// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include #include #include #include #include #include "src/ast/alias.h" #include "src/ast/array.h" #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/depth_texture.h" #include "src/ast/disable_validation_decoration.h" #include "src/ast/discard_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/for_loop_statement.h" #include "src/ast/if_statement.h" #include "src/ast/internal_decoration.h" #include "src/ast/interpolate_decoration.h" #include "src/ast/loop_statement.h" #include "src/ast/matrix.h" #include "src/ast/override_decoration.h" #include "src/ast/pointer.h" #include "src/ast/return_statement.h" #include "src/ast/sampled_texture.h" #include "src/ast/sampler.h" #include "src/ast/storage_texture.h" #include "src/ast/struct_block_decoration.h" #include "src/ast/switch_statement.h" #include "src/ast/traverse_expressions.h" #include "src/ast/type_name.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/ast/vector.h" #include "src/ast/workgroup_decoration.h" #include "src/sem/array.h" #include "src/sem/atomic_type.h" #include "src/sem/call.h" #include "src/sem/depth_multisampled_texture_type.h" #include "src/sem/depth_texture_type.h" #include "src/sem/for_loop_statement.h" #include "src/sem/function.h" #include "src/sem/if_statement.h" #include "src/sem/loop_statement.h" #include "src/sem/member_accessor_expression.h" #include "src/sem/multisampled_texture_type.h" #include "src/sem/pointer_type.h" #include "src/sem/reference_type.h" #include "src/sem/sampled_texture_type.h" #include "src/sem/sampler_type.h" #include "src/sem/statement.h" #include "src/sem/storage_texture_type.h" #include "src/sem/struct.h" #include "src/sem/switch_statement.h" #include "src/sem/variable.h" #include "src/utils/defer.h" #include "src/utils/get_or_create.h" #include "src/utils/math.h" #include "src/utils/reverse.h" #include "src/utils/scoped_assignment.h" namespace tint { namespace resolver { namespace { using IntrinsicType = tint::sem::IntrinsicType; bool IsValidStorageTextureDimension(ast::TextureDimension dim) { switch (dim) { case ast::TextureDimension::k1d: case ast::TextureDimension::k2d: case ast::TextureDimension::k2dArray: case ast::TextureDimension::k3d: return true; default: return false; } } bool IsValidStorageTextureImageFormat(ast::ImageFormat format) { switch (format) { case ast::ImageFormat::kR32Uint: case ast::ImageFormat::kR32Sint: case ast::ImageFormat::kR32Float: case ast::ImageFormat::kRg32Uint: case ast::ImageFormat::kRg32Sint: case ast::ImageFormat::kRg32Float: case ast::ImageFormat::kRgba8Unorm: case ast::ImageFormat::kRgba8Snorm: case ast::ImageFormat::kRgba8Uint: case ast::ImageFormat::kRgba8Sint: case ast::ImageFormat::kRgba16Uint: case ast::ImageFormat::kRgba16Sint: case ast::ImageFormat::kRgba16Float: case ast::ImageFormat::kRgba32Uint: case ast::ImageFormat::kRgba32Sint: case ast::ImageFormat::kRgba32Float: return true; default: return false; } } /// @returns true if the decoration list contains a /// ast::DisableValidationDecoration with the validation mode equal to /// `validation` bool IsValidationDisabled(const ast::DecorationList& decorations, ast::DisabledValidation validation) { for (auto* decoration : decorations) { if (auto* dv = decoration->As()) { if (dv->validation == validation) { return true; } } } return false; } /// @returns true if the decoration list does not contains a /// ast::DisableValidationDecoration with the validation mode equal to /// `validation` bool IsValidationEnabled(const ast::DecorationList& decorations, ast::DisabledValidation validation) { return !IsValidationDisabled(decorations, validation); } // Helper to stringify a pipeline IO decoration. std::string deco_to_str(const ast::Decoration* deco) { std::stringstream str; if (auto* builtin = deco->As()) { str << "builtin(" << builtin->builtin << ")"; } else if (auto* location = deco->As()) { str << "location(" << location->value << ")"; } return str.str(); } } // namespace Resolver::Resolver(ProgramBuilder* builder) : builder_(builder), diagnostics_(builder->Diagnostics()), intrinsic_table_(IntrinsicTable::Create(*builder)) {} Resolver::~Resolver() = default; bool Resolver::Resolve() { if (builder_->Diagnostics().contains_errors()) { return false; } bool result = ResolveInternal(); if (!result && !diagnostics_.contains_errors()) { TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised"; return false; } return result; } // https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section bool Resolver::IsPlain(const sem::Type* type) const { return type->is_scalar() || type->IsAnyOf(); } // https://gpuweb.github.io/gpuweb/wgsl.html#storable-types bool Resolver::IsStorable(const sem::Type* type) const { return IsPlain(type) || type->IsAnyOf(); } // https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types bool Resolver::IsHostShareable(const sem::Type* type) const { if (type->IsAnyOf()) { return true; } if (auto* vec = type->As()) { return IsHostShareable(vec->type()); } if (auto* mat = type->As()) { return IsHostShareable(mat->type()); } if (auto* arr = type->As()) { return IsHostShareable(arr->ElemType()); } if (auto* str = type->As()) { for (auto* member : str->Members()) { if (!IsHostShareable(member->Type())) { return false; } } return true; } if (auto* atomic = type->As()) { return IsHostShareable(atomic->Type()); } return false; } bool Resolver::ResolveInternal() { Mark(&builder_->AST()); // Process everything else in the order they appear in the module. This is // necessary for validation of use-before-declaration. for (auto* decl : builder_->AST().GlobalDeclarations()) { if (auto* td = decl->As()) { Mark(td); if (!TypeDecl(td)) { return false; } } else if (auto* func = decl->As()) { Mark(func); if (!Function(func)) { return false; } } else if (auto* var = decl->As()) { Mark(var); if (!GlobalVariable(var)) { return false; } } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled global declaration: " << decl->TypeInfo().name; return false; } } AllocateOverridableConstantIds(); if (!ValidatePipelineStages()) { return false; } bool result = true; for (auto* node : builder_->ASTNodes().Objects()) { if (marked_.count(node) == 0) { TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" << "At: " << node->source << "\n" << "Pointer: " << node; result = false; } } return result; } sem::Type* Resolver::Type(const ast::Type* ty) { Mark(ty); auto* s = [&]() -> sem::Type* { if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { if (auto* vector = builder_->create(el, t->width)) { if (ValidateVector(vector, t->source)) { return vector; } } } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { if (auto* column_type = builder_->create(el, t->rows)) { if (auto* matrix = builder_->create(column_type, t->columns)) { if (ValidateMatrix(matrix, t->source)) { return matrix; } } } } return nullptr; } if (auto* t = ty->As()) { return Array(t); } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { auto* a = builder_->create(el); if (!ValidateAtomic(t, a)) { return nullptr; } return a; } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { auto access = t->access; if (access == ast::kUndefined) { access = DefaultAccessForStorageClass(t->storage_class); } return builder_->create(el, t->storage_class, access); } return nullptr; } if (auto* t = ty->As()) { return builder_->create(t->kind); } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { return builder_->create(t->dim, el); } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { return builder_->create(t->dim, el); } return nullptr; } if (auto* t = ty->As()) { return builder_->create(t->dim); } if (auto* t = ty->As()) { return builder_->create(t->dim); } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { if (!ValidateStorageTexture(t)) { return nullptr; } return builder_->create(t->dim, t->format, t->access, el); } return nullptr; } if (ty->As()) { return builder_->create(); } if (auto* t = ty->As()) { auto it = named_type_info_.find(t->name); if (it == named_type_info_.end()) { AddError("unknown type '" + builder_->Symbols().NameFor(t->name) + "'", t->source); return nullptr; } return it->second.sem; } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled ast::Type: " << ty->TypeInfo().name; return nullptr; }(); if (s) { builder_->Sem().Add(ty, s); } return s; } bool Resolver::ValidateAtomic(const ast::Atomic* a, const sem::Atomic* s) { // https://gpuweb.github.io/gpuweb/wgsl/#atomic-types // T must be either u32 or i32. if (!s->Type()->IsAnyOf()) { AddError("atomic only supports i32 or u32 types", a->type ? a->type->source : a->source); return false; } return true; } bool Resolver::ValidateStorageTexture(const ast::StorageTexture* t) { switch (t->access) { case ast::Access::kWrite: break; case ast::Access::kUndefined: AddError("storage texture missing access control", t->source); return false; default: AddError("storage textures currently only support 'write' access control", t->source); return false; } if (!IsValidStorageTextureDimension(t->dim)) { AddError("cube dimensions for storage textures are not supported", t->source); return false; } if (!IsValidStorageTextureImageFormat(t->format)) { AddError( "image format must be one of the texel formats specified for storage " "textues in https://gpuweb.github.io/gpuweb/wgsl/#texel-formats", t->source); return false; } return true; } sem::Variable* Resolver::Variable(const ast::Variable* var, VariableKind kind, uint32_t index /* = 0 */) { const sem::Type* storage_ty = nullptr; // If the variable has a declared type, resolve it. if (auto* ty = var->type) { storage_ty = Type(ty); if (!storage_ty) { return nullptr; } } const sem::Expression* rhs = nullptr; // Does the variable have a constructor? if (var->constructor) { rhs = Expression(var->constructor); if (!rhs) { return nullptr; } // If the variable has no declared type, infer it from the RHS if (!storage_ty) { if (!var->is_const && kind == VariableKind::kGlobal) { AddError("global var declaration must specify a type", var->source); return nullptr; } storage_ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS } } else if (var->is_const && kind != VariableKind::kParameter && !ast::HasDecoration(var->decorations)) { AddError("let declaration must have an initializer", var->source); return nullptr; } else if (!var->type) { AddError( (kind == VariableKind::kGlobal) ? "module scope var declaration requires a type and initializer" : "function scope var declaration requires a type or initializer", var->source); return nullptr; } if (!storage_ty) { TINT_ICE(Resolver, diagnostics_) << "failed to determine storage type for variable '" + builder_->Symbols().NameFor(var->symbol) + "'\n" << "Source: " << var->source; return nullptr; } auto storage_class = var->declared_storage_class; if (storage_class == ast::StorageClass::kNone && !var->is_const) { // No declared storage class. Infer from usage / type. if (kind == VariableKind::kLocal) { storage_class = ast::StorageClass::kFunction; } else if (storage_ty->UnwrapRef()->is_handle()) { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // If the store type is a texture type or a sampler type, then the // variable declaration must not have a storage class decoration. The // storage class will always be handle. storage_class = ast::StorageClass::kUniformConstant; } } if (kind == VariableKind::kLocal && !var->is_const && storage_class != ast::StorageClass::kFunction && IsValidationEnabled(var->decorations, ast::DisabledValidation::kIgnoreStorageClass)) { AddError("function variable has a non-function storage class", var->source); return nullptr; } auto access = var->declared_access; if (access == ast::Access::kUndefined) { access = DefaultAccessForStorageClass(storage_class); } auto* var_ty = storage_ty; if (!var->is_const) { // Variable declaration. Unlike `let`, `var` has storage. // Variables are always of a reference type to the declared storage type. var_ty = builder_->create(storage_ty, storage_class, access); } if (rhs && !ValidateVariableConstructor(var, storage_class, storage_ty, rhs->Type())) { return nullptr; } if (!ApplyStorageClassUsageToType( storage_class, const_cast(var_ty), var->source)) { AddNote( std::string("while instantiating ") + ((kind == VariableKind::kParameter) ? "parameter " : "variable ") + builder_->Symbols().NameFor(var->symbol), var->source); return nullptr; } if (kind == VariableKind::kParameter) { if (auto* ptr = var_ty->As()) { // For MSL, we push module-scope variables into the entry point as pointer // parameters, so we also need to handle their store type. if (!ApplyStorageClassUsageToType( ptr->StorageClass(), const_cast(ptr->StoreType()), var->source)) { AddNote("while instantiating parameter " + builder_->Symbols().NameFor(var->symbol), var->source); return nullptr; } } } switch (kind) { case VariableKind::kGlobal: { sem::BindingPoint binding_point; if (auto bp = var->BindingPoint()) { binding_point = {bp.group->value, bp.binding->value}; } auto* override = ast::GetDecoration(var->decorations); bool has_const_val = rhs && var->is_const && !override; auto* global = builder_->create( var, var_ty, storage_class, access, has_const_val ? rhs->ConstantValue() : sem::Constant{}, binding_point); if (override) { global->SetIsOverridable(); if (override->has_value) { global->SetConstantId(static_cast(override->value)); } } builder_->Sem().Add(var, global); return global; } case VariableKind::kLocal: { auto* local = builder_->create( var, var_ty, storage_class, access, (rhs && var->is_const) ? rhs->ConstantValue() : sem::Constant{}); builder_->Sem().Add(var, local); return local; } case VariableKind::kParameter: { auto* param = builder_->create(var, index, var_ty, storage_class, access); builder_->Sem().Add(var, param); return param; } } TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled VariableKind " << static_cast(kind); return nullptr; } ast::Access Resolver::DefaultAccessForStorageClass( ast::StorageClass storage_class) { // https://gpuweb.github.io/gpuweb/wgsl/#storage-class switch (storage_class) { case ast::StorageClass::kStorage: case ast::StorageClass::kUniform: case ast::StorageClass::kUniformConstant: return ast::Access::kRead; default: break; } return ast::Access::kReadWrite; } void Resolver::AllocateOverridableConstantIds() { // The next pipeline constant ID to try to allocate. uint16_t next_constant_id = 0; // Allocate constant IDs in global declaration order, so