// Copyright 2018 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dawn_native/vulkan/TextureVk.h" #include "common/Assert.h" #include "common/Math.h" #include "dawn_native/DynamicUploader.h" #include "dawn_native/EnumMaskIterator.h" #include "dawn_native/Error.h" #include "dawn_native/VulkanBackend.h" #include "dawn_native/vulkan/AdapterVk.h" #include "dawn_native/vulkan/BufferVk.h" #include "dawn_native/vulkan/CommandRecordingContext.h" #include "dawn_native/vulkan/DeviceVk.h" #include "dawn_native/vulkan/FencedDeleter.h" #include "dawn_native/vulkan/ResourceHeapVk.h" #include "dawn_native/vulkan/StagingBufferVk.h" #include "dawn_native/vulkan/UtilsVulkan.h" #include "dawn_native/vulkan/VulkanError.h" namespace dawn_native { namespace vulkan { namespace { // Converts an Dawn texture dimension to a Vulkan image view type. // Contrary to image types, image view types include arrayness and cubemapness VkImageViewType VulkanImageViewType(wgpu::TextureViewDimension dimension) { switch (dimension) { case wgpu::TextureViewDimension::e2D: return VK_IMAGE_VIEW_TYPE_2D; case wgpu::TextureViewDimension::e2DArray: return VK_IMAGE_VIEW_TYPE_2D_ARRAY; case wgpu::TextureViewDimension::Cube: return VK_IMAGE_VIEW_TYPE_CUBE; case wgpu::TextureViewDimension::CubeArray: return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY; case wgpu::TextureViewDimension::e3D: return VK_IMAGE_VIEW_TYPE_3D; case wgpu::TextureViewDimension::e1D: case wgpu::TextureViewDimension::Undefined: UNREACHABLE(); } } // Computes which vulkan access type could be required for the given Dawn usage. // TODO(cwallez@chromium.org): We shouldn't need any access usages for srcAccessMask when // the previous usage is readonly because an execution dependency is sufficient. VkAccessFlags VulkanAccessFlags(wgpu::TextureUsage usage, const Format& format) { VkAccessFlags flags = 0; if (usage & wgpu::TextureUsage::CopySrc) { flags |= VK_ACCESS_TRANSFER_READ_BIT; } if (usage & wgpu::TextureUsage::CopyDst) { flags |= VK_ACCESS_TRANSFER_WRITE_BIT; } if (usage & wgpu::TextureUsage::Sampled) { flags |= VK_ACCESS_SHADER_READ_BIT; } if (usage & wgpu::TextureUsage::Storage) { flags |= VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT; } if (usage & kReadOnlyStorageTexture) { flags |= VK_ACCESS_SHADER_READ_BIT; } if (usage & wgpu::TextureUsage::RenderAttachment) { if (format.HasDepthOrStencil()) { flags |= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; } else { flags |= VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; } } if (usage & kPresentTextureUsage) { // The present usage is only used internally by the swapchain and is never used in // combination with other usages. ASSERT(usage == kPresentTextureUsage); // The Vulkan spec has the following note: // // When transitioning the image to VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR or // VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, there is no need to delay subsequent // processing, or perform any visibility operations (as vkQueuePresentKHR performs // automatic visibility operations). To achieve this, the dstAccessMask member of // the VkImageMemoryBarrier should be set to 0, and the dstStageMask parameter // should be set to VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT. // // So on the transition to Present we don't need an access flag. The other // direction doesn't matter because swapchain textures always start a new frame // as uninitialized. flags |= 0; } return flags; } // Computes which Vulkan pipeline stage can access a texture in the given Dawn usage VkPipelineStageFlags VulkanPipelineStage(wgpu::TextureUsage usage, const Format& format) { VkPipelineStageFlags flags = 0; if (usage == wgpu::TextureUsage::None) { // This only happens when a texture is initially created (and for srcAccessMask) in // which case there is no need to wait on anything to stop accessing this texture. return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; } if (usage & (wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst)) { flags |= VK_PIPELINE_STAGE_TRANSFER_BIT; } if (usage & (wgpu::TextureUsage::Sampled | kReadOnlyStorageTexture)) { // TODO(cwallez@chromium.org): Only transition to the usage we care about to avoid // introducing FS -> VS dependencies that would prevent parallelization on tiler // GPUs flags |= VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT; } if (usage & wgpu::TextureUsage::Storage) { flags |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT; } if (usage & wgpu::TextureUsage::RenderAttachment) { if (format.HasDepthOrStencil()) { flags |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; // TODO(cwallez@chromium.org): This is missing the stage where the depth and // stencil values are written, but it isn't clear which one it is. } else { flags |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; } } if (usage & kPresentTextureUsage) { // The present usage is only used internally by the swapchain and is never used in // combination with other usages. ASSERT(usage == kPresentTextureUsage); // The Vulkan spec has the following note: // // When transitioning the image to VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR or // VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, there is no need to delay subsequent // processing, or