auto create = [&](auto i) { return CreateElement(builder, c->Type(), decltype(i)(~i.value)); }; return Dispatch_ia_iu32(create, c); }; return TransformElements(builder, transform, args[0]->ConstantValue()); } const sem::Constant* ConstEval::OpMinus(const sem::Type*, utils::ConstVectorRef args) { auto transform = [&](const sem::Constant* c) { auto create = [&](auto i) { // // For signed integrals, avoid C++ UB by not negating the // smallest negative number. In WGSL, this operation is well // defined to return the same value, see: // https://gpuweb.github.io/gpuweb/wgsl/#arithmetic-expr. using T = UnwrapNumber; if constexpr (std::is_integral_v) { auto v = i.value; if (v != std::numeric_limits::min()) { v = -v; } return CreateElement(builder, c->Type(), decltype(i)(v)); } else { return CreateElement(builder, c->Type(), decltype(i)(-i.value)); } }; return Dispatch_fia_fi32_f16(create, c); }; return TransformElements(builder, transform, args[0]->ConstantValue()); } const sem::Constant* ConstEval::atan2(const sem::Type*, utils::ConstVectorRef args) { auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) { auto create = [&](auto i, auto j) { return CreateElement(builder, c0->Type(), decltype(i)(std::atan2(i.value, j.value))); }; return Dispatch_fa_f32_f16(create, c0, c1); }; return TransformElements(builder, transform, args[0]->ConstantValue(), args[1]->ConstantValue()); } const sem::Constant* ConstEval::clamp(const sem::Type*, utils::ConstVectorRef args) { auto transform = [&](const sem::Constant* c0, const sem::Constant* c1, const sem::Constant* c2) { auto create = [&](auto e, auto low, auto high) { return CreateElement(builder, c0->Type(), decltype(e)(std::min(std::max(e, low), high))); }; return Dispatch_fia_fiu32_f16(create, c0, c1, c2); }; return TransformElements(builder, transform, args[0]->ConstantValue(), args[1]->ConstantValue(), args[2]->ConstantValue()); } utils::Result ConstEval::Convert(const sem::Type* target_ty, const sem::Constant* value, const Source& source) { if (value->Type() == target_ty) { return value; } auto conv = static_cast(value)->Convert(builder, target_ty, source); if (!conv) { return utils::Failure; } return conv.Get(); } void ConstEval::AddError(const std::string& msg, const Source& source) const { builder.Diagnostics().add_error(diag::System::Resolver, msg, source); } void ConstEval::AddWarning(const std::string& msg, const Source& source) const { builder.Diagnostics().add_warning(diag::System::Resolver, msg, source); } } // namespace tint::resolver