that they are // deterministic. // TODO(crbug.com/tint/1192): If a transform changes the order or removes an // unused constant, the allocation may change on the next Resolver pass. for (auto* decl : builder_->AST().GlobalDeclarations()) { auto* var = decl->As(); if (!var) { continue; } auto* override_deco = ast::GetDecoration(var->decorations); if (!override_deco) { continue; } uint16_t constant_id; if (override_deco->has_value) { constant_id = static_cast(override_deco->value); } else { // No ID was specified, so allocate the next available ID. constant_id = next_constant_id; while (constant_ids_.count(constant_id)) { if (constant_id == UINT16_MAX) { TINT_ICE(Resolver, builder_->Diagnostics()) << "no more pipeline constant IDs available"; return; } constant_id++; } next_constant_id = constant_id + 1; } auto* sem = Sem(var); const_cast(sem)->SetConstantId(constant_id); } } bool Resolver::ValidateVariableConstructor(const ast::Variable* var, ast::StorageClass storage_class, const sem::Type* storage_ty, const sem::Type* rhs_ty) { auto* value_type = rhs_ty->UnwrapRef(); // Implicit load of RHS // Value type has to match storage type if (storage_ty != value_type) { std::string decl = var->is_const ? "let" : "var"; AddError("cannot initialize " + decl + " of type '" + TypeNameOf(storage_ty) + "' with value of type '" + TypeNameOf(rhs_ty) + "'", var->source); return false; } if (!var->is_const) { switch (storage_class) { case ast::StorageClass::kPrivate: case ast::StorageClass::kFunction: break; // Allowed an initializer default: // https://gpuweb.github.io/gpuweb/wgsl/#var-and-let // Optionally has an initializer expression, if the variable is in the // private or function storage classes. AddError("var of storage class '" + std::string(ast::ToString(storage_class)) + "' cannot have an initializer. var initializers are only " "supported for the storage classes " "'private' and 'function'", var->source); return false; } } return true; } bool Resolver::GlobalVariable(const ast::Variable* var) { if (!ValidateNoDuplicateDefinition(var->symbol, var->source, /* check_global_scope_only */ true)) { return false; } auto* sem = Variable(var, VariableKind::kGlobal); if (!sem) { return false; } variable_stack_.Set(var->symbol, sem); auto storage_class = sem->StorageClass(); if (!var->is_const && storage_class == ast::StorageClass::kNone) { AddError("global variables must have a storage class", var->source); return false; } if (var->is_const && storage_class != ast::StorageClass::kNone) { AddError("global constants shouldn't have a storage class", var->source); return false; } for (auto* deco : var->decorations) { Mark(deco); if (auto* override_deco = deco->As()) { // Track the constant IDs that are specified in the shader. if (override_deco->has_value) { constant_ids_.emplace(override_deco->value, sem); } } } if (!ValidateNoDuplicateDecorations(var->decorations)) { return false; } if (!ValidateGlobalVariable(sem)) { return false; } // TODO(bclayton): Call this at the end of resolve on all uniform and storage // referenced structs if (!ValidateStorageClassLayout(sem)) { return false; } return true; } bool Resolver::ValidateStorageClassLayout(const sem::Struct* str, ast::StorageClass sc) { // https://gpuweb.github.io/gpuweb/wgsl/#storage-class-layout-constraints auto is_uniform_struct_or_array = [sc](const sem::Type* ty) { return sc == ast::StorageClass::kUniform && ty->IsAnyOf(); }; auto is_uniform_struct = [sc](const sem::Type* ty) { return sc == ast::StorageClass::kUniform && ty->Is(); }; auto required_alignment_of = [&](const sem::Type* ty) { uint32_t actual_align = ty->Align(); uint32_t required_align = actual_align; if (is_uniform_struct_or_array(ty)) { required_align = utils::RoundUp(16u, actual_align); } return required_align; }; auto member_name_of = [this](const sem::StructMember* sm) { return builder_->Symbols().NameFor(sm->Declaration()->symbol); }; auto type_name_of = [this](const sem::StructMember* sm) { return TypeNameOf(sm->Type()); }; // TODO(amaiorano): Output struct and member decorations so that this output // can be copied verbatim back into source auto get_struct_layout_string = [&](const sem::Struct* st) -> std::string { std::stringstream ss; if (st->Members().empty()) { TINT_ICE(Resolver, diagnostics_) << "Validation should have ensured that " "structs have at least one member"; return {}; } const auto* const last_member = st->Members().back(); const uint32_t last_member_struct_padding_offset = last_member->Offset() + last_member->Size(); // Compute max widths to align output const auto offset_w = static_cast(::log10(last_member_struct_padding_offset)) + 1; const auto size_w = static_cast(::log10(st->Size())) + 1; const auto align_w = static_cast(::log10(st->Align())) + 1; auto print_struct_begin_line = [&](size_t align, size_t size, std::string struct_name) { ss << "/* " << std::setw(offset_w) << " " << "align(" << std::setw(align_w) << align << ") size(" << std::setw(size_w) << size << ") */ struct " << struct_name << " {\n"; }; auto print_struct_end_line = [&]() { ss << "/* " << std::setw(offset_w + size_w + align_w) << " " << "*/ };"; }; auto print_member_line = [&](size_t offset, size_t align, size_t size, std::string s) { ss << "/* offset(" << std::setw(offset_w) << offset << ") align(" << std::setw(align_w) << align << ") size(" << std::setw(size_w) << size << ") */ " << s << ";\n"; }; print_struct_begin_line(st->Align(), st->Size(), TypeNameOf(st)); for (size_t i = 0; i < st->Members().size(); ++i) { auto* const m = st->Members()[i]; // Output field alignment padding, if any auto* const prev_member = (i == 0) ? nullptr : str->Members()[i - 1]; if (prev_member) { uint32_t padding = m->Offset() - (prev_member->Offset() + prev_member->Size()); if (padding > 0) { size_t padding_offset = m->Offset() - padding; print_member_line(padding_offset, 1, padding, "// -- implicit field alignment padding --"); } } // Output member std::string member_name = member_name_of(m); print_member_line(m->Offset(), m->Align(), m->Size(), member_name_of(m) + " : " + type_name_of(m)); } // Output struct size padding, if any uint32_t struct_padding = st->Size() - last_member_struct_padding_offset; if (struct_padding > 0) { print_member_line(last_member_struct_padding_offset, 1, struct_padding, "// -- implicit struct size padding --"); } print_struct_end_line(); return ss.str(); }; if (!ast::IsHostShareable(sc)) { return true; } for (size_t i = 0; i < str->Members().size(); ++i) { auto* const m = str->Members()[i]; uint32_t required_align = required_alignment_of(m->Type()); // Validate that member is at a valid byte offset if (m->Offset() % required_align != 0) { AddError("the offset of a struct member of type '" + type_name_of(m) + "' in storage class '" + ast::ToString(sc) + "' must be a multiple of " + std::to_string(required_align) + " bytes, but '" + member_name_of(m) + "' is currently at offset " + std::to_string(m->Offset()) + ". Consider setting [[align(" + std::to_string(required_align) + ")]] on this member", m->Declaration()->source); AddNote("see layout of struct:\n" + get_struct_layout_string(str), str->Declaration()->source); if (auto* member_str = m->Type()->As()) { AddNote("and layout of struct member:\n" + get_struct_layout_string(member_str), member_str->Declaration()->source); } return false; } // For uniform buffers, validate that the number of bytes between the // previous member of type struct and the current is a multiple of 16 bytes. auto* const prev_member = (i == 0) ? nullptr : str->Members()[i - 1]; if (prev_member && is_uniform_struct(prev_member->Type())) { const uint32_t prev_to_curr_offset = m->Offset() - prev_member->Offset(); if (prev_to_curr_offset % 16 != 0) { AddError( "uniform storage requires that the number of bytes between the " "start of the previous member of type struct and the current " "member be a multiple of 16 bytes, but there are currently " + std::to_string(prev_to_curr_offset) + " bytes between '" + member_name_of(prev_member) + "' and '" + member_name_of(m) + "'. Consider setting [[align(16)]] on this member", m->Declaration()->source); AddNote("see layout of struct:\n" + get_struct_layout_string(str), str->Declaration()->source); auto* prev_member_str = prev_member->Type()->As(); AddNote("and layout of previous member struct:\n" + get_struct_layout_string(prev_member_str), prev_member_str->Declaration()->source); return false; } } // For uniform buffer array members, validate that array elements are // aligned to 16 bytes if (auto* arr = m->Type()->As()) { if (sc == ast::StorageClass::kUniform) { // We already validated that this array member is itself aligned to 16 // bytes above, so we only need to validate that stride is a multiple of // 16 bytes. if (arr->Stride() % 16 != 0) { AddError( "uniform storage requires that array elements be aligned to 16 " "bytes, but array stride of '" + member_name_of(m) + "' is currently " + std::to_string(arr->Stride()) + ". Consider setting [[stride(" + std::to_string( utils::RoundUp(required_align, arr->Stride())) + ")]] on the array type", m->Declaration()->type->source); AddNote("see layout of struct:\n" + get_struct_layout_string(str), str->Declaration()->source); return false; } } } // If member is struct, recurse if (auto* str_member = m->Type()->As()) { // Cache result of struct + storage class pair if (valid_struct_storage_layouts_.emplace(str_member, sc).second) { if (!ValidateStorageClassLayout(str_member, sc)) { return false; } } } } return true; } bool Resolver::ValidateStorageClassLayout(const sem::Variable* var) { if (auto* str = var->Type()->UnwrapRef()->As()) { if (!ValidateStorageClassLayout(str, var->StorageClass())) { AddNote("see declaration of variable", var->Declaration()->source); return false; } } return true; } bool Resolver::ValidateGlobalVariable(const sem::Variable* var) { auto* decl = var->Declaration(); if (!ValidateNoDuplicateDecorations(decl->decorations)) { return false; } for (auto* deco : decl->decorations) { if (decl->is_const) { if (auto* override_deco = deco->As()) { if (override_deco->has_value) { uint32_t id = override_deco->value; auto it = constant_ids_.find(id); if (it != constant_ids_.end() && it->second != var) { AddError("pipeline constant IDs must be unique", deco->source); AddNote("a pipeline constant with an ID of " + std::to_string(id) + " was previously declared " "here:", ast::GetDecoration( it->second->Declaration()->decorations) ->source); return false; } if (id > 65535) { AddError("pipeline constant IDs must be between 0 and 65535", deco->source); return false; } } } else { AddError("decoration is not valid for constants", deco->source); return false; } } else { bool is_shader_io_decoration = deco->IsAnyOf(); bool has_io_storage_class = var->StorageClass() == ast::StorageClass::kInput || var->StorageClass() == ast::StorageClass::kOutput; if (!(deco->IsAnyOf()) && (!is_shader_io_decoration || !has_io_storage_class)) { AddError("decoration is not valid for variables", deco->source); return false; } } } auto binding_point = decl->BindingPoint(); switch (var->StorageClass()) { case ast::StorageClass::kUniform: case ast::StorageClass::kStorage: case ast::StorageClass::kUniformConstant: { // https://gpuweb.github.io/gpuweb/wgsl/#resource-interface // Each resource variable must be declared with both group and binding // attributes. if (!binding_point) { AddError( "resource variables require [[group]] and [[binding]] " "decorations", decl->source); return false; } break; } default: if (binding_point.binding || binding_point.group) { // https://gpuweb.github.io/gpuweb/wgsl/#attribute-binding // Must only be applied to a resource variable AddError( "non-resource variables must not have [[group]] or [[binding]] " "decorations", decl->source); return false; } } // https://gpuweb.github.io/gpuweb/wgsl/#variable-declaration // The access mode always has a default, and except for variables in the // storage storage class, must not be written. if (var->StorageClass() != ast::StorageClass::kStorage && decl->declared_access != ast::Access::kUndefined) { AddError( "only variables in storage class may declare an access mode", decl->source); return false; } switch (var->StorageClass()) { case ast::StorageClass::kStorage: { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // A variable in the storage storage class is a storage buffer variable. // Its store type must be a host-shareable structure type with block // attribute, satisfying the storage class constraints. auto* str = var->Type()->UnwrapRef()->As(); if (!str) { AddError( "variables declared in the storage class must be of a " "structure type", decl->source); return false; } if (!str->IsBlockDecorated()) { AddError( "structure used as a storage buffer must be declared with the " "[[block]] decoration", str->Declaration()->source); if (decl->source.range.begin.line) { AddNote("structure used as storage buffer here", decl->source); } return false; } break; } case ast::StorageClass::kUniform: { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // A variable in the uniform storage class is a uniform buffer variable. // Its store type must be a host-shareable structure type with block // attribute, satisfying the storage class constraints. auto* str = var->Type()->UnwrapRef()->As(); if (!str) { AddError( "variables declared in the storage class must be of a " "structure type", decl->source); return false; } if (!str->IsBlockDecorated()) { AddError( "structure used as a uniform buffer must be declared with the " "[[block]] decoration", str->Declaration()->source); if (decl->source.range.begin.line) { AddNote("structure used as uniform buffer here", decl->source); } return false; } for (auto* member : str->Members()) { if (auto* arr = member->Type()->As()) { if (arr->IsRuntimeSized()) { AddError( "structure containing a runtime sized array " "cannot be used as a uniform buffer", decl->source); AddNote("structure is declared here", str->Declaration()->source); return false; } } } break; } default: break; } if (!decl->is_const) { if (!ValidateAtomicVariable(var)) { return false; } } return ValidateVariable(var); } // https://gpuweb.github.io/gpuweb/wgsl/#atomic-types // Atomic types may only be instantiated by variables in the workgroup storage // class or by storage buffer variables with a read_write access mode. bool Resolver::ValidateAtomicVariable(const sem::Variable* var) { auto sc = var->StorageClass(); auto* decl = var->Declaration(); auto access = var->Access(); auto* type = var->Type()->UnwrapRef(); auto source = decl->type ? decl->type->source : decl->source; if (type->Is()) { if (sc != ast::StorageClass::kWorkgroup) { AddError( "atomic variables must have or storage class", source); return false; } } else if (type->IsAnyOf()) { auto found = atomic_composite_info_.find(type); if (found != atomic_composite_info_.end()) { if (sc != ast::StorageClass::kStorage && sc != ast::StorageClass::kWorkgroup) { AddError( "atomic variables must have or storage class", source); AddNote( "atomic sub-type of '" + TypeNameOf(type) + "' is declared here", found->second); return false; } else if (sc == ast::StorageClass::kStorage && access != ast::Access::kReadWrite) { AddError( "atomic variables in storage class must have read_write " "access mode", source); AddNote( "atomic sub-type of '" + TypeNameOf(type) + "' is declared here", found->second); return false; } } } return true; } bool Resolver::ValidateVariable(const sem::Variable* var) { auto* decl = var->Declaration(); auto* storage_ty = var->Type()->UnwrapRef(); if (!decl->is_const && !IsStorable(storage_ty)) { AddError(TypeNameOf(storage_ty) + " cannot be used as the type of a var", decl->source); return false; } if (decl->is_const && !var->Is() && !