perform any visibility operations (as vkQueuePresentKHR performs // automatic visibility operations). To achieve this, the dstAccessMask member of // the VkImageMemoryBarrier should be set to 0, and the dstStageMask parameter // should be set to VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT. // // So on the transition to Present we use the "bottom of pipe" stage. The other // direction doesn't matter because swapchain textures always start a new frame // as uninitialized. flags |= VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; } // A zero value isn't a valid pipeline stage mask ASSERT(flags != 0); return flags; } VkImageMemoryBarrier BuildMemoryBarrier(const Texture* texture, wgpu::TextureUsage lastUsage, wgpu::TextureUsage usage, const SubresourceRange& range) { VkImageMemoryBarrier barrier; barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.pNext = nullptr; barrier.srcAccessMask = VulkanAccessFlags(lastUsage, texture->GetFormat()); barrier.dstAccessMask = VulkanAccessFlags(usage, texture->GetFormat()); barrier.oldLayout = VulkanImageLayout(texture, lastUsage); barrier.newLayout = VulkanImageLayout(texture, usage); barrier.image = texture->GetHandle(); barrier.subresourceRange.aspectMask = VulkanAspectMask(range.aspects); barrier.subresourceRange.baseMipLevel = range.baseMipLevel; barrier.subresourceRange.levelCount = range.levelCount; barrier.subresourceRange.baseArrayLayer = range.baseArrayLayer; barrier.subresourceRange.layerCount = range.layerCount; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; return barrier; } void FillVulkanCreateInfoSizesAndType(const Texture& texture, VkImageCreateInfo* info) { const Extent3D& size = texture.GetSize(); info->mipLevels = texture.GetNumMipLevels(); info->samples = VulkanSampleCount(texture.GetSampleCount()); // Fill in the image type, and paper over differences in how the array layer count is // specified between WebGPU and Vulkan. switch (texture.GetDimension()) { case wgpu::TextureDimension::e2D: info->imageType = VK_IMAGE_TYPE_2D; info->extent = {size.width, size.height, 1}; info->arrayLayers = size.depthOrArrayLayers; break; case wgpu::TextureDimension::e3D: info->imageType = VK_IMAGE_TYPE_3D; info->extent = {size.width, size.height, size.depthOrArrayLayers}; info->arrayLayers = 1; break; case wgpu::TextureDimension::e1D: UNREACHABLE(); } } } // namespace // Converts Dawn texture format to Vulkan formats. VkFormat VulkanImageFormat(const Device* device, wgpu::TextureFormat format) { switch (format) { case wgpu::TextureFormat::R8Unorm: return VK_FORMAT_R8_UNORM; case wgpu::TextureFormat::R8Snorm: return VK_FORMAT_R8_SNORM; case wgpu::TextureFormat::R8Uint: return VK_FORMAT_R8_UINT; case wgpu::TextureFormat::R8Sint: return VK_FORMAT_R8_SINT; case wgpu::TextureFormat::R16Uint: return VK_FORMAT_R16_UINT; case wgpu::TextureFormat::R16Sint: return VK_FORMAT_R16_SINT; case wgpu::TextureFormat::R16Float: return VK_FORMAT_R16_SFLOAT; case wgpu::TextureFormat::RG8Unorm: return VK_FORMAT_R8G8_UNORM; case wgpu::TextureFormat::RG8Snorm: return VK_FORMAT_R8G8_SNORM; case wgpu::TextureFormat::RG8Uint: return VK_FORMAT_R8G8_UINT; case wgpu::TextureFormat::RG8Sint: return VK_FORMAT_R8G8_SINT; case wgpu::TextureFormat::R32Uint: return VK_FORMAT_R32_UINT; case wgpu::TextureFormat::R32Sint: return VK_FORMAT_R32_SINT; case wgpu::TextureFormat::R32Float: return VK_FORMAT_R32_SFLOAT; case wgpu::TextureFormat::RG16Uint: return VK_FORMAT_R16G16_UINT; case wgpu::TextureFormat::RG16Sint: return VK_FORMAT_R16G16_SINT; case wgpu::TextureFormat::RG16Float: return VK_FORMAT_R16G16_SFLOAT; case wgpu::TextureFormat::RGBA8Unorm: return VK_FORMAT_R8G8B8A8_UNORM; case wgpu::TextureFormat::RGBA8UnormSrgb: return VK_FORMAT_R8G8B8A8_SRGB; case wgpu::TextureFormat::RGBA8Snorm: return VK_FORMAT_R8G8B8A8_SNORM; case wgpu::TextureFormat::RGBA8Uint: return VK_FORMAT_R8G8B8A8_UINT; case wgpu::TextureFormat::RGBA8Sint: return VK_FORMAT_R8G8B8A8_SINT; case wgpu::TextureFormat::BGRA8Unorm: return VK_FORMAT_B8G8R8A8_UNORM; case wgpu::TextureFormat::BGRA8UnormSrgb: return VK_FORMAT_B8G8R8A8_SRGB; case wgpu::TextureFormat::RGB10A2Unorm: return VK_FORMAT_A2B10G10R10_UNORM_PACK32; case wgpu::TextureFormat::RG11B10Ufloat: return VK_FORMAT_B10G11R11_UFLOAT_PACK32; case wgpu::TextureFormat::RGB9E5Ufloat: return VK_FORMAT_E5B9G9R9_UFLOAT_PACK32; case wgpu::TextureFormat::RG32Uint: return VK_FORMAT_R32G32_UINT; case wgpu::TextureFormat::RG32Sint: return VK_FORMAT_R32G32_SINT; case wgpu::TextureFormat::RG32Float: return VK_FORMAT_R32G32_SFLOAT; case wgpu::TextureFormat::RGBA16Uint: return VK_FORMAT_R16G16B16A16_UINT; case wgpu::TextureFormat::RGBA16Sint: return VK_FORMAT_R16G16B16A16_SINT; case wgpu::TextureFormat::RGBA16Float: return VK_FORMAT_R16G16B16A16_SFLOAT; case wgpu::TextureFormat::RGBA32Uint: return VK_FORMAT_R32G32B32A32_UINT; case wgpu::TextureFormat::RGBA32Sint: return VK_FORMAT_R32G32B32A32_SINT; case wgpu::TextureFormat::RGBA32Float: return VK_FORMAT_R32G32B32A32_SFLOAT; case wgpu::TextureFormat::Depth32Float: return VK_FORMAT_D32_SFLOAT; case wgpu::TextureFormat::Depth24Plus: return VK_FORMAT_D32_SFLOAT; case wgpu::TextureFormat::Depth24PlusStencil8: // Depth24PlusStencil8 maps to either of these two formats because only requires // that one of the two be present. The VulkanUseD32S8 