(storage_ty->IsConstructible() || storage_ty->Is())) { AddError(TypeNameOf(storage_ty) + " cannot be used as the type of a let", decl->source); return false; } if (auto* r = storage_ty->As()) { if (r->IsRuntimeSized()) { AddError("runtime arrays may only appear as the last member of a struct", decl->source); return false; } } if (auto* r = storage_ty->As()) { if (r->dim() != ast::TextureDimension::k2d) { AddError("only 2d multisampled textures are supported", decl->source); return false; } if (!r->type()->UnwrapRef()->is_numeric_scalar()) { AddError("texture_multisampled_2d: type must be f32, i32 or u32", decl->source); return false; } } if (var->Is() && !decl->is_const && IsValidationEnabled(decl->decorations, ast::DisabledValidation::kIgnoreStorageClass)) { if (!var->Type()->UnwrapRef()->IsConstructible()) { AddError("function variable must have a constructible type", decl->type ? decl->type->source : decl->source); return false; } } if (storage_ty->is_handle() && decl->declared_storage_class != ast::StorageClass::kNone) { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // If the store type is a texture type or a sampler type, then the // variable declaration must not have a storage class decoration. The // storage class will always be handle. AddError("variables of type '" + TypeNameOf(storage_ty) + "' must not have a storage class", decl->source); return false; } if (IsValidationEnabled(decl->decorations, ast::DisabledValidation::kIgnoreStorageClass) && (decl->declared_storage_class == ast::StorageClass::kInput || decl->declared_storage_class == ast::StorageClass::kOutput)) { AddError("invalid use of input/output storage class", decl->source); return false; } return true; } bool Resolver::ValidateFunctionParameter(const ast::Function* func, const sem::Variable* var) { if (!ValidateVariable(var)) { return false; } auto* decl = var->Declaration(); for (auto* deco : decl->decorations) { if (!func->IsEntryPoint() && !deco->Is()) { AddError( "decoration is not valid for non-entry point function parameters", deco->source); return false; } else if (!deco->IsAnyOf() && (IsValidationEnabled( decl->decorations, ast::DisabledValidation::kEntryPointParameter) && IsValidationEnabled( decl->decorations, ast::DisabledValidation:: kIgnoreConstructibleFunctionParameter))) { AddError("decoration is not valid for function parameters", deco->source); return false; } } if (auto* ref = var->Type()->As()) { auto sc = ref->StorageClass(); if (!(sc == ast::StorageClass::kFunction || sc == ast::StorageClass::kPrivate || sc == ast::StorageClass::kWorkgroup) && IsValidationEnabled(decl->decorations, ast::DisabledValidation::kIgnoreStorageClass)) { std::stringstream ss; ss << "function parameter of pointer type cannot be in '" << sc << "' storage class"; AddError(ss.str(), decl->source); return false; } } if (IsPlain(var->Type())) { if (!var->Type()->IsConstructible() && IsValidationEnabled( decl->decorations, ast::DisabledValidation::kIgnoreConstructibleFunctionParameter)) { AddError("store type of function parameter must be a constructible type", decl->source); return false; } } else if (!var->Type() ->IsAnyOf()) { AddError( "store type of function parameter cannot be " + TypeNameOf(var->Type()), decl->source); return false; } return true; } bool Resolver::ValidateBuiltinDecoration(const ast::BuiltinDecoration* deco, const sem::Type* storage_ty, const bool is_input) { auto* type = storage_ty->UnwrapRef(); const auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() : ast::PipelineStage::kNone; std::stringstream stage_name; stage_name << stage; bool is_stage_mismatch = false; bool is_output = !is_input; switch (deco->builtin) { case ast::Builtin::kPosition: if (stage != ast::PipelineStage::kNone && !((is_input && stage == ast::PipelineStage::kFragment) || (is_output && stage == ast::PipelineStage::kVertex))) { is_stage_mismatch = true; } if (!(type->is_float_vector() && type->As()->Width() == 4)) { AddError("store type of " + deco_to_str(deco) + " must be 'vec4'", deco->source); return false; } break; case ast::Builtin::kGlobalInvocationId: case ast::Builtin::kLocalInvocationId: case ast::Builtin::kNumWorkgroups: case ast::Builtin::kWorkgroupId: if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kCompute && is_input)) { is_stage_mismatch = true; } if (!(type->is_unsigned_integer_vector() && type->As()->Width() == 3)) { AddError("store type of " + deco_to_str(deco) + " must be 'vec3'", deco->source); return false; } break; case ast::Builtin::kFragDepth: if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kFragment && !is_input)) { is_stage_mismatch = true; } if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'f32'", deco->source); return false; } break; case ast::Builtin::kFrontFacing: if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kFragment && is_input)) { is_stage_mismatch = true; } if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'bool'", deco->source); return false; } break; case ast::Builtin::kLocalInvocationIndex: if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kCompute && is_input)) { is_stage_mismatch = true; } if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'u32'", deco->source); return false; } break; case ast::Builtin::kVertexIndex: case ast::Builtin::kInstanceIndex: if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kVertex && is_input)) { is_stage_mismatch = true; } if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'u32'", deco->source); return false; } break; case ast::Builtin::kSampleMask: if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kFragment)) { is_stage_mismatch = true; } if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'u32'", deco->source); return false; } break; case ast::Builtin::kSampleIndex: if (stage != ast::PipelineStage::kNone && !(stage == ast::PipelineStage::kFragment && is_input)) { is_stage_mismatch = true; } if (!type->Is()) { AddError("store type of " + deco_to_str(deco) + " must be 'u32'", deco->source); return false; } break; default: break; } if (is_stage_mismatch) { AddError(deco_to_str(deco) + " cannot be used in " + (is_input ? "input of " : "output of ") + stage_name.str() + " pipeline stage", deco->source); return false; } return true; } bool Resolver::ValidateInterpolateDecoration( const ast::InterpolateDecoration* deco, const sem::Type* storage_ty) { auto* type = storage_ty->UnwrapRef(); if (type->is_integer_scalar_or_vector() && deco->type != ast::InterpolationType::kFlat) { AddError( "interpolation type must be 'flat' for integral user-defined IO types", deco->source); return false; } if (deco->type == ast::InterpolationType::kFlat && deco->sampling != ast::InterpolationSampling::kNone) { AddError("flat interpolation attribute must not have a sampling parameter", deco->source); return false; } return true; } bool Resolver::ValidateFunction(const sem::Function* func) { auto* decl = func->Declaration(); if (!ValidateNoDuplicateDefinition(decl->symbol, decl->source, /* check_global_scope_only */ true)) { return false; } auto workgroup_deco_count = 0; for (auto* deco : decl->decorations) { if (deco->Is()) { workgroup_deco_count++; if (decl->PipelineStage() != ast::PipelineStage::kCompute) { AddError( "the workgroup_size attribute is only valid for compute stages", deco->source); return false; } } else if (!deco->IsAnyOf()) { AddError("decoration is not valid for functions", deco->source); return false; } } if (decl->params.size() > 255) { AddError("functions may declare at most 255 parameters", decl->source); return false; } for (size_t i = 0; i < decl->params.size(); i++) { if (!ValidateFunctionParameter(decl, func->Parameters()[i])) { return false; } } if (!func->ReturnType()->Is()) { if (!func->ReturnType()->IsConstructible()) { AddError("function return type must be a constructible type", decl->return_type->source); return false; } if (decl->body) { if (!decl->body->Last() || !decl->body->Last()->Is()) { AddError("non-void function must end with a return statement", decl->source); return false; } } else if (IsValidationEnabled( decl->decorations, ast::DisabledValidation::kFunctionHasNoBody)) { TINT_ICE(Resolver, diagnostics_) << "Function " << builder_->Symbols().NameFor(decl->symbol) << " has no body"; } for (auto* deco : decl->return_type_decorations) { if (!decl->IsEntryPoint()) { AddError( "decoration is not valid for non-entry point function return types", deco->source); return false; } if (!deco->IsAnyOf() && (IsValidationEnabled(decl->decorations, ast::DisabledValidation::kEntryPointParameter) && IsValidationEnabled(decl->decorations, ast::DisabledValidation:: kIgnoreConstructibleFunctionParameter))) { AddError("decoration is not valid for entry point return types", deco->source); return false; } } } if (decl->IsEntryPoint()) { if (!ValidateEntryPoint(func)) { return false; } } return true; } bool Resolver::ValidateEntryPoint(const sem::Function* func) { auto* decl = func->Declaration(); // Use a lambda to validate the entry point decorations for a type. // Persistent state is used to track which builtins and locations have // already been seen, in order to catch conflicts. // TODO(jrprice): This state could be stored in sem::Function instead, and // then passed to sem::Function since it would be useful there too. std::unordered_set builtins; std::unordered_set locations; enum class ParamOrRetType { kParameter, kReturnType, }; // Inner lambda that is applied to a type and all of its members. auto validate_entry_point_decorations_inner = [&](const ast::DecorationList& decos, const sem::Type* ty, Source source, ParamOrRetType param_or_ret, bool is_struct_member) { // Scan decorations for pipeline IO attributes. // Check for overlap with attributes that have been seen previously. const ast::Decoration* pipeline_io_attribute = nullptr; const ast::InterpolateDecoration* interpolate_attribute = nullptr; const ast::InvariantDecoration* invariant_attribute = nullptr; for (auto* deco : decos) { auto is_invalid_compute_shader_decoration = false; if (auto* builtin = deco->As()) { if (pipeline_io_attribute) { AddError("multiple entry point IO attributes", deco->source); AddNote("previously consumed " + deco_to_str(pipeline_io_attribute), pipeline_io_attribute->source); return false; } pipeline_io_attribute = deco; if (builtins.count(builtin->builtin)) { AddError(deco_to_str(builtin) + " attribute appears multiple times as pipeline " + (param_or_ret == ParamOrRetType::kParameter ? "input" : "output"), decl->source); return false; } if (!ValidateBuiltinDecoration( builtin, ty, /* is_input */ param_or_ret == ParamOrRetType::kParameter)) { return false; } builtins.emplace(builtin->builtin); } else if (auto* location = deco->As()) { if (pipeline_io_attribute) { AddError("multiple entry point IO attributes", deco->source); AddNote("previously consumed " + deco_to_str(pipeline_io_attribute), pipeline_io_attribute->source); return false; } pipeline_io_attribute = deco; bool is_input = param_or_ret == ParamOrRetType::kParameter; if (!ValidateLocationDecoration(location, ty, locations, source, is_input)) { return false; } } else if (auto* interpolate = deco->As()) { if (decl->PipelineStage() == ast::PipelineStage::kCompute) { is_invalid_compute_shader_decoration = true; } else if (!ValidateInterpolateDecoration(interpolate, ty)) { return false; } interpolate_attribute = interpolate; } else if (auto* invariant = deco->As()) { if (decl->PipelineStage() == ast::PipelineStage::kCompute) { is_invalid_compute_shader_decoration = true; } invariant_attribute = invariant; } if (is_invalid_compute_shader_decoration) { std::string input_or_output = param_or_ret == ParamOrRetType::kParameter ? "inputs" : "output"; AddError( "decoration is not valid for compute shader " + input_or_output, deco->source); return false; } } if (IsValidationEnabled(decos, ast::DisabledValidation::kEntryPointParameter)) { if (is_struct_member && ty->Is()) { AddError("nested structures cannot be used for entry point IO", source); return false; } if (!ty->Is() && !pipeline_io_attribute) { std::string err = "missing entry point IO attribute"; if (!is_struct_member) { err += (param_or_ret == ParamOrRetType::kParameter ? " on parameter" : " on return type"); } AddError(err, source); return false; } if (pipeline_io_attribute && pipeline_io_attribute->Is()) { if (ty->is_integer_scalar_or_vector() && !interpolate_attribute) { // TODO(crbug.com/tint/1224): Make these errors once downstream // usages have caught up (no sooner than M99). if (decl->PipelineStage() == ast::PipelineStage::kVertex && param_or_ret == ParamOrRetType::kReturnType) { AddWarning( "integral user-defined vertex outputs must have a flat " "interpolation attribute", source); } if (decl->PipelineStage() == ast::PipelineStage::kFragment && param_or_ret == ParamOrRetType::kParameter) { AddWarning( "integral user-defined fragment inputs must have a flat " "interpolation attribute", source); } } } if (invariant_attribute) { bool has_position = false; if (pipeline_io_attribute) { if (auto* builtin = pipeline_io_attribute->As()) { has_position = (builtin->builtin == ast::Builtin::kPosition); } } if (!has_position) { AddError( "invariant attribute must only be applied to a position " "builtin", invariant_attribute->source); return false; } } } return true; }; // Outer lambda for validating the entry point decorations for a type. auto validate_entry_point_decorations = [&](const ast::DecorationList& decos, const sem::Type* ty, Source source, ParamOrRetType param_or_ret) { if (!validate_entry_point_decorations_inner(decos, ty, source, param_or_ret, /*is_struct_member*/ false)) { return false; } if (auto* str = ty->As()) { for (auto* member : str->Members()) { if (!validate_entry_point_decorations_inner( member->Declaration()->decorations, member->Type(), member->Declaration()->source, param_or_ret, /*is_struct_member*/ true)) { AddNote("while analysing entry point '" + builder_->Symbols().NameFor(decl->symbol) + "'", decl->source); return false; } } } return true; }; for (auto* param : func->Parameters()) { auto* param_decl = param->Declaration(); if (!validate_entry_point_decorations(param_decl->decorations, param->Type(), param_decl->source, ParamOrRetType::kParameter)) { return false; } } // Clear IO sets after parameter validation. Builtin and location attributes // in return types should be validated independently from those used in // parameters. builtins.clear(); locations.clear(); if (!func->ReturnType()->Is()) { if (!validate_entry_point_decorations(decl->return_type_decorations, func->ReturnType(), decl->source, ParamOrRetType::kReturnType)) { return false; } } if (decl->PipelineStage() == ast::PipelineStage::kVertex && builtins.count(ast::Builtin::kPosition) == 0) { // Check module-scope variables, as the SPIR-V sanitizer generates these. bool found = false; for (auto* global : func->TransitivelyReferencedGlobals()) { if (auto* builtin = ast::GetDecoration( global->Declaration()->decorations)) { if (builtin->builtin == ast::Builtin::kPosition) { found = true; break; } } } if (!found) { AddError( "a vertex shader must include the 'position' builtin in its return " "type", decl->source); return false; } } if (decl->PipelineStage() == ast::PipelineStage::kCompute) { if (!ast::HasDecoration(decl->decorations)) { AddError( "a compute shader must include 'workgroup_size' in its " "attributes", decl->source); return false; } } // Validate there are no resource variable binding collisions std::unordered_map binding_points; for (auto* var : func->TransitivelyReferencedGlobals()) { auto* var_decl = var->Declaration(); if (!var_decl->BindingPoint()) { continue; } auto bp = var->BindingPoint(); auto res = binding_points.emplace(bp, var_decl); if (!res.second && IsValidationEnabled(decl->decorations, ast::DisabledValidation::kBindingPointCollision) && IsValidationEnabled(res.first->second->decorations, ast::DisabledValidation::kBindingPointCollision)) { // https://gpuweb.github.io/gpuweb/wgsl/#resource-interface // Bindings must not alias within a shader stage: two different // variables in the resource interface of a given shader must not have // the same group and binding values, when considered as a pair of // values. auto func_name = builder_->Symbols().NameFor(decl->symbol); AddError("entry point '" + func_name + "' references multiple variables that use the " "same resource binding [[group(" + std::to_string(bp.group) + "), binding(" + std::to_string(bp.binding) + ")]]", var_decl->source); AddNote("first resource binding usage declared here", res.first->second->source); return false; } } return true; } sem::Function* Resolver::Function(const ast::Function* decl) { variable_stack_.Push(); TINT_DEFER(variable_stack_.Pop()); uint32_t parameter_index = 0; std::unordered_map parameter_names; std::vector parameters; // Resolve all the parameters for (auto* param : decl->params) { Mark(param); { // Check the parameter name is unique for the function auto emplaced = parameter_names.emplace(param->symbol, param->source); if (!emplaced.second) { auto name = builder_->Symbols().NameFor(param->symbol); AddError("redefinition of parameter '" + name + "'", param->source); AddNote("previous definition is here", emplaced.first->second); return nullptr; } } auto* var = As( Variable(param, VariableKind::kParameter, parameter_index++)); if (!var) { return nullptr; } for (auto* deco : param->decorations) { Mark(deco); } if (!ValidateNoDuplicateDecorations(param->decorations)) { return nullptr; } variable_stack_.Set(param->symbol, var); parameters.emplace_back(var); auto* var_ty = const_cast(var->Type()); if (auto* str = var_ty->As()) { switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexInput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentInput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeInput); break; case ast::PipelineStage::kNone: break; } } } // Resolve the return type sem::Type* return_type = nullptr; if (auto* ty = decl->return_type) { return_type = Type(ty); if (!return_type) { return nullptr; } } else { return_type = builder_->create(); } if (auto* str = return_type->As()) { if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, decl->source)) { AddNote("while instantiating return type for " + builder_->Symbols().NameFor(decl->symbol), decl->source); return nullptr; } switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexOutput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentOutput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeOutput); break; case ast::PipelineStage::kNone: break; } } sem::WorkgroupSize ws{}; if (!WorkgroupSizeFor(decl, ws)) { return nullptr; } auto* func = builder_->create(decl, return_type, parameters, ws); builder_->Sem().Add(decl, func); if (decl->IsEntryPoint()) { entry_points_.emplace_back(func); } TINT_SCOPED_ASSIGNMENT(current_function_, func); if (decl->body) { Mark(decl->body); if (current_compound_statement_) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Function() called with a current compound statement"; return nullptr; } auto* sem_block = builder_->create(func); builder_->Sem().Add(decl->body, sem_block); if (!Scope(sem_block, [&] { return Statements(decl->body->statements); })) { return nullptr; } } for (auto* deco : decl->decorations) { Mark(deco); } if (!ValidateNoDuplicateDecorations(decl->decorations)) { return nullptr; } for (auto* deco : decl->return_type_decorations) { Mark(deco); } if (!ValidateNoDuplicateDecorations(decl->return_type_decorations)) { return nullptr; } if (!ValidateFunction(func)) { return nullptr; } // Register the function information _after_ processing the statements. This // allows us to catch a function calling itself when determining the call // information as this function doesn't exist until it's finished. symbol_to_function_[decl->symbol] = func; // If this is an entry point, mark all transitively called functions as being // used by this entry point. if (decl->IsEntryPoint()) { for (auto* f : func->TransitivelyCalledFunctions()) { const_cast(f)->AddAncestorEntryPoint(func); } } return func; } bool Resolver::WorkgroupSizeFor(const ast::Function* func, sem::WorkgroupSize& ws) { // Set work-group size defaults. for (int i = 0; i < 3; i++) { ws[i].value = 1; ws[i].overridable_const = nullptr; } auto* deco = ast::GetDecoration(func->decorations); if (!deco) { return true; } auto values = deco->Values(); auto any_i32 = false; auto any_u32 = false; for (int i = 0; i < 3; i++) { // Each argument to this decoration can either be a literal, an // identifier for a module-scope constants, or nullptr if not specified. auto* expr = values[i]; if (!expr) { // Not specified, just use the default. continue; } auto* expr_sem = Expression(expr); if (!expr_sem) { return false; } constexpr const char* kErrBadType = "workgroup_size argument must be either literal or module-scope " "constant of type i32 or u32"; constexpr const char* kErrInconsistentType = "workgroup_size arguments must be of the same type, either i32 " "or u32"; auto* ty = TypeOf(expr); bool is_i32 = ty->UnwrapRef()->Is(); bool is_u32 = ty->UnwrapRef()->Is(); if (!is_i32 && !is_u32) { AddError(kErrBadType, expr->source); return false; } any_i32 = any_i32 || is_i32; any_u32 = any_u32 || is_u32; if (any_i32 && any_u32) { AddError(kErrInconsistentType, expr->source); return false; } sem::Constant value; if (auto* user = Sem(expr)->As()) { // We have an variable of a module-scope constant. auto* decl = user->Variable()->Declaration(); if (!decl->is_const) { AddError(kErrBadType, expr->source); return false; } // Capture the constant if an [[override]] attribute is present. if (ast::HasDecoration(decl->decorations)) { ws[i].overridable_const = decl; } if (decl->constructor) { value = Sem(decl->constructor)->ConstantValue(); } else { // No constructor means this value must be overriden by the user. ws[i].value = 0; continue; } } else if (expr->Is()) { value = Sem(expr)->ConstantValue(); } else { AddError( "workgroup_size argument must be either a literal or a " "module-scope constant", values[i]->source); return false; } if (!value) { TINT_ICE(Resolver, diagnostics_) << "could not resolve constant workgroup_size constant value"; continue; } // Validate and set the default value for this dimension. if (is_i32 ? value.Elements()[0].i32 < 1 : value.Elements()[0].u32 < 1) { AddError("workgroup_size argument must be at least 1", values[i]->source); return false; } ws[i].value = is_i32 ? static_cast(value.Elements()[0].i32) : value.Elements()[0].u32; } return true; } bool Resolver::Statements(const ast::StatementList& stmts) { for (auto* stmt : stmts) { Mark(stmt); if (!Statement(stmt)) { return false; } } if (!ValidateStatements(stmts)) { return false; } return true; } bool Resolver::ValidateStatements(const ast::StatementList& stmts) { bool unreachable = false; for (auto* stmt : stmts) { if (unreachable) { AddError("code is unreachable", stmt->source); return false; } auto* nested_stmt = stmt; while (auto* block = nested_stmt->As()) { if (block->Empty()) { break; } nested_stmt = block->statements.back(); } if (nested_stmt->IsAnyOf()) { unreachable = true; } } return true; } bool Resolver::Statement(const ast::Statement* stmt) { if (stmt->Is()) { AddError("case statement can only be used inside a switch statement", stmt->source); return false; } if (stmt->Is()) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Statement() encountered an Else statement. Else " "statements are embedded in If statements, so should never be " "encountered as top-level statements"; return false; } // Compound statements. These create their own sem::CompoundStatement // bindings. if (auto* b = stmt->As()) { return BlockStatement(b); } if (auto* l = stmt->As()) { return ForLoopStatement(l); } if (auto* l = stmt->As()) { return LoopStatement(l); } if (auto* i = stmt->As()) { return IfStatement(i); } if (auto* s = stmt->As()) { return SwitchStatement(s); } // Non-Compound statements sem::Statement* sem_statement = builder_->create( stmt, current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem_statement); TINT_SCOPED_ASSIGNMENT(current_statement_, sem_statement); if (auto* a = stmt->As()) { return Assignment(a); } if (stmt->Is()) { if (!sem_statement->FindFirstParent() && !sem_statement->FindFirstParent()) { AddError("break statement must be in a loop or switch case", stmt->source); return false; } return true; } if (auto* c = stmt->As()) { if (!Expression(c->expr)) { return false; } return true; } if (auto* c = stmt->As()) { // Set if we've hit the first continue statement in our parent loop if (auto* block = current_block_->FindFirstParent< sem::LoopBlockStatement, sem::LoopContinuingBlockStatement>()) { if (auto* loop_block = block->As()) { if (!loop_block->FirstContinue()) { const_cast(loop_block) ->SetFirstContinue(c, loop_block->Decls().size()); } } else { AddError("continuing blocks must not contain a continue statement", stmt->source); return false; } } else { AddError("continue statement must be in a loop", stmt->source); return false; } return true; } if (stmt->Is()) { if (auto* continuing = sem_statement ->FindFirstParent()) { AddError("continuing blocks must not contain a discard statement", stmt->source); if (continuing != sem_statement->Parent()) { AddNote("see continuing block here", continuing->Declaration()->source); } return false; } current_function_->SetHasDiscard(); return true; } if (stmt->Is()) { return true; } if (auto* r = stmt->As()) { return Return(r); } if (auto* v = stmt->As()) { return VariableDeclStatement(v); } AddError("unknown statement type for type determination: " + std::string(stmt->TypeInfo().name), stmt->source); return false; } bool Resolver::CaseStatement(const ast::CaseStatement* stmt) { auto* sem = builder_->create( stmt->body, current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem); builder_->Sem().Add(stmt->body, sem); Mark(stmt->body); for (auto* sel : stmt->selectors) { Mark(sel); } return Scope(sem, [&] { return Statements(stmt->body->statements); }); } bool Resolver::IfStatement(const ast::IfStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem); return Scope(sem, [&] { if (!Expression(stmt->condition)) { return false; } auto* cond_type = TypeOf(stmt->condition)->UnwrapRef(); if (!cond_type->Is()) { AddError( "if statement condition must be bool, got " + TypeNameOf(cond_type), stmt->condition->source); return false; } Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); builder_->Sem().Add(stmt->body, body); if (!Scope(body, [&] { return Statements(stmt->body->statements); })) { return false; } for (auto* else_stmt : stmt->else_statements) { Mark(else_stmt); if (!ElseStatement(else_stmt)) { return false; } } return true; }); } bool Resolver::ElseStatement(const ast::ElseStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem); return Scope(sem, [&] { if (auto* cond = stmt->condition) { if (!Expression(cond)) { return false; } auto* else_cond_type = TypeOf(cond)->UnwrapRef(); if (!else_cond_type->Is()) { AddError("else statement condition must be bool, got " + TypeNameOf(else_cond_type), cond->source); return false; } } Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); builder_->Sem().Add(stmt->body, body); return Scope(body, [&] { return Statements(stmt->body->statements); }); }); } bool Resolver::BlockStatement(const ast::BlockStatement* stmt) { auto* sem = builder_->create( stmt->As(), current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem); return Scope(sem, [&] { return Statements(stmt->statements); }); } bool Resolver::LoopStatement(const ast::LoopStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem); return Scope(sem, [&] { Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); builder_->Sem().Add(stmt->body, body); return Scope(body, [&] { if (!Statements(stmt->body->statements)) { return false; } if (stmt->continuing) { Mark(stmt->continuing); if (!stmt->continuing->Empty()) { auto* continuing = builder_->create( stmt->continuing, current_compound_statement_, current_function_); builder_->Sem().Add(stmt->continuing, continuing); if (!Scope(continuing, [&] { return Statements(stmt->continuing->statements); })) { return false; } } } return true; }); }); } bool Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem); return Scope(sem, [&] { if (auto* initializer = stmt->initializer) { Mark(initializer); if (!Statement(initializer)) { return false; } } if (auto* condition = stmt->condition) { if (!Expression(condition)) { return false; } auto* cond_ty = TypeOf(condition)->UnwrapRef(); if (!cond_ty->Is()) { AddError("for-loop condition must be bool, got " + TypeNameOf(cond_ty), condition->source); return false; } } if (auto* continuing = stmt->continuing) { Mark(continuing); if (!Statement(continuing)) { return false; } } Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); builder_->Sem().Add(stmt->body, body); return Scope(body, [&] { return Statements(stmt->body->statements); }); }); } sem::Expression* Resolver::Expression(const ast::Expression* root) { std::vector sorted; if (!ast::TraverseExpressions( root, diagnostics_, [&](const ast::Expression* expr) { Mark(expr); sorted.emplace_back(expr); return ast::TraverseAction::Descend; })) { return nullptr; } for (auto* expr : utils::Reverse(sorted)) { sem::Expression* sem_expr = nullptr; if (auto* array = expr->As()) { sem_expr = IndexAccessor(array); } else if (auto* bin_op = expr->As()) { sem_expr = Binary(bin_op); } else if (auto* bitcast = expr->As()) { sem_expr = Bitcast(bitcast); } else if (auto* call = expr->As()) { sem_expr = Call(call); } else if (auto* ctor = expr->As()) { sem_expr = TypeConstructor(ctor); } else if (auto* ident = expr->As()) { sem_expr = Identifier(ident); } else if (auto* literal = expr->As()) { sem_expr = Literal(literal); } else if (auto* member = expr->As()) { sem_expr = MemberAccessor(member); } else if (auto* unary = expr->As()) { sem_expr = UnaryOp(unary); } else if (expr->Is()) { sem_expr = builder_->create( expr, builder_->create(), current_statement_, sem::Constant{}); } else { TINT_ICE(Resolver, diagnostics_) << "unhandled expression type: " << expr->TypeInfo().name; return nullptr; } if (!sem_expr) { return nullptr; } builder_->Sem().Add(expr, sem_expr); if (expr == root) { return sem_expr; } } TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node"; return nullptr; } sem::Expression* Resolver::IndexAccessor( const ast::IndexAccessorExpression* expr) { auto* idx = expr->index; auto* parent_raw_ty = TypeOf(expr->object); auto* parent_ty = parent_raw_ty->UnwrapRef(); const sem::Type* ty = nullptr; if (auto* arr = parent_ty->As()) { ty = arr->ElemType(); } else if (auto* vec = parent_ty->As()) { ty = vec->type(); } else if (auto* mat = parent_ty->As()) { ty = builder_->create(mat->type(), mat->rows()); } else { AddError("cannot index type '" + TypeNameOf(parent_ty) + "'", expr->source); return nullptr; } auto* idx_ty = TypeOf(idx)->UnwrapRef(); if (!idx_ty->IsAnyOf()) { AddError("index must be of type 'i32' or 'u32', found: '" + TypeNameOf(idx_ty) + "'", idx->source); return nullptr; } if (parent_ty->IsAnyOf()) { if (!parent_raw_ty->Is()) { // TODO(bclayton): expand this to allow any const_expr expression // https://github.com/gpuweb/gpuweb/issues/1272 if (!idx->As()) { AddError("index must be signed or unsigned integer literal", idx->source); return nullptr; } } } // If we're extracting from a reference, we return a reference. if (auto* ref = parent_raw_ty->As()) { ty = builder_->create(ty, ref->StorageClass(), ref->Access()); } auto val = EvaluateConstantValue(expr, ty); return builder_->create(expr, ty, current_statement_, val); } sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) { auto* ty = Type(expr->type); if (!ty) { return nullptr; } if (ty->Is()) { AddError("cannot cast to a pointer", expr->source); return nullptr; } auto val = EvaluateConstantValue(expr, ty); return builder_->create(expr, ty, current_statement_, val); } sem::Expression* Resolver::Call(const ast::CallExpression* expr) { auto* ident = expr->func; Mark(ident); auto name = builder_->Symbols().NameFor(ident->symbol); auto intrinsic_type = sem::ParseIntrinsicType(name); auto* call = (intrinsic_type != IntrinsicType::kNone) ? IntrinsicCall(expr, intrinsic_type) : FunctionCall(expr); current_function_->AddDirectCall(call); return call; } sem::Call* Resolver::IntrinsicCall(const ast::CallExpression* expr, sem::IntrinsicType intrinsic_type) { std::vector args(expr->args.size()); std::vector arg_tys(expr->args.size()); for (size_t i = 0; i < expr->args.size(); i++) { auto* arg = Sem(expr->args[i]); if (!arg) { return nullptr; } args[i] = arg; arg_tys[i] = arg->Type(); } auto* intrinsic = intrinsic_table_->Lookup(intrinsic_type, std::move(arg_tys), expr->source); if (!intrinsic) { return nullptr; } if (intrinsic->IsDeprecated()) { AddWarning("use of deprecated intrinsic", expr->source); } auto* call = builder_->create(expr, intrinsic, std::move(args), current_statement_, sem::Constant{}); current_function_->AddDirectlyCalledIntrinsic(intrinsic); if (IsTextureIntrinsic(intrinsic_type) && !ValidateTextureIntrinsicFunction(call)) { return nullptr; } if (!ValidateCall(call)) { return nullptr; } return call; } sem::Call* Resolver::FunctionCall(const ast::CallExpression* expr) { auto* ident = expr->func; auto name = builder_->Symbols().NameFor(ident->symbol); auto target_it = symbol_to_function_.find(ident->symbol); if (target_it == symbol_to_function_.end()) { if (current_function_ && current_function_->Declaration()->symbol == ident->symbol) { AddError("recursion is not permitted. '" + name + "' attempted to call itself.", expr->source); } else { AddError("unable to find called function: " + name, expr->source); } return nullptr; } auto* target = target_it->second; std::vector args(expr->args.size()); for (size_t i = 0; i < expr->args.size(); i++) { auto* arg = Sem(expr->args[i]); if (!arg) { return nullptr; } args[i] = arg; } auto* call = builder_->create(expr, target, std::move(args), current_statement_, sem::Constant{}); if (current_function_) { target->AddCallSite(call); // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before // use. current_function_->AddTransitivelyCalledFunction(target); for (auto* transitive_call : target->TransitivelyCalledFunctions()) { current_function_->AddTransitivelyCalledFunction(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : target->TransitivelyReferencedGlobals()) { current_function_->AddTransitivelyReferencedGlobal(var); } } if (!ValidateFunctionCall(call)) { return nullptr; } if (!ValidateCall(call)) { return nullptr; } return call; } bool Resolver::ValidateCall(const sem::Call* call) { if (call->Type()->Is()) { bool is_call_statement = false; if (auto* call_stmt = As(call->Stmt()->Declaration())) { if (call_stmt->expr == call->Declaration()) { is_call_statement = true; } } if (!is_call_statement) { // https://gpuweb.github.io/gpuweb/wgsl/#function-call-expr // If the called function does not return a value, a function call // statement should be used instead. auto* ident = call->Declaration()->func; auto name = builder_->Symbols().NameFor(ident->symbol); bool is_function = call->Target()->Is(); AddError((is_function ? "function" : "intrinsic") + std::string(" '") + name + "' does not return a value", call->Declaration()->source); return false; } } return true; } bool Resolver::ValidateTextureIntrinsicFunction(const sem::Call* call) { auto* intrinsic = call->Target()->As(); if (!intrinsic) { return false; } std::string func_name = intrinsic->str(); auto& signature = intrinsic->Signature(); auto index = signature.IndexOf(sem::ParameterUsage::kOffset); if (index > -1) { auto* arg = call->Arguments()[index]; if (auto values = arg->ConstantValue()) { // Assert that the constant values are of the expected type. if (!values.Type()->Is() || !values.ElementType()->Is()) { TINT_ICE(Resolver, diagnostics_) << "failed to resolve '" + func_name + "' offset parameter type"; return false; } // Currently const_expr is restricted to literals and type constructors. // Check that that's all we have for the offset parameter. bool is_const_expr = true; ast::TraverseExpressions( arg->Declaration(), diagnostics_, [&](const ast::Expression* e) { if (e->IsAnyOf()) { return ast::TraverseAction::Descend; } is_const_expr = false; return ast::TraverseAction::Stop; }); if (is_const_expr) { for (auto offset : values.Elements()) { auto offset_value = offset.i32; if (offset_value < -8 || offset_value > 7) { AddError("each offset component of '" + func_name + "' must be at least -8 and at most 7. " "found: '" + std::to_string(offset_value) + "'", arg->Declaration()->source); return false; } } return true; } } AddError("'" + func_name + "' offset parameter must be a const_expression", arg->Declaration()->source); return false; } return true; } bool Resolver::ValidateFunctionCall(const sem::Call* call) { auto* decl = call->Declaration(); auto* ident = decl->func; auto* target = call->Target()->As(); auto name = builder_->Symbols().NameFor(ident->symbol); if (target->Declaration()->IsEntryPoint()) { // https://www.w3.org/TR/WGSL/#function-restriction // An entry point must never be the target of a function call. AddError("entry point functions cannot be the target of a function call", decl->source); return false; } if (decl->args.size() != target->Parameters().size()) { bool more = decl->args.size() > target->Parameters().size(); AddError("too " + (more ? std::string("many") : std::string("few")) + " arguments in call to '" + name + "', expected " + std::to_string(target->Parameters().size()) + ", got " + std::to_string(call->Arguments().size()), decl->source); return false; } for (size_t i = 0; i < call->Arguments().size(); ++i) { const sem::Variable* param = target->Parameters()[i]; const ast::Expression* arg_expr = decl->args[i]; auto* param_type = param->Type(); auto* arg_type = TypeOf(arg_expr)->UnwrapRef(); if (param_type != arg_type) { AddError("type mismatch for argument " + std::to_string(i + 1) + " in call to '" + name + "', expected '" + TypeNameOf(param_type) + "', got '" + TypeNameOf(arg_type) + "'", arg_expr->source); return false; } if (param_type->Is()) { auto is_valid = false; if (auto* ident_expr = arg_expr->As()) { auto* var = variable_stack_.Get(ident_expr->symbol); if (!var) { TINT_ICE(Resolver, diagnostics_) << "failed to resolve identifier"; return false; } if (var->Is()) { is_valid = true; } } else if (auto* unary = arg_expr->As()) { if (unary->op == ast::UnaryOp::kAddressOf) { if (auto* ident_unary = unary->expr->As()) { auto* var = variable_stack_.Get(ident_unary->symbol); if (!var) { TINT_ICE(Resolver, diagnostics_) << "failed to resolve identifier"; return false; } if (var->Declaration()->is_const) { TINT_ICE(Resolver, diagnostics_) << "Resolver::FunctionCall() encountered an address-of " "expression of a constant identifier expression"; return false; } is_valid = true; } } } if (!is_valid && IsValidationEnabled( param->Declaration()->decorations, ast::DisabledValidation::kIgnoreInvalidPointerArgument)) { AddError( "expected an address-of expression of a variable identifier " "expression or a function parameter", arg_expr->source); return false; } } } return true; } sem::Expression* Resolver::TypeConstructor( const ast::TypeConstructorExpression* expr) { auto* ty = Type(expr->type); if (!ty) { return nullptr; } // Now that the argument types have been determined, make sure that they // obey the constructor type rules laid out in // https://gpuweb.github.io/gpuweb/wgsl.html#type-constructor-expr. bool ok = true; if (auto* vec_type = ty->As()) { ok = ValidateVectorConstructor(expr, vec_type); } else if (auto* mat_type = ty->As()) { ok = ValidateMatrixConstructor(expr, mat_type); } else if (ty->is_scalar()) { ok = ValidateScalarConstructor(expr, ty); } else if (auto* arr_type = ty->As()) { ok = ValidateArrayConstructor(expr, arr_type); } else if (auto* struct_type = ty->As()) { ok = ValidateStructureConstructor(expr, struct_type); } else { AddError("type is not constructible", expr->source); return nullptr; } if (!ok) { return nullptr; } auto val = EvaluateConstantValue(expr, ty); return builder_->create(expr, ty, current_statement_, val); } sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) { auto* ty = TypeOf(literal); if (!ty) { return nullptr; } auto val = EvaluateConstantValue(literal, ty); return builder_->create(literal, ty, current_statement_, val); } bool Resolver::ValidateStructureConstructor( const ast::TypeConstructorExpression* ctor, const sem::Struct* struct_type) { if (!struct_type->IsConstructible()) { AddError("struct constructor has non-constructible type", ctor->source); return false; } if (ctor->values.size() > 0) { if (ctor->values.size() != struct_type->Members().size()) { std::string fm = ctor->values.size() < struct_type->Members().size() ? "few" : "many"; AddError("struct constructor has too " + fm + " inputs: expected " + std::to_string(struct_type->Members().size()) + ", found " + std::to_string(ctor->values.size()), ctor->source); return false; } for (auto* member : struct_type->Members()) { auto* value = ctor->values[member->Index()]; auto* value_ty = TypeOf(value); if (member->Type() != value_ty->UnwrapRef()) { AddError( "type in struct constructor does not match struct member type: " "expected '" + TypeNameOf(member->Type()) + "', found '" + TypeNameOf(value_ty) + "'", value->source); return false; } } } return true; } bool Resolver::ValidateArrayConstructor( const ast::TypeConstructorExpression* ctor, const sem::Array* array_type) { auto& values = ctor->values; auto* elem_ty = array_type->ElemType(); for (auto* value : values) { auto* value_ty = TypeOf(value)->UnwrapRef(); if (value_ty != elem_ty) { AddError( "type in array constructor does not match array type: " "expected '" + TypeNameOf(elem_ty) + "', found '" + TypeNameOf(value_ty) + "'", value->source); return false; } } if (array_type->IsRuntimeSized()) { AddError("cannot init a