toggle combines the wish of // the environment, default to using D32S8, and availability information so we know // that the format is available. if (device->IsToggleEnabled(Toggle::VulkanUseD32S8)) { return VK_FORMAT_D32_SFLOAT_S8_UINT; } else { return VK_FORMAT_D24_UNORM_S8_UINT; } case wgpu::TextureFormat::BC1RGBAUnorm: return VK_FORMAT_BC1_RGBA_UNORM_BLOCK; case wgpu::TextureFormat::BC1RGBAUnormSrgb: return VK_FORMAT_BC1_RGBA_SRGB_BLOCK; case wgpu::TextureFormat::BC2RGBAUnorm: return VK_FORMAT_BC2_UNORM_BLOCK; case wgpu::TextureFormat::BC2RGBAUnormSrgb: return VK_FORMAT_BC2_SRGB_BLOCK; case wgpu::TextureFormat::BC3RGBAUnorm: return VK_FORMAT_BC3_UNORM_BLOCK; case wgpu::TextureFormat::BC3RGBAUnormSrgb: return VK_FORMAT_BC3_SRGB_BLOCK; case wgpu::TextureFormat::BC4RSnorm: return VK_FORMAT_BC4_SNORM_BLOCK; case wgpu::TextureFormat::BC4RUnorm: return VK_FORMAT_BC4_UNORM_BLOCK; case wgpu::TextureFormat::BC5RGSnorm: return VK_FORMAT_BC5_SNORM_BLOCK; case wgpu::TextureFormat::BC5RGUnorm: return VK_FORMAT_BC5_UNORM_BLOCK; case wgpu::TextureFormat::BC6HRGBFloat: return VK_FORMAT_BC6H_SFLOAT_BLOCK; case wgpu::TextureFormat::BC6HRGBUfloat: return VK_FORMAT_BC6H_UFLOAT_BLOCK; case wgpu::TextureFormat::BC7RGBAUnorm: return VK_FORMAT_BC7_UNORM_BLOCK; case wgpu::TextureFormat::BC7RGBAUnormSrgb: return VK_FORMAT_BC7_SRGB_BLOCK; case wgpu::TextureFormat::R8BG8Biplanar420Unorm: case wgpu::TextureFormat::Stencil8: case wgpu::TextureFormat::Undefined: UNREACHABLE(); } } // Converts the Dawn usage flags to Vulkan usage flags. Also needs the format to choose // between color and depth attachment usages. VkImageUsageFlags VulkanImageUsage(wgpu::TextureUsage usage, const Format& format) { VkImageUsageFlags flags = 0; if (usage & wgpu::TextureUsage::CopySrc) { flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; } if (usage & wgpu::TextureUsage::CopyDst) { flags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; } if (usage & wgpu::TextureUsage::Sampled) { flags |= VK_IMAGE_USAGE_SAMPLED_BIT; } if (usage & (wgpu::TextureUsage::Storage | kReadOnlyStorageTexture)) { flags |= VK_IMAGE_USAGE_STORAGE_BIT; } if (usage & wgpu::TextureUsage::RenderAttachment) { if (format.HasDepthOrStencil()) { flags |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; } else { flags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; } } return flags; } // Chooses which Vulkan image layout should be used for the given Dawn usage. Note that this // layout must match the layout given to various Vulkan operations as well as the layout given // to descriptor set writes. VkImageLayout VulkanImageLayout(const Texture* texture, wgpu::TextureUsage usage) { if (usage == wgpu::TextureUsage::None) { return VK_IMAGE_LAYOUT_UNDEFINED; } if (!wgpu::HasZeroOrOneBits(usage)) { // Sampled | ReadOnlyStorage is the only possible multi-bit usage, if more appear we // might need additional special-casing. ASSERT(usage == (wgpu::TextureUsage::Sampled | kReadOnlyStorageTexture)); return VK_IMAGE_LAYOUT_GENERAL; } // Usage has a single bit so we can switch on its value directly. switch (usage) { case wgpu::TextureUsage::CopyDst: return VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; // A texture that's sampled and storage may be used as both usages in the same pass. // When that happens, the layout must be GENERAL because that's a requirement for // the storage usage. We can't know at bindgroup creation time if that case will // happen so we must prepare for the pessimistic case and always use the GENERAL // layout. case wgpu::TextureUsage::Sampled: if (texture->GetUsage() & wgpu::TextureUsage::Storage) { return VK_IMAGE_LAYOUT_GENERAL; } else { return VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } // Vulkan texture copy functions require the image to be in _one_ known layout. // Depending on whether parts of the texture have been transitioned to only CopySrc // or a combination with something else, the texture could be in a combination of // GENERAL and TRANSFER_SRC_OPTIMAL. This would be a problem, so we make CopySrc use // GENERAL. // TODO(cwallez@chromium.org): We no longer need to transition resources all at // once and can instead track subresources so we should lift this limitation. case wgpu::TextureUsage::CopySrc: // Read-only and write-only storage textures must use general layout because load // and store operations on storage images can only be done on the images in // VK_IMAGE_LAYOUT_GENERAL layout. case wgpu::TextureUsage::Storage: case kReadOnlyStorageTexture: return VK_IMAGE_LAYOUT_GENERAL; case wgpu::TextureUsage::RenderAttachment: if (texture->GetFormat().HasDepthOrStencil()) { return VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } else { return VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } case kPresentTextureUsage: return VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; case wgpu::TextureUsage::None: UNREACHABLE(); } } VkSampleCountFlagBits VulkanSampleCount(uint32_t sampleCount) { switch (sampleCount) { case 1: return VK_SAMPLE_COUNT_1_BIT; case 4: return VK_SAMPLE_COUNT_4_BIT; default: UNREACHABLE(); } } MaybeError ValidateVulkanImageCanBeWrapped(const DeviceBase*, const TextureDescriptor* descriptor) { if (descriptor->dimension != wgpu::TextureDimension::e2D) { return DAWN_VALIDATION_ERROR("Texture must