runtime-sized array", ctor->source); return false; } else if (!elem_ty->IsConstructible()) { AddError("array constructor has non-constructible element type", ctor->type->As()->type->source); return false; } else if (!values.empty() && (values.size() != array_type->Count())) { std::string fm = values.size() < array_type->Count() ? "few" : "many"; AddError("array constructor has too " + fm + " elements: expected " + std::to_string(array_type->Count()) + ", found " + std::to_string(values.size()), ctor->source); return false; } else if (values.size() > array_type->Count()) { AddError("array constructor has too many elements: expected " + std::to_string(array_type->Count()) + ", found " + std::to_string(values.size()), ctor->source); return false; } return true; } bool Resolver::ValidateVectorConstructor( const ast::TypeConstructorExpression* ctor, const sem::Vector* vec_type) { auto& values = ctor->values; auto* elem_ty = vec_type->type(); size_t value_cardinality_sum = 0; for (auto* value : values) { auto* value_ty = TypeOf(value)->UnwrapRef(); if (value_ty->is_scalar()) { if (elem_ty != value_ty) { AddError( "type in vector constructor does not match vector type: " "expected '" + TypeNameOf(elem_ty) + "', found '" + TypeNameOf(value_ty) + "'", value->source); return false; } value_cardinality_sum++; } else if (auto* value_vec = value_ty->As()) { auto* value_elem_ty = value_vec->type(); // A mismatch of vector type parameter T is only an error if multiple // arguments are present. A single argument constructor constitutes a // type conversion expression. if (elem_ty != value_elem_ty && values.size() > 1u) { AddError( "type in vector constructor does not match vector type: " "expected '" + TypeNameOf(elem_ty) + "', found '" + TypeNameOf(value_elem_ty) + "'", value->source); return false; } value_cardinality_sum += value_vec->Width(); } else { // A vector constructor can only accept vectors and scalars. AddError("expected vector or scalar type in vector constructor; found: " + TypeNameOf(value_ty), value->source); return false; } } // A correct vector constructor must either be a zero-value expression, // a single-value initializer (splat) expression, or the number of components // of all constructor arguments must add up to the vector cardinality. if (value_cardinality_sum > 1 && value_cardinality_sum != vec_type->Width()) { if (values.empty()) { TINT_ICE(Resolver, diagnostics_) << "constructor arguments expected to be non-empty!"; } const Source& values_start = values[0]->source; const Source& values_end = values[values.size() - 1]->source; AddError("attempted to construct '" + TypeNameOf(vec_type) + "' with " + std::to_string(value_cardinality_sum) + " component(s)", Source::Combine(values_start, values_end)); return false; } return true; } bool Resolver::ValidateVector(const sem::Vector* ty, const Source& source) { if (!ty->type()->is_scalar()) { AddError("vector element type must be 'bool', 'f32', 'i32' or 'u32'", source); return false; } return true; } bool Resolver::ValidateMatrix(const sem::Matrix* ty, const Source& source) { if (!ty->is_float_matrix()) { AddError("matrix element type must be 'f32'", source); return false; } return true; } bool Resolver::ValidateMatrixConstructor( const ast::TypeConstructorExpression* ctor, const sem::Matrix* matrix_ty) { auto& values = ctor->values; // Zero Value expression if (values.empty()) { return true; } if (!ValidateMatrix(matrix_ty, ctor->source)) { return false; } auto* elem_type = matrix_ty->type(); auto num_elements = matrix_ty->columns() * matrix_ty->rows(); // Print a generic error for an invalid matrix constructor, showing the // available overloads. auto print_error = [&]() { const Source& values_start = values[0]->source; const Source& values_end = values[values.size() - 1]->source; auto type_name = TypeNameOf(matrix_ty); auto elem_type_name = TypeNameOf(elem_type); std::stringstream ss; ss << "invalid constructor for " + type_name << std::endl << std::endl; ss << "3 candidates available:" << std::endl; ss << " " << type_name << "()" << std::endl; ss << " " << type_name << "(" << elem_type_name << ",...," << elem_type_name << ")" << " // " << std::to_string(num_elements) << " arguments" << std::endl; ss << " " << type_name << "("; for (uint32_t c = 0; c < matrix_ty->columns(); c++) { if (c > 0) { ss << ", "; } ss << VectorPretty(matrix_ty->rows(), elem_type); } ss << ")" << std::endl; AddError(ss.str(), Source::Combine(values_start, values_end)); }; const sem::Type* expected_arg_type = nullptr; if (num_elements == values.size()) { // Column-major construction from scalar elements. expected_arg_type = matrix_ty->type(); } else if (matrix_ty->columns() == values.size()) { // Column-by-column construction from vectors. expected_arg_type = matrix_ty->ColumnType(); } else { print_error(); return false; } for (auto* value : values) { if (TypeOf(value)->UnwrapRef() != expected_arg_type) { print_error(); return false; } } return true; } bool Resolver::ValidateScalarConstructor( const ast::TypeConstructorExpression* ctor, const sem::Type* ty) { if (ctor->values.size() == 0) { return true; } if (ctor->values.size() > 1) { AddError("expected zero or one value in constructor, got " + std::to_string(ctor->values.size()), ctor->source); return false; } // Validate constructor auto* value = ctor->values[0]; auto* value_ty = TypeOf(value)->UnwrapRef(); using Bool = sem::Bool; using I32 = sem::I32; using U32 = sem::U32; using F32 = sem::F32; const bool is_valid = (ty->Is() && value_ty->is_scalar()) || (ty->Is() && value_ty->is_scalar()) || (ty->Is() && value_ty->is_scalar()) || (ty->Is() && value_ty->is_scalar()); if (!is_valid) { AddError("cannot construct '" + TypeNameOf(ty) + "' with a value of type '" + TypeNameOf(value_ty) + "'", ctor->source); return false; } return true; } sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) { auto symbol = expr->symbol; if (auto* var = variable_stack_.Get(symbol)) { auto* user = builder_->create(expr, current_statement_, var); if (current_statement_) { // If identifier is part of a loop continuing block, make sure it // doesn't refer to a variable that is bypassed by a continue statement // in the loop's body block. if (auto* continuing_block = current_statement_ ->FindFirstParent()) { auto* loop_block = continuing_block->FindFirstParent(); if (loop_block->FirstContinue()) { auto& decls = loop_block->Decls(); // If our identifier is in loop_block->decls, make sure its index is // less than first_continue auto iter = std::find_if(decls.begin(), decls.end(), [&symbol](auto* v) { return v->symbol == symbol; }); if (iter != decls.end()) { auto var_decl_index = static_cast(std::distance(decls.begin(), iter)); if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) { AddError("continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "'", loop_block->FirstContinue()->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' declared here", (*iter)->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' referenced in continuing block here", expr->source); return nullptr; } } } } } if (current_function_) { if (auto* global = var->As()) { current_function_->AddDirectlyReferencedGlobal(global); } } var->AddUser(user); return user; } if (symbol_to_function_.count(symbol)) { AddError("missing '(' for function call", expr->source.End()); return nullptr; } std::string name = builder_->Symbols().NameFor(symbol); if (sem::ParseIntrinsicType(name) != IntrinsicType::kNone) { AddError("missing '(' for intrinsic call", expr->source.End()); return nullptr; } AddError("identifier must be declared before use: " + name, expr->source); return nullptr; } sem::Expression* Resolver::MemberAccessor( const ast::MemberAccessorExpression* expr) { auto* structure = TypeOf(expr->structure); auto* storage_ty = structure->UnwrapRef(); const sem::Type* ret = nullptr; std::vector swizzle; if (auto* str = storage_ty->As()) { Mark(expr->member); auto symbol = expr->member->symbol; const sem::StructMember* member = nullptr; for (auto* m : str->Members()) { if (m->Name() == symbol) { ret = m->Type(); member = m; break; } } if (ret == nullptr) { AddError( "struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source); return nullptr; } // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } return builder_->create( expr, ret, current_statement_, member); } if (auto* vec = storage_ty->As()) { Mark(expr->member); std::string s = builder_->Symbols().NameFor(expr->member->symbol); auto size = s.size(); swizzle.reserve(s.size()); for (auto c : s) { switch (c) { case 'x': case 'r': swizzle.emplace_back(0); break; case 'y': case 'g': swizzle.emplace_back(1); break; case 'z': case 'b': swizzle.emplace_back(2); break; case 'w': case 'a': swizzle.emplace_back(3); break; default: AddError("invalid vector swizzle character", expr->member->source.Begin() + swizzle.size()); return nullptr; } if (swizzle.back() >= vec->Width()) { AddError("invalid vector swizzle member", expr->member->source); return nullptr; } } if (size < 1 || size > 4) { AddError("invalid vector swizzle size", expr->member->source); return nullptr; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(s.begin(), s.end(), is_rgba) && !std::all_of(s.begin(), s.end(), is_xyzw)) { AddError("invalid mixing of vector swizzle characters rgba with xyzw", expr->member->source); return nullptr; } if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } } else { // The vector will have a number of components equal to the length of // the swizzle. ret = builder_->create(vec->type(), static_cast(size)); } return builder_->create(expr, ret, current_statement_, std::move(swizzle)); } AddError( "invalid member accessor expression. Expected vector or struct, got '" + TypeNameOf(storage_ty) + "'", expr->structure->source); return nullptr; } sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) { using Bool = sem::Bool; using F32 = sem::F32; using I32 = sem::I32; using U32 = sem::U32; using Matrix = sem::Matrix; using Vector = sem::Vector; auto* lhs_ty = TypeOf(expr->lhs)->UnwrapRef(); auto* rhs_ty = TypeOf(expr->rhs)->UnwrapRef(); auto* lhs_vec = lhs_ty->As(); auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr; auto* rhs_vec = rhs_ty->As(); auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr; const bool matching_vec_elem_types = lhs_vec_elem_type && rhs_vec_elem_type && (lhs_vec_elem_type == rhs_vec_elem_type) && (lhs_vec->Width() == rhs_vec->Width()); const bool matching_types = matching_vec_elem_types || (lhs_ty == rhs_ty); auto build = [&](const sem::Type* ty) { auto val = EvaluateConstantValue(expr, ty); return builder_->create(expr, ty, current_statement_, val); }; // Binary logical expressions if (expr->IsLogicalAnd() || expr->IsLogicalOr()) { if (matching_types && lhs_ty->Is()) { return build(lhs_ty); } } if (expr->IsOr() || expr->IsAnd()) { if (matching_types && lhs_ty->Is()) { return build(lhs_ty); } if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is()) { return build(lhs_ty); } } // Arithmetic expressions if (expr->IsArithmetic()) { // Binary arithmetic expressions over scalars if (matching_types && lhs_ty->is_numeric_scalar()) { return build(lhs_ty); } // Binary arithmetic expressions over vectors if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->is_numeric_scalar()) { return build(lhs_ty); } // Binary arithmetic expressions with mixed scalar and vector operands if (lhs_vec_elem_type && (lhs_vec_elem_type == rhs_ty)) { if (expr->IsModulo()) { if (rhs_ty->is_integer_scalar()) { return build(lhs_ty); } } else if (rhs_ty->is_numeric_scalar()) { return build(lhs_ty); } } if (rhs_vec_elem_type && (rhs_vec_elem_type == lhs_ty)) { if (expr->IsModulo()) { if (lhs_ty->is_integer_scalar()) { return build(rhs_ty); } } else if (lhs_ty->is_numeric_scalar()) { return build(rhs_ty); } } } // Matrix arithmetic auto* lhs_mat = lhs_ty->As(); auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr; auto* rhs_mat = rhs_ty->As(); auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr; // Addition and subtraction of float matrices if ((expr->IsAdd() || expr->IsSubtract()) && lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_mat->columns() == rhs_mat->columns()) && (lhs_mat->rows() == rhs_mat->rows())) { return build(rhs_ty); } if (expr->IsMultiply()) { // Multiplication of a matrix and a scalar if (lhs_ty->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is()) { return build(rhs_ty); } if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_ty->Is()) { return build(lhs_ty); } // Vector times matrix if (lhs_vec_elem_type && lhs_vec_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_vec->Width() == rhs_mat->rows())) { return build( builder_->create(lhs_vec->type(), rhs_mat->columns())); } // Matrix times vector if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_vec_elem_type && rhs_vec_elem_type->Is() && (lhs_mat->columns() == rhs_vec->Width())) { return build( builder_->create(rhs_vec->type(), lhs_mat->rows())); } // Matrix times matrix if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_mat->columns() == rhs_mat->rows())) { return build(builder_->create( builder_->create(lhs_mat_elem_type, lhs_mat->rows()), rhs_mat->columns())); } } // Comparison expressions if (expr->IsComparison()) { if (matching_types) { // Special case for bools: only == and != if (lhs_ty->Is() && (expr->IsEqual() || expr->IsNotEqual())) { return build(builder_->create()); } // For the rest, we can compare i32, u32, and f32 if (lhs_ty->IsAnyOf()) { return build(builder_->create()); } } // Same for vectors if (matching_vec_elem_types) { if (lhs_vec_elem_type->Is() && (expr->IsEqual() || expr->IsNotEqual())) { return build(builder_->create( builder_->create(), lhs_vec->Width())); } if (lhs_vec_elem_type->is_numeric_scalar()) { return build(builder_->create( builder_->create(), lhs_vec->Width())); } } } // Binary bitwise operations if (expr->IsBitwise()) { if (matching_types && lhs_ty->is_integer_scalar_or_vector()) { return build(lhs_ty); } } // Bit shift expressions if (expr->IsBitshift()) { // Type validation rules are the same for left or right shift, despite // differences in computation rules (i.e. right shift can be arithmetic or // logical depending on lhs type). if (lhs_ty->IsAnyOf() && rhs_ty->Is()) { return build(lhs_ty); } if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf() && rhs_vec_elem_type && rhs_vec_elem_type->Is()) { return build(lhs_ty); } } AddError("Binary expression operand types are invalid for this operation: " + TypeNameOf(lhs_ty) + " " + FriendlyName(expr->op) + " " + TypeNameOf(rhs_ty), expr->source); return nullptr; } sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) { auto* expr_ty = TypeOf(unary->expr); if (!expr_ty) { return nullptr; } const sem::Type* ty = nullptr; switch (unary->op) { case ast::UnaryOp::kNot: // Result type matches the deref'd inner type. ty = expr_ty->UnwrapRef(); if (!ty->Is() && !ty->is_bool_vector()) { AddError( "cannot logical negate expression of type '" + TypeNameOf(expr_ty), unary->expr->source); return nullptr; } break; case ast::UnaryOp::kComplement: // Result type matches the deref'd inner type. ty = expr_ty->UnwrapRef(); if (!ty->is_integer_scalar_or_vector()) { AddError("cannot bitwise complement expression of type '" + TypeNameOf(expr_ty), unary->expr->source); return nullptr; } break; case ast::UnaryOp::kNegation: // Result type matches the deref'd inner type. ty = expr_ty->UnwrapRef(); if (!(ty->IsAnyOf() || ty->is_signed_integer_vector() || ty->is_float_vector())) { AddError("cannot negate expression of type '" + TypeNameOf(expr_ty), unary->expr->source); return nullptr; } break; case ast::UnaryOp::kAddressOf: if (auto* ref = expr_ty->As()) { if (ref->StoreType()->UnwrapRef()->is_handle()) { AddError( "cannot take the address of expression in handle storage class", unary->expr->source); return nullptr; } auto* array = unary->expr->As(); auto* member = unary->expr->As(); if ((array && TypeOf(array->object)->UnwrapRef()->Is()) || (member && TypeOf(member->structure)->UnwrapRef()->Is())) { AddError("cannot take the address of a vector component", unary->expr->source); return nullptr; } ty = builder_->create(ref->StoreType(), ref->StorageClass(), ref->Access()); } else { AddError("cannot take the address of expression", unary->expr->source); return nullptr; } break; case ast::UnaryOp::kIndirection: if (auto* ptr = expr_ty->As()) { ty = builder_->create( ptr->StoreType(), ptr->StorageClass(), ptr->Access()); } else { AddError("cannot dereference expression of type '" + TypeNameOf(expr_ty) + "'", unary->expr->source); return nullptr; } break; } auto val = EvaluateConstantValue(unary, ty); return builder_->create(unary, ty, current_statement_, val); } bool Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { Mark(stmt->variable); if (!ValidateNoDuplicateDefinition(stmt->variable->symbol, stmt->variable->source)) { return false; } auto* var = Variable(stmt->variable, VariableKind::kLocal); if (!var) { return false; } for (auto* deco : stmt->variable->decorations) { Mark(deco); if (!deco->Is()) { AddError("decorations are not valid on local variables", deco->source); return false; } } variable_stack_.Set(stmt->variable->symbol, var); if (current_block_) { // Not all statements are inside a block current_block_->AddDecl(stmt->variable); } if (!ValidateVariable(var)) { return false; } return true; } sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { sem::Type* result = nullptr; if (auto* alias = named_type->As()) { result = Type(alias->type); } else if (auto* str = named_type->As()) { result = Structure(str); } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; } if (!result) { return nullptr; } named_type_info_.emplace(named_type->name, TypeDeclInfo{named_type, result}); if (!ValidateTypeDecl(named_type)) { return nullptr; } builder_->Sem().Add(named_type, result); return result; } bool Resolver::ValidateTypeDecl(const ast::TypeDecl* named_type) const { auto iter = named_type_info_.find(named_type->name); if (iter == named_type_info_.end()) { TINT_ICE(Resolver, diagnostics_) << "ValidateTypeDecl called() before TypeDecl()"; } if (iter->second.ast != named_type) { AddError("type with the name '" + builder_->Symbols().NameFor(named_type->name) + "' was already declared", named_type->source); AddNote("first declared here", iter->second.ast->source); return false; } return true; } sem::Type* Resolver::TypeOf(const ast::Expression* expr) { auto* sem = Sem(expr); return sem ? const_cast(sem->Type()) : nullptr; } std::string Resolver::TypeNameOf(const sem::Type* ty) { return RawTypeNameOf(ty->UnwrapRef()); } std::string Resolver::RawTypeNameOf(const sem::Type* ty) { return ty->FriendlyName(builder_->Symbols()); } sem::Type* Resolver::TypeOf(const ast::LiteralExpression* lit) { if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled literal type: " << lit->TypeInfo().name; return nullptr; } bool Resolver::ValidatePipelineStages() { auto check_workgroup_storage = [&](const sem::Function* func, const sem::Function* entry_point) { auto stage = entry_point->Declaration()->PipelineStage(); if (stage != ast::PipelineStage::kCompute) { for (auto* var : func->DirectlyReferencedGlobals()) { if (var->StorageClass() == ast::StorageClass::kWorkgroup) { std::stringstream stage_name; stage_name << stage; for (auto* user : var->Users()) { if (func == user->Stmt()->Function()) { AddError("workgroup memory cannot be used by " + stage_name.str() + " pipeline stage", user->Declaration()->source); break; } } AddNote("variable is declared here", var->Declaration()->source); if (func != entry_point) { TraverseCallChain(entry_point, func, [&](const sem::Function* f) { AddNote( "called by function '" + builder_->Symbols().NameFor(f->Declaration()->symbol) + "'", f->Declaration()->source); }); AddNote("called by entry point '" + builder_->Symbols().NameFor( entry_point->Declaration()->symbol) + "'", entry_point->Declaration()->source); } return false; } } } return true; }; for (auto* entry_point : entry_points_) { if (!check_workgroup_storage(entry_point, entry_point)) { return false; } for (auto* func : entry_point->TransitivelyCalledFunctions()) { if (!check_workgroup_storage(func, entry_point)) { return false; } } } auto check_intrinsic_calls = [&](const sem::Function* func, const sem::Function* entry_point) { auto stage = entry_point->Declaration()->PipelineStage(); for (auto* intrinsic : func->DirectlyCalledIntrinsics()) { if (!intrinsic->SupportedStages().Contains(stage)) { auto* call = func->FindDirectCallTo(intrinsic); std::stringstream err; err << "built-in cannot be used by " << stage << " pipeline stage"; AddError(err.str(), call ? call->Declaration()->source : func->Declaration()->source); if (func != entry_point) { TraverseCallChain(entry_point, func, [&](const sem::Function* f) { AddNote("called by function '" + builder_->Symbols().NameFor(f->Declaration()->symbol) + "'", f->Declaration()->source); }); AddNote("called by entry point '" + builder_->Symbols().NameFor( entry_point->Declaration()->symbol) + "'", entry_point->Declaration()->source); } return false; } } return true; }; for (auto* entry_point : entry_points_) { if (!check_intrinsic_calls(entry_point, entry_point)) { return false; } for (auto* func : entry_point->TransitivelyCalledFunctions()) { if (!check_intrinsic_calls(func, entry_point)) { return false; } } } return true; } template void Resolver::TraverseCallChain(const sem::Function* from, const sem::Function* to, CALLBACK&& callback) const { for (auto* f : from->TransitivelyCalledFunctions()) { if (f == to) { callback(f); return; } if (f->TransitivelyCalledFunctions().contains(to)) { TraverseCallChain(f, to, callback); callback(f); return; } } TINT_ICE(Resolver, diagnostics_) << "TraverseCallChain() 'from' does not transitively call 'to'"; } sem::Array* Resolver::Array(const ast::Array* arr) { auto source = arr->source; auto* elem_type = Type(arr->type); if (!elem_type) { return nullptr; } if (!IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize() AddError(TypeNameOf(elem_type) + " cannot be used as an element type of an array", source); return nullptr; } uint32_t el_align = elem_type->Align(); uint32_t el_size = elem_type->Size(); if (!ValidateNoDuplicateDecorations(arr->decorations)) { return nullptr; } // Look for explicit stride via [[stride(n)]] decoration uint32_t explicit_stride = 0; for (auto* deco : arr->decorations) { Mark(deco); if (auto* sd = deco->As()) { explicit_stride = sd->stride; if (!ValidateArrayStrideDecoration(sd, el_size, el_align, source)) { return nullptr; } continue; } AddError("decoration is not valid for array types", deco->source); return nullptr; } // Calculate implicit stride uint64_t implicit_stride = utils::RoundUp(el_align, el_size); uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; // Evaluate the constant array size expression. // sem::Array uses a size of 0 for a runtime-sized array. uint32_t count = 0; if (auto* count_expr = arr->count) { auto* count_sem = Expression(count_expr); if (!count_sem) { return nullptr; } auto size_source = count_expr->source; auto* ty = count_sem->Type()->UnwrapRef(); if (!ty->is_integer_scalar()) { AddError("array size must be integer scalar", size_source); return nullptr; } if (auto* ident = count_expr->As()) { // Make sure the identifier is a non-overridable module-scope constant. auto* var = variable_stack_.Get(ident->symbol); if (!var || !var->Is() || !var->Declaration()->is_const) { AddError("array size identifier must be a module-scope constant", size_source); return nullptr; } if (ast::HasDecoration( var->Declaration()->decorations)) { AddError("array size expression must not be pipeline-overridable", size_source); return nullptr; } count_expr = var->Declaration()->constructor; } else if (!count_expr->Is()) { AddError( "array size expression must be either a literal or a module-scope " "constant", size_source); return nullptr; } auto count_val = count_sem->ConstantValue(); if (!count_val) { TINT_ICE(Resolver, diagnostics_) << "could not resolve array size expression"; return nullptr; } if (ty->is_signed_integer_scalar() ? count_val.Elements()[0].i32 < 1 : count_val.Elements()[0].u32 < 1u) { AddError("array size must be at least 1", size_source); return nullptr; } count = count_val.Elements()[0].u32; } auto size = std::max(count, 1) * stride; if (size > std::numeric_limits::max()) { std::stringstream msg; msg << "array size in bytes must not exceed 0x" << std::hex << std::numeric_limits::max() << ", but is 0x" << std::hex << size; AddError(msg.str(), arr->source); return nullptr; } if (stride > std::numeric_limits::max() || implicit_stride > std::numeric_limits::max()) { TINT_ICE(Resolver, diagnostics_) << "calculated array stride exceeds uint32"; return nullptr; } auto* out = builder_->create( elem_type, count, el_align, static_cast(size), static_cast(stride), static_cast(implicit_stride)); if (!ValidateArray(out, source)) { return nullptr; } if (elem_type->Is()) { atomic_composite_info_.emplace(out, arr->type->source); } else { auto found = atomic_composite_info_.find(elem_type); if (found != atomic_composite_info_.end()) { atomic_composite_info_.emplace(out, found->second); } } return out; } bool Resolver::ValidateArray(const sem::Array* arr, const Source& source) { auto* el_ty = arr->ElemType(); if (auto* el_str = el_ty->As()) { if (el_str->IsBlockDecorated()) { // https://gpuweb.github.io/gpuweb/wgsl/#attributes // A structure type with the block attribute must not be: // * the element type of an array type // * the member type in another structure AddError( "A structure type with a [[block]] decoration cannot be used as an " "element of an array", source); return false; } } return true; } bool Resolver::ValidateArrayStrideDecoration(const ast::StrideDecoration* deco, uint32_t el_size, uint32_t el_align, const Source& source) { auto stride = deco->stride; bool is_valid_stride = (stride >= el_size) && (stride >= el_align) && (stride % el_align == 0); if (!is_valid_stride) { // https://gpuweb.github.io/gpuweb/wgsl/#array-layout-rules // Arrays decorated with the stride attribute must have a stride that is // at least the size of the element type, and be a multiple of the // element type's alignment value. AddError( "arrays decorated with the stride attribute must have a stride " "that is at least the size of the element type, and be a multiple " "of the element type's alignment value.", source); return false; } return true; } bool Resolver::ValidateStructure(const sem::Struct* str) { if (str->Members().empty()) { AddError("structures must have at least one member", str->Declaration()->source); return false; } std::unordered_set locations; for (auto* member : str->Members()) { if (auto* r = member->Type()->As()) { if (r->IsRuntimeSized()) { if (member != str->Members().back()) { AddError( "runtime arrays may only appear as the last member of a struct", member->Declaration()->source); return false; } if (!str->IsBlockDecorated()) { AddError( "a struct containing a runtime-sized array " "requires the [[block]] attribute: '" + builder_->Symbols().NameFor(str->Declaration()->name) + "'", member->Declaration()->source); return false; } } } auto has_position = false; const ast::InvariantDecoration* invariant_attribute = nullptr; for (auto* deco : member->Declaration()->decorations) { if (!deco->IsAnyOf()) { if (deco->Is() && IsValidationDisabled( member->Declaration()->decorations, ast::DisabledValidation::kIgnoreStrideDecoration)) { continue; } AddError("decoration is not valid for structure members", deco->source); return false; } if (auto* invariant = deco->As()) { invariant_attribute = invariant; } else if (auto* location = deco->As()) { if (!ValidateLocationDecoration(location, member->Type(), locations, member->Declaration()->source)) { return false; } } else if (auto* builtin = deco->As()) { if (!ValidateBuiltinDecoration(builtin, member->Type(), /* is_input */ false)) { return false; } if (builtin->builtin == ast::Builtin::kPosition) { has_position = true; } } else if (auto* interpolate = deco->As()) { if (!ValidateInterpolateDecoration(interpolate, member->Type())) { return false; } } } if (invariant_attribute && !has_position) { AddError("invariant attribute must only be applied to a position builtin", invariant_attribute->source); return false; } if (auto* member_struct_type = member->Type()->As()) { if (auto* member_struct_type_block_decoration = ast::GetDecoration( member_struct_type->Declaration()->decorations)) { AddError("structs must not contain [[block]] decorated struct members", member->Declaration()->source); AddNote("see member's struct decoration here", member_struct_type_block_decoration->source); return false; } } } for (auto* deco : str->Declaration()->decorations) { if (!