be 2D"); } if (descriptor->mipLevelCount != 1) { return DAWN_VALIDATION_ERROR("Mip level count must be 1"); } if (descriptor->size.depthOrArrayLayers != 1) { return DAWN_VALIDATION_ERROR("Array layer count must be 1"); } if (descriptor->sampleCount != 1) { return DAWN_VALIDATION_ERROR("Sample count must be 1"); } return {}; } bool IsSampleCountSupported(const dawn_native::vulkan::Device* device, const VkImageCreateInfo& imageCreateInfo) { ASSERT(device); VkPhysicalDevice physicalDevice = ToBackend(device->GetAdapter())->GetPhysicalDevice(); VkImageFormatProperties properties; if (device->fn.GetPhysicalDeviceImageFormatProperties( physicalDevice, imageCreateInfo.format, imageCreateInfo.imageType, imageCreateInfo.tiling, imageCreateInfo.usage, imageCreateInfo.flags, &properties) != VK_SUCCESS) { UNREACHABLE(); } return properties.sampleCounts & imageCreateInfo.samples; } // static ResultOrError> Texture::Create(Device* device, const TextureDescriptor* descriptor, VkImageUsageFlags extraUsages) { Ref texture = AcquireRef(new Texture(device, descriptor, TextureState::OwnedInternal)); DAWN_TRY(texture->InitializeAsInternalTexture(extraUsages)); return std::move(texture); } // static ResultOrError Texture::CreateFromExternal( Device* device, const ExternalImageDescriptorVk* descriptor, const TextureDescriptor* textureDescriptor, external_memory::Service* externalMemoryService) { Ref texture = AcquireRef(new Texture(device, textureDescriptor, TextureState::OwnedInternal)); DAWN_TRY(texture->InitializeFromExternal(descriptor, externalMemoryService)); return texture.Detach(); } // static Ref Texture::CreateForSwapChain(Device* device, const TextureDescriptor* descriptor, VkImage nativeImage) { Ref texture = AcquireRef(new Texture(device, descriptor, TextureState::OwnedExternal)); texture->InitializeForSwapChain(nativeImage); return texture; } Texture::Texture(Device* device, const TextureDescriptor* descriptor, TextureState state) : TextureBase(device, descriptor, state), // A usage of none will make sure the texture is transitioned before its first use as // required by the Vulkan spec. mSubresourceLastUsages(ComputeAspectsForSubresourceStorage(), GetArrayLayers(), GetNumMipLevels(), wgpu::TextureUsage::None) { } MaybeError Texture::InitializeAsInternalTexture(VkImageUsageFlags extraUsages) { Device* device = ToBackend(GetDevice()); // Create the Vulkan image "container". We don't need to check that the format supports the // combination of sample, usage etc. because validation should have been done in the Dawn // frontend already based on the minimum supported formats in the Vulkan spec VkImageCreateInfo createInfo = {}; FillVulkanCreateInfoSizesAndType(*this, &createInfo); createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; createInfo.format = VulkanImageFormat(device, GetFormat().format); createInfo.tiling = VK_IMAGE_TILING_OPTIMAL; createInfo.usage = VulkanImageUsage(GetUsage(), GetFormat()) | extraUsages; createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.queueFamilyIndexCount = 0; createInfo.pQueueFamilyIndices = nullptr; createInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; ASSERT(IsSampleCountSupported(device, createInfo)); if (GetArrayLayers() >= 6 && GetWidth() == GetHeight()) { createInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; } // We always set VK_IMAGE_USAGE_TRANSFER_DST_BIT unconditionally beause the Vulkan images // that are used in vkCmdClearColorImage() must have been created with this flag, which is // also required for the implementation of robust resource initialization. createInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; DAWN_TRY(CheckVkSuccess( device->fn.CreateImage(device->GetVkDevice(), &createInfo, nullptr, &*mHandle), "CreateImage")); // Create the image memory and associate it with the container VkMemoryRequirements requirements; device->fn.GetImageMemoryRequirements(device->GetVkDevice(), mHandle, &requirements); DAWN_TRY_ASSIGN(mMemoryAllocation, device->AllocateMemory(requirements, false)); DAWN_TRY(CheckVkSuccess( device->fn.BindImageMemory(device->GetVkDevice(), mHandle, ToBackend(mMemoryAllocation.GetResourceHeap())->GetMemory(), mMemoryAllocation.GetOffset()), "BindImageMemory")); if (device->IsToggleEnabled(Toggle::NonzeroClearResourcesOnCreationForTesting)) { DAWN_TRY(ClearTexture(ToBackend(GetDevice())->GetPendingRecordingContext(), GetAllSubresources(), TextureBase::ClearValue::NonZero)); } return {}; } // Internally managed, but imported from external handle MaybeError Texture::InitializeFromExternal(const ExternalImageDescriptorVk* descriptor, external_memory::Service* externalMemoryService) { VkFormat format = VulkanImageFormat(ToBackend(GetDevice()), GetFormat().format); VkImageUsageFlags usage = VulkanImageUsage(GetUsage(), GetFormat()); if (!externalMemoryService->SupportsCreateImage(descriptor, format, usage)) { return DAWN_VALIDATION_ERROR("Creating an image from external memory is not supported"); } mExternalState = ExternalState::PendingAcquire; mPendingAcquireOldLayout = descriptor->releasedOldLayout; mPendingAcquireNewLayout = descriptor->releasedNewLayout; VkImageCreateInfo baseCreateInfo = {}; FillVulkanCreateInfoSizesAndType(*this, &baseCreateInfo); baseCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; baseCreateInfo.pNext = nullptr; baseCreateInfo.format = format; baseCreateInfo.usage = usage; baseCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; baseCreateInfo.queueFamilyIndexCount = 0; baseCreateInfo.pQueueFamilyIndices = nullptr; // We always set VK_IMAGE_USAGE_TRANSFER_DST_BIT unconditionally beause the Vulkan images // that are used in vkCmdClearColorImage() must have been created with this flag, which is // also required for the implementation of robust resource initialization. baseCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; DAWN_TRY_ASSIGN(mHandle, externalMemoryService->CreateImage(descriptor, baseCreateInfo)); return {}; } void Texture::InitializeForSwapChain(VkImage nativeImage) { mHandle = nativeImage; } MaybeError Texture::BindExternalMemory(const ExternalImageDescriptorVk* descriptor, VkSemaphore signalSemaphore, VkDeviceMemory externalMemoryAllocation, std::vector waitSemaphores) { Device* device = ToBackend(GetDevice()); DAWN_TRY(CheckVkSuccess( device->fn.BindImageMemory(device->GetVkDevice(), mHandle, externalMemoryAllocation, 0), "BindImageMemory (external)")); // Don't clear imported texture if already initialized if (descriptor->isInitialized) { SetIsSubresourceContentInitialized(true, GetAllSubresources()); } // Success, acquire all the external objects. mExternalAllocation = externalMemoryAllocation; mSignalSemaphore = signalSemaphore; mWaitRequirements = std::move(waitSemaphores); return {}; } MaybeError Texture::ExportExternalTexture(VkImageLayout desiredLayout, VkSemaphore* signalSemaphore, VkImageLayout* releasedOldLayout, VkImageLayout* releasedNewLayout) { Device* device = ToBackend(GetDevice()); if (mExternalState == ExternalState::Released) { return DAWN_VALIDATION_ERROR("Can't export signal semaphore from signaled texture"); } if (mExternalAllocation == VK_NULL_HANDLE) { return DAWN_VALIDATION_ERROR( "Can't export signal semaphore from destroyed / non-external texture"); } ASSERT(mSignalSemaphore != VK_NULL_HANDLE); // Release the texture mExternalState = ExternalState::Released; ASSERT(GetNumMipLevels() == 1 && GetArrayLayers() == 1); wgpu::TextureUsage usage = mSubresourceLastUsages.Get(Aspect::Color, 0, 0); VkImageMemoryBarrier barrier; barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.pNext = nullptr; barrier.image = GetHandle(); barrier.subresourceRange.aspectMask = VulkanAspectMask(GetFormat().aspects); barrier.subresourceRange.baseMipLevel = 0; barrier.subresourceRange.levelCount = 1; barrier.subresourceRange.baseArrayLayer = 0; barrier.subresourceRange.layerCount = 1; barrier.srcAccessMask = VulkanAccessFlags(usage, GetFormat()); barrier.dstAccessMask = 0; // The barrier must be paired with another barrier that will // specify the dst access mask on the importing queue. barrier.oldLayout = VulkanImageLayout(this, usage); if (desiredLayout == VK_IMAGE_LAYOUT_UNDEFINED) { // VK_IMAGE_LAYOUT_UNDEFINED is invalid here. We use it as a // special value to indicate no layout transition should be done. barrier.newLayout = barrier.oldLayout; } else { barrier.newLayout = desiredLayout; } barrier.srcQueueFamilyIndex = device->GetGraphicsQueueFamily(); barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_EXTERNAL_KHR; VkPipelineStageFlags srcStages = VulkanPipelineStage(usage, GetFormat()); VkPipelineStageFlags dstStages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; // We don't know when the importing queue will need // the texture, so pass // VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT to ensure // the barrier happens-before any usage in the // importing queue. CommandRecordingContext* recordingContext = device->GetPendingRecordingContext(); device->fn.CmdPipelineBarrier(recordingContext->commandBuffer, srcStages, dstStages, 0, 0, nullptr, 0, nullptr, 1, &barrier); // Queue submit to signal we are done with the texture recordingContext->signalSemaphores.push_back(mSignalSemaphore); DAWN_TRY(device->SubmitPendingCommands()); // Write out the layouts and signal semaphore *releasedOldLayout = barrier.oldLayout; *releasedNewLayout = barrier.newLayout; *signalSemaphore = mSignalSemaphore; mSignalSemaphore = VK_NULL_HANDLE; // Destroy the texture so it can't be used again DestroyInternal(); return {}; } Texture::~Texture() { DestroyInternal(); } void Texture::DestroyImpl() { if (GetTextureState() == TextureState::OwnedInternal) { Device* device = ToBackend(GetDevice()); // For textures created from a VkImage, the allocation if kInvalid so the Device knows // to skip the deallocation of the (absence of) VkDeviceMemory. device->DeallocateMemory(&mMemoryAllocation); if (mHandle != VK_NULL_HANDLE) { device->GetFencedDeleter()->DeleteWhenUnused(mHandle); } if (mExternalAllocation != VK_NULL_HANDLE) { device->GetFencedDeleter()->DeleteWhenUnused(mExternalAllocation); } mHandle = VK_NULL_HANDLE; mExternalAllocation = VK_NULL_HANDLE; // If a signal semaphore exists it should be requested before we delete the texture ASSERT(mSignalSemaphore == VK_NULL_HANDLE); } } VkImage Texture::GetHandle() const { return mHandle; } VkImageAspectFlags Texture::GetVkAspectMask(wgpu::TextureAspect aspect) const { // TODO(enga): These masks could be precomputed. switch (aspect) { case wgpu::TextureAspect::All: return VulkanAspectMask(GetFormat().aspects); case wgpu::TextureAspect::DepthOnly: ASSERT(GetFormat().aspects & Aspect::Depth); return VulkanAspectMask(Aspect::Depth); case wgpu::TextureAspect::StencilOnly: ASSERT(GetFormat().aspects & Aspect::Stencil); return VulkanAspectMask(Aspect::Stencil); case wgpu::TextureAspect::Plane0Only: case wgpu::TextureAspect::Plane1Only: UNREACHABLE(); } } void Texture::TweakTransitionForExternalUsage(CommandRecordingContext* recordingContext, std::vector* barriers, size_t transitionBarrierStart) { ASSERT(GetNumMipLevels() == 1 && GetArrayLayers() == 1); // transitionBarrierStart specify the index where barriers for current transition start in // the vector. barriers->size() - transitionBarrierStart is the number of barriers that we // have already added into the vector during current transition. ASSERT(barriers->size() - transitionBarrierStart <= 1); if (mExternalState == ExternalState::PendingAcquire) { if (barriers->size() == transitionBarrierStart) { barriers->push_back(BuildMemoryBarrier( this, wgpu::TextureUsage::None, wgpu::TextureUsage::None, SubresourceRange::SingleMipAndLayer(0, 0, GetFormat().aspects))); } VkImageMemoryBarrier* barrier = &(*barriers)[transitionBarrierStart]; // Transfer texture from external queue to graphics queue barrier->srcQueueFamilyIndex = VK_QUEUE_FAMILY_EXTERNAL_KHR; barrier->dstQueueFamilyIndex = ToBackend(GetDevice())->GetGraphicsQueueFamily(); // srcAccessMask means nothing when importing. Queue transfers require a barrier on // both the importing and exporting queues. The exporting queue should have specified // this. barrier->srcAccessMask = 0; // This should be the first barrier after import. ASSERT(barrier->oldLayout == VK_IMAGE_LAYOUT_UNDEFINED); // Save the desired layout. We may need to transition through an intermediate // |mPendingAcquireLayout| first. VkImageLayout desiredLayout = barrier->newLayout; bool isInitialized = IsSubresourceContentInitialized(GetAllSubresources()); // We don't care about the pending old layout if the texture is uninitialized. The // driver is free to discard it. Likewise, we don't care about the pending new layout if // the texture is uninitialized. We can skip the layout transition. if (!isInitialized) { barrier->oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; barrier->newLayout = desiredLayout; } else { barrier->oldLayout = mPendingAcquireOldLayout; barrier->newLayout = mPendingAcquireNewLayout; } // If these are unequal, we need an another barrier to transition the layout. if (barrier->newLayout != desiredLayout) { VkImageMemoryBarrier layoutBarrier; layoutBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; layoutBarrier.pNext = nullptr; layoutBarrier.image = GetHandle(); layoutBarrier.subresourceRange = barrier->subresourceRange; // Transition from the acquired new layout to the desired layout. layoutBarrier.oldLayout = barrier->newLayout; layoutBarrier.newLayout = desiredLayout; // We already transitioned these. layoutBarrier.srcAccessMask = 0; layoutBarrier.dstAccessMask = 0; layoutBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; layoutBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barriers->push_back(layoutBarrier); } mExternalState = ExternalState::Acquired; } mLastExternalState = mExternalState; recordingContext->waitSemaphores.insert(recordingContext->waitSemaphores.end(), mWaitRequirements.begin(), mWaitRequirements.end()); mWaitRequirements.clear(); } bool Texture::CanReuseWithoutBarrier(wgpu::TextureUsage lastUsage, wgpu::TextureUsage usage) { // Reuse the texture directly and avoid encoding barriers when it isn't needed. bool lastReadOnly = IsSubset(lastUsage, kReadOnlyTextureUsages); if (lastReadOnly && lastUsage == usage && mLastExternalState == mExternalState) { return true; } return false; } bool Texture::ShouldCombineDepthStencilBarriers() const { return GetFormat().aspects == (Aspect::Depth | Aspect::Stencil); } Aspect Texture::ComputeAspectsForSubresourceStorage() const { if (ShouldCombineDepthStencilBarriers()) { return Aspect::CombinedDepthStencil; } return GetFormat().aspects; } void Texture::TransitionUsageForPass(CommandRecordingContext* recordingContext, const TextureSubresourceUsage& textureUsages, std::vector* imageBarriers, VkPipelineStageFlags* srcStages, VkPipelineStageFlags* dstStages) { // Base Vulkan doesn't support transitioning depth and stencil separately. We work around // this limitation by combining the usages in the two planes of `textureUsages` into a // single plane in a new SubresourceStorage. The barriers will be produced // for DEPTH | STENCIL since the SubresourceRange uses Aspect::CombinedDepthStencil. if (ShouldCombineDepthStencilBarriers()) { SubresourceStorage combinedUsages( Aspect::CombinedDepthStencil, GetArrayLayers(), GetNumMipLevels()); textureUsages.Iterate([&](const SubresourceRange& range, wgpu::TextureUsage usage) { SubresourceRange updateRange = range; updateRange.aspects = Aspect::CombinedDepthStencil; combinedUsages.Update( updateRange, [&](const SubresourceRange&, wgpu::TextureUsage* combinedUsage) { *combinedUsage |= usage; }); }); TransitionUsageForPassImpl(recordingContext, combinedUsages, imageBarriers, srcStages, dstStages); } else { TransitionUsageForPassImpl(recordingContext, textureUsages, imageBarriers, srcStages, dstStages); } } void Texture::TransitionUsageForPassImpl( CommandRecordingContext* recordingContext, const SubresourceStorage& subresourceUsages, std::vector* imageBarriers, VkPipelineStageFlags* srcStages, VkPipelineStageFlags* dstStages) { size_t transitionBarrierStart = imageBarriers->size(); const Format& format = GetFormat(); wgpu::TextureUsage allUsages = wgpu::TextureUsage::None; wgpu::TextureUsage allLastUsages = wgpu::TextureUsage::None; // This transitions assume it is a 2D texture ASSERT(GetDimension() == wgpu::TextureDimension::e2D); mSubresourceLastUsages.Merge( subresourceUsages, [&](const SubresourceRange& range, wgpu::TextureUsage* lastUsage, const wgpu::TextureUsage& newUsage) { if (newUsage == wgpu::TextureUsage::None || CanReuseWithoutBarrier(*lastUsage, newUsage)) { return; } imageBarriers->push_back(BuildMemoryBarrier(this, *lastUsage, newUsage, range)); allLastUsages |= *lastUsage; allUsages |= newUsage; *lastUsage = newUsage; }); if (mExternalState != ExternalState::InternalOnly) { TweakTransitionForExternalUsage(recordingContext, imageBarriers, transitionBarrierStart); } *srcStages |= VulkanPipelineStage(allLastUsages, format); *dstStages |= VulkanPipelineStage(allUsages, format); } void Texture::TransitionUsageNow(CommandRecordingContext* recordingContext, wgpu::TextureUsage usage, const SubresourceRange& range) { std::vector barriers; VkPipelineStageFlags srcStages = 0; VkPipelineStageFlags dstStages = 0; TransitionUsageAndGetResourceBarrier(usage, range, &barriers, &srcStages, &dstStages); if (mExternalState != ExternalState::InternalOnly) { TweakTransitionForExternalUsage(recordingContext, &barriers, 0); } if (!barriers.empty()) { ASSERT(srcStages != 0 && dstStages != 0); ToBackend(GetDevice()) ->fn.CmdPipelineBarrier(recordingContext->commandBuffer, srcStages, dstStages, 0, 0, nullptr, 0, nullptr, barriers.size(), barriers.data()); } } void Texture::TransitionUsageAndGetResourceBarrier( wgpu::TextureUsage usage, const SubresourceRange& range, std::vector* imageBarriers, VkPipelineStageFlags* srcStages, VkPipelineStageFlags* dstStages) { // Base Vulkan doesn't support transitioning depth and stencil separately. We work around // this limitation by modifying the range to be on CombinedDepthStencil. The barriers will // be produced for DEPTH | STENCIL since the SubresourceRange uses // Aspect::CombinedDepthStencil. if (ShouldCombineDepthStencilBarriers()) { SubresourceRange updatedRange = range; updatedRange.aspects = Aspect::CombinedDepthStencil; std::vector newBarriers; TransitionUsageAndGetResourceBarrierImpl(usage, updatedRange, imageBarriers, srcStages, dstStages); } else { TransitionUsageAndGetResourceBarrierImpl(usage, range, imageBarriers, srcStages, dstStages); } } void Texture::TransitionUsageAndGetResourceBarrierImpl( wgpu::TextureUsage usage, const SubresourceRange& range, std::vector* imageBarriers, VkPipelineStageFlags* srcStages, VkPipelineStageFlags* dstStages) { ASSERT(imageBarriers != nullptr); const Format& format = GetFormat(); wgpu::TextureUsage allLastUsages = wgpu::TextureUsage::None; mSubresourceLastUsages.Update( range, [&](const SubresourceRange& range, wgpu::TextureUsage* lastUsage) { if (CanReuseWithoutBarrier(*lastUsage, usage)) { return; } imageBarriers->push_back(BuildMemoryBarrier(this, *lastUsage, usage, range)); allLastUsages |= *lastUsage; *lastUsage = usage; }); *srcStages |= VulkanPipelineStage(allLastUsages, format); *dstStages |= VulkanPipelineStage(usage, format); } MaybeError Texture::ClearTexture(CommandRecordingContext* recordingContext, const SubresourceRange& range, TextureBase::ClearValue clearValue) { Device* device = ToBackend(GetDevice()); const bool isZero = clearValue == TextureBase::ClearValue::Zero; uint32_t uClearColor = isZero ? 0 : 1; int32_t sClearColor = isZero ? 0 : 1; float fClearColor = isZero ? 0.f : 1.f; TransitionUsageNow(recordingContext, wgpu::TextureUsage::CopyDst, range); VkImageSubresourceRange imageRange = {}; imageRange.levelCount = 1; imageRange.layerCount = 1; if (GetFormat().isCompressed) { if (range.aspects == Aspect::None) { return {}; } // need to clear the texture with a copy from buffer ASSERT(range.aspects == Aspect::Color); const TexelBlockInfo& blockInfo = GetFormat().GetAspectInfo(range.aspects).block; uint32_t bytesPerRow = Align((GetWidth() / blockInfo.width) * blockInfo.byteSize, device->GetOptimalBytesPerRowAlignment()); uint64_t bufferSize = bytesPerRow * (GetHeight() / blockInfo.height); DynamicUploader* uploader = device->GetDynamicUploader(); UploadHandle uploadHandle; DAWN_TRY_ASSIGN(uploadHandle, uploader->Allocate(bufferSize, device->GetPendingCommandSerial(), blockInfo.byteSize)); memset(uploadHandle.mappedBuffer, uClearColor, bufferSize); std::vector regions; for (uint32_t level = range.baseMipLevel; level < range.baseMipLevel + range.levelCount; ++level) { imageRange.baseMipLevel = level; for (uint32_t layer = range.baseArrayLayer; layer < range.baseArrayLayer + range.layerCount; ++layer) { if (clearValue == TextureBase::ClearValue::Zero && IsSubresourceContentInitialized( SubresourceRange::SingleMipAndLayer(level, layer, range.aspects))) { // Skip lazy clears if already initialized. continue; } TextureDataLayout dataLayout; dataLayout.offset = uploadHandle.startOffset; dataLayout.rowsPerImage = GetHeight() / blockInfo.height; dataLayout.bytesPerRow = bytesPerRow; TextureCopy textureCopy; textureCopy.aspect = range.aspects; textureCopy.mipLevel = level; textureCopy.origin = {0, 0, layer}; textureCopy.texture = this; regions.push_back(ComputeBufferImageCopyRegion(dataLayout, textureCopy, GetMipLevelPhysicalSize(level))); } } device->fn.CmdCopyBufferToImage( recordingContext->commandBuffer, ToBackend(uploadHandle.stagingBuffer)->GetBufferHandle(), GetHandle(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, regions.data()); } else { for (uint32_t level = range.baseMipLevel; level < range.baseMipLevel + range.levelCount; ++level) { imageRange.baseMipLevel = level; for (uint32_t layer = range.baseArrayLayer; layer < range.baseArrayLayer + range.layerCount; ++layer) { Aspect aspects = Aspect::None; for (Aspect aspect : IterateEnumMask(range.aspects)) { if (clearValue == TextureBase::ClearValue::Zero && IsSubresourceContentInitialized( SubresourceRange::SingleMipAndLayer(level, layer, aspect))) { // Skip lazy clears if already initialized. continue; } aspects |= aspect; } if (aspects == Aspect::None) { continue; } imageRange.aspectMask = VulkanAspectMask(aspects); imageRange.baseArrayLayer = layer; if (aspects & (Aspect::Depth | Aspect::Stencil | Aspect::CombinedDepthStencil)) { VkClearDepthStencilValue clearDepthStencilValue[1]; clearDepthStencilValue[0].depth = fClearColor; clearDepthStencilValue[0].stencil = uClearColor; device->fn.CmdClearDepthStencilImage( recordingContext->commandBuffer, GetHandle(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, clearDepthStencilValue, 1, &imageRange); } else { ASSERT(aspects == Aspect::Color); VkClearColorValue clearColorValue; switch (GetFormat().GetAspectInfo(Aspect::Color).baseType) { case wgpu::TextureComponentType::Float: clearColorValue.float32[0] = fClearColor; clearColorValue.float32[1] = fClearColor; clearColorValue.float32[2] = fClearColor; clearColorValue.float32[3] = fClearColor; break; case wgpu::TextureComponentType::Sint: clearColorValue.int32[0] = sClearColor; clearColorValue.int32[1] = sClearColor; clearColorValue.int32[2] = sClearColor; clearColorValue.int32[3] = sClearColor; break; case wgpu::TextureComponentType::Uint: clearColorValue.uint32[0] = uClearColor; clearColorValue.uint32[1] = uClearColor; clearColorValue.uint32[2] = uClearColor; clearColorValue.uint32[3] = uClearColor; break; case wgpu::TextureComponentType::DepthComparison: UNREACHABLE(); } device->fn.CmdClearColorImage(recordingContext->commandBuffer, GetHandle(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearColorValue, 1, &imageRange); } } } } if (clearValue == TextureBase::ClearValue::Zero) { SetIsSubresourceContentInitialized(true, range); device->IncrementLazyClearCountForTesting(); } return {}; } void Texture::EnsureSubresourceContentInitialized(CommandRecordingContext* recordingContext, const SubresourceRange& range) { if (!GetDevice()->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse)) { return; } if (!IsSubresourceContentInitialized(range)) { // If subresource has not been initialized, clear it to black as it could contain dirty // bits from recycled memory GetDevice()->ConsumedError( ClearTexture(recordingContext, range, TextureBase::ClearValue::Zero)); } } VkImageLayout Texture::GetCurrentLayoutForSwapChain() const { return VulkanImageLayout(this, mSubresourceLastUsages.Get(Aspect::Color, 0, 0)); } // static ResultOrError> TextureView::Create(TextureBase* texture, const TextureViewDescriptor* descriptor) { Ref view = AcquireRef(new TextureView(texture, descriptor)); DAWN_TRY(view->Initialize(descriptor)); return view; } MaybeError TextureView::Initialize(const TextureViewDescriptor* descriptor) { if ((GetTexture()->GetUsage() & ~(wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::CopyDst)) == 0) { // If the texture view has no other usage than CopySrc and CopyDst, then it can't // actually be used as a render pass attachment or sampled/storage texture. The Vulkan // validation errors warn if you create such a vkImageView, so return early. return {}; } Device* device = ToBackend(GetTexture()->GetDevice()); VkImageViewCreateInfo createInfo; createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; createInfo.image = ToBackend(GetTexture())->GetHandle(); createInfo.viewType = VulkanImageViewType(descriptor->dimension); createInfo.format = VulkanImageFormat(device, descriptor->format); createInfo.components = VkComponentMapping{VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A}; const SubresourceRange& subresources = GetSubresourceRange(); createInfo.subresourceRange.baseMipLevel = subresources.baseMipLevel; createInfo.subresourceRange.levelCount = subresources.levelCount; createInfo.subresourceRange.baseArrayLayer = subresources.baseArrayLayer; createInfo.subresourceRange.layerCount = subresources.layerCount; createInfo.subresourceRange.aspectMask = VulkanAspectMask(subresources.aspects); return CheckVkSuccess( device->fn.CreateImageView(device->GetVkDevice(), &createInfo, nullptr, &*mHandle), "CreateImageView"); } TextureView::~TextureView() { Device* device = ToBackend(GetTexture()->GetDevice()); if (mHandle != VK_NULL_HANDLE) { device->GetFencedDeleter()->DeleteWhenUnused(mHandle); mHandle = VK_NULL_HANDLE; } } VkImageView TextureView::GetHandle() const { return mHandle; } }} // namespace dawn_native::vulkan