(deco->Is())) { AddError("decoration is not valid for struct declarations", deco->source); return false; } } return true; } bool Resolver::ValidateLocationDecoration( const ast::LocationDecoration* location, const sem::Type* type, std::unordered_set& locations, const Source& source, const bool is_input) { std::string inputs_or_output = is_input ? "inputs" : "output"; if (current_function_ && current_function_->Declaration()->PipelineStage() == ast::PipelineStage::kCompute) { AddError("decoration is not valid for compute shader " + inputs_or_output, location->source); return false; } if (!type->is_numeric_scalar_or_vector()) { std::string invalid_type = TypeNameOf(type); AddError("cannot apply 'location' attribute to declaration of type '" + invalid_type + "'", source); AddNote( "'location' attribute must only be applied to declarations of " "numeric scalar or numeric vector type", location->source); return false; } if (locations.count(location->value)) { AddError(deco_to_str(location) + " attribute appears multiple times", location->source); return false; } locations.emplace(location->value); return true; } sem::Struct* Resolver::Structure(const ast::Struct* str) { if (!ValidateNoDuplicateDecorations(str->decorations)) { return nullptr; } for (auto* deco : str->decorations) { Mark(deco); } sem::StructMemberList sem_members; sem_members.reserve(str->members.size()); // Calculate the effective size and alignment of each field, and the overall // size of the structure. // For size, use the size attribute if provided, otherwise use the default // size for the type. // For alignment, use the alignment attribute if provided, otherwise use the // default alignment for the member type. // Diagnostic errors are raised if a basic rule is violated. // Validation of storage-class rules requires analysing the actual variable // usage of the structure, and so is performed as part of the variable // validation. uint64_t struct_size = 0; uint64_t struct_align = 1; std::unordered_map member_map; for (auto* member : str->members) { Mark(member); auto result = member_map.emplace(member->symbol, member); if (!result.second) { AddError("redefinition of '" + builder_->Symbols().NameFor(member->symbol) + "'", member->source); AddNote("previous definition is here", result.first->second->source); return nullptr; } // Resolve member type auto* type = Type(member->type); if (!type) { return nullptr; } // Validate member type if (!IsPlain(type)) { AddError(TypeNameOf(type) + " cannot be used as the type of a structure member", member->source); return nullptr; } uint64_t offset = struct_size; uint64_t align = type->Align(); uint64_t size = type->Size(); if (!ValidateNoDuplicateDecorations(member->decorations)) { return nullptr; } bool has_offset_deco = false; bool has_align_deco = false; bool has_size_deco = false; for (auto* deco : member->decorations) { Mark(deco); if (auto* o = deco->As()) { // Offset decorations are not part of the WGSL spec, but are emitted // by the SPIR-V reader. if (o->offset < struct_size) { AddError("offsets must be in ascending order", o->source); return nullptr; } offset = o->offset; align = 1; has_offset_deco = true; } else if (auto* a = deco->As()) { if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) { AddError("align value must be a positive, power-of-two integer", a->source); return nullptr; } align = a->align; has_align_deco = true; } else if (auto* s = deco->As()) { if (s->size < size) { AddError("size must be at least as big as the type's size (" + std::to_string(size) + ")", s->source); return nullptr; } size = s->size; has_size_deco = true; } } if (has_offset_deco && (has_align_deco || has_size_deco)) { AddError( "offset decorations cannot be used with align or size decorations", member->source); return nullptr; } offset = utils::RoundUp(align, offset); if (offset > std::numeric_limits::max()) { std::stringstream msg; msg << "struct member has byte offset 0x" << std::hex << offset << ", but must not exceed 0x" << std::hex << std::numeric_limits::max(); AddError(msg.str(), member->source); return nullptr; } auto* sem_member = builder_->create( member, member->symbol, type, static_cast(sem_members.size()), static_cast(offset), static_cast(align), static_cast(size)); builder_->Sem().Add(member, sem_member); sem_members.emplace_back(sem_member); struct_size = offset + size; struct_align = std::max(struct_align, align); } uint64_t size_no_padding = struct_size; struct_size = utils::RoundUp(struct_align, struct_size); if (struct_size > std::numeric_limits::max()) { std::stringstream msg; msg << "struct size in bytes must not exceed 0x" << std::hex << std::numeric_limits::max() << ", but is 0x" << std::hex << struct_size; AddError(msg.str(), str->source); return nullptr; } if (struct_align > std::numeric_limits::max()) { TINT_ICE(Resolver, diagnostics_) << "calculated struct stride exceeds uint32"; return nullptr; } auto* out = builder_->create( str, str->name, sem_members, static_cast(struct_align), static_cast(struct_size), static_cast(size_no_padding)); for (size_t i = 0; i < sem_members.size(); i++) { auto* mem_type = sem_members[i]->Type(); if (mem_type->Is()) { atomic_composite_info_.emplace(out, sem_members[i]->Declaration()->source); break; } else { auto found = atomic_composite_info_.find(mem_type); if (found != atomic_composite_info_.end()) { atomic_composite_info_.emplace(out, found->second); break; } } } if (!ValidateStructure(out)) { return nullptr; } return out; } bool Resolver::ValidateReturn(const ast::ReturnStatement* ret) { auto* func_type = current_function_->ReturnType(); auto* ret_type = ret->value ? TypeOf(ret->value)->UnwrapRef() : builder_->create(); if (func_type->UnwrapRef() != ret_type) { AddError( "return statement type must match its function " "return type, returned '" + TypeNameOf(ret_type) + "', expected '" + TypeNameOf(func_type) + "'", ret->source); return false; } auto* sem = Sem(ret); if (auto* continuing = sem->FindFirstParent()) { AddError("continuing blocks must not contain a return statement", ret->source); if (continuing != sem->Parent()) { AddNote("see continuing block here", continuing->Declaration()->source); } return false; } return true; } bool Resolver::Return(const ast::ReturnStatement* ret) { if (auto* value = ret->value) { if (!Expression(value)) { return false; } } // Validate after processing the return value expression so that its type is // available for validation. return ValidateReturn(ret); } bool Resolver::ValidateSwitch(const ast::SwitchStatement* s) { auto* cond_type = TypeOf(s->condition)->UnwrapRef(); if (!cond_type->is_integer_scalar()) { AddError( "switch statement selector expression must be of a " "scalar integer type", s->condition->source); return false; } bool has_default = false; std::unordered_map selectors; for (auto* case_stmt : s->body) { if (case_stmt->IsDefault()) { if (has_default) { // More than one default clause AddError("switch statement must have exactly one default clause", case_stmt->source); return false; } has_default = true; } for (auto* selector : case_stmt->selectors) { if (cond_type != TypeOf(selector)) { AddError( "the case selector values must have the same " "type as the selector expression.", case_stmt->source); return false; } auto v = selector->ValueAsU32(); auto it = selectors.find(v); if (it != selectors.end()) { auto val = selector->Is() ? std::to_string(selector->ValueAsI32()) : std::to_string(selector->ValueAsU32()); AddError("duplicate switch case '" + val + "'", selector->source); AddNote("previous case declared here", it->second); return false; } selectors.emplace(v, selector->source); } } if (!has_default) { // No default clause AddError("switch statement must have a default clause", s->source); return false; } if (!s->body.empty()) { auto* last_clause = s->body.back()->As(); auto* last_stmt = last_clause->body->Last(); if (last_stmt && last_stmt->Is()) { AddError( "a fallthrough statement must not appear as " "the last statement in last clause of a switch", last_stmt->source); return false; } } return true; } bool Resolver::SwitchStatement(const ast::SwitchStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); builder_->Sem().Add(stmt, sem); return Scope(sem, [&] { if (!Expression(stmt->condition)) { return false; } for (auto* case_stmt : stmt->body) { Mark(case_stmt); if (!CaseStatement(case_stmt)) { return false; } } if (!ValidateSwitch(stmt)) { return false; } return true; }); } bool Resolver::Assignment(const ast::AssignmentStatement* a) { if (!Expression(a->lhs) || !Expression(a->rhs)) { return false; } return ValidateAssignment(a); } bool Resolver::ValidateAssignment(const ast::AssignmentStatement* a) { auto const* rhs_ty = TypeOf(a->rhs); if (a->lhs->Is()) { // https://www.w3.org/TR/WGSL/#phony-assignment-section auto* ty = rhs_ty->UnwrapRef(); if (!ty->IsConstructible() && !ty->IsAnyOf()) { AddError( "cannot assign '" + TypeNameOf(rhs_ty) + "' to '_'. '_' can only be assigned a constructible, pointer, " "texture or sampler type", a->rhs->source); return false; } return true; // RHS can be anything. } // https://gpuweb.github.io/gpuweb/wgsl/#assignment-statement auto const* lhs_ty = TypeOf(a->lhs); if (auto* ident = a->lhs->As()) { if (auto* var = variable_stack_.Get(ident->symbol)) { if (var->Is()) { AddError("cannot assign to function parameter", a->lhs->source); AddNote("'" + builder_->Symbols().NameFor(ident->symbol) + "' is declared here:", var->Declaration()->source); return false; } if (var->Declaration()->is_const) { AddError("cannot assign to const", a->lhs->source); AddNote("'" + builder_->Symbols().NameFor(ident->symbol) + "' is declared here:", var->Declaration()->source); return false; } } } auto* lhs_ref = lhs_ty->As(); if (!lhs_ref) { // LHS is not a reference, so it has no storage. AddError("cannot assign to value of type '" + TypeNameOf(lhs_ty) + "'", a->lhs->source); return false; } auto* storage_ty = lhs_ref->StoreType(); auto* value_type = rhs_ty->UnwrapRef(); // Implicit load of RHS // Value type has to match storage type if (storage_ty != value_type) { AddError("cannot assign '" + TypeNameOf(rhs_ty) + "' to '" + TypeNameOf(lhs_ty) + "'", a->source); return false; } if (!storage_ty->IsConstructible()) { AddError("storage type of assignment must be constructible", a->source); return false; } if (lhs_ref->Access() == ast::Access::kRead) { AddError( "cannot store into a read-only type '" + RawTypeNameOf(lhs_ty) + "'", a->source); return false; } return true; } bool Resolver::ValidateNoDuplicateDefinition(Symbol sym, const Source& source, bool check_global_scope_only) { if (check_global_scope_only) { if (auto* var = variable_stack_.Get(sym)) { if (var->Is()) { AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", source); AddNote("previous definition is here", var->Declaration()->source); return false; } } auto it = symbol_to_function_.find(sym); if (it != symbol_to_function_.end()) { AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", source); AddNote("previous definition is here", it->second->Declaration()->source); return false; } } else { if (auto* var = variable_stack_.Get(sym)) { AddError("redefinition of '" + builder_->Symbols().NameFor(sym) + "'", source); AddNote("previous definition is here", var->Declaration()->source); return false; } } return true; } bool Resolver::ValidateNoDuplicateDecorations( const ast::DecorationList& decorations) { std::unordered_map seen; for (auto* d : decorations) { auto res = seen.emplace(&d->TypeInfo(), d->source); if (!res.second && !d->Is()) { AddError("duplicate " + d->Name() + " decoration", d->source); AddNote("first decoration declared here", res.first->second); return false; } } return true; } bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc, sem::Type* ty, const Source& usage) { ty = const_cast(ty->UnwrapRef()); if (auto* str = ty->As()) { if (str->StorageClassUsage().count(sc)) { return true; // Already applied } str->AddUsage(sc); for (auto* member : str->Members()) { if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) { std::stringstream err; err << "while analysing structure member " << TypeNameOf(str) << "." << builder_->Symbols().NameFor(member->Declaration()->symbol); AddNote(err.str(), member->Declaration()->source); return false; } } return true; } if (auto* arr = ty->As()) { return ApplyStorageClassUsageToType( sc, const_cast(arr->ElemType()), usage); } if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) { std::stringstream err; err << "Type '" << TypeNameOf(ty) << "' cannot be used in storage class '" << sc << "' as it is non-host-shareable"; AddError(err.str(), usage); return false; } return true; } template bool Resolver::Scope(sem::CompoundStatement* stmt, F&& callback) { auto* prev_current_statement = current_statement_; auto* prev_current_compound_statement = current_compound_statement_; auto* prev_current_block = current_block_; current_statement_ = stmt; current_compound_statement_ = stmt; current_block_ = stmt->As(); variable_stack_.Push(); TINT_DEFER({ current_block_ = prev_current_block; current_compound_statement_ = prev_current_compound_statement; current_statement_ = prev_current_statement; variable_stack_.Pop(); }); return callback(); } std::string Resolver::VectorPretty(uint32_t size, const sem::Type* element_type) { sem::Vector vec_type(element_type, size); return vec_type.FriendlyName(builder_->Symbols()); } void Resolver::Mark(const ast::Node* node) { if (node == nullptr) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr"; } if (marked_.emplace(node).second) { return; } TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was encountered twice in the same AST of a Program\n" << "At: " << node->source << "\n" << "Pointer: " << node; } void Resolver::AddError(const std::string& msg, const Source& source) const { diagnostics_.add_error(diag::System::Resolver, msg, source); } void Resolver::AddWarning(const std::string& msg, const Source& source) const { diagnostics_.add_warning(diag::System::Resolver, msg, source); } void Resolver::AddNote(const std::string& msg, const Source& source) const { diagnostics_.add_note(diag::System::Resolver, msg, source); } template const sem::Info::GetResultType* Resolver::Sem( const AST_OR_TYPE* ast) { auto* sem = builder_->Sem().Get(ast); if (!sem) { TINT_ICE(Resolver, diagnostics_) << "AST node '" << ast->TypeInfo().name << "' had no semantic info\n" << "At: " << ast->source << "\n" << "Pointer: " << ast; } return sem; } } // namespace resolver } // namespace tint