// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include #include #include #include #include #include "src/ast/alias.h" #include "src/ast/array.h" #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/depth_texture.h" #include "src/ast/disable_validation_decoration.h" #include "src/ast/discard_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/for_loop_statement.h" #include "src/ast/if_statement.h" #include "src/ast/internal_decoration.h" #include "src/ast/interpolate_decoration.h" #include "src/ast/loop_statement.h" #include "src/ast/matrix.h" #include "src/ast/override_decoration.h" #include "src/ast/pointer.h" #include "src/ast/return_statement.h" #include "src/ast/sampled_texture.h" #include "src/ast/sampler.h" #include "src/ast/storage_texture.h" #include "src/ast/switch_statement.h" #include "src/ast/traverse_expressions.h" #include "src/ast/type_name.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/ast/vector.h" #include "src/ast/workgroup_decoration.h" #include "src/sem/array.h" #include "src/sem/atomic_type.h" #include "src/sem/call.h" #include "src/sem/depth_multisampled_texture_type.h" #include "src/sem/depth_texture_type.h" #include "src/sem/for_loop_statement.h" #include "src/sem/function.h" #include "src/sem/if_statement.h" #include "src/sem/loop_statement.h" #include "src/sem/member_accessor_expression.h" #include "src/sem/multisampled_texture_type.h" #include "src/sem/pointer_type.h" #include "src/sem/reference_type.h" #include "src/sem/sampled_texture_type.h" #include "src/sem/sampler_type.h" #include "src/sem/statement.h" #include "src/sem/storage_texture_type.h" #include "src/sem/struct.h" #include "src/sem/switch_statement.h" #include "src/sem/type_constructor.h" #include "src/sem/type_conversion.h" #include "src/sem/variable.h" #include "src/utils/defer.h" #include "src/utils/math.h" #include "src/utils/reverse.h" #include "src/utils/scoped_assignment.h" #include "src/utils/transform.h" namespace tint { namespace resolver { Resolver::Resolver(ProgramBuilder* builder) : builder_(builder), diagnostics_(builder->Diagnostics()), intrinsic_table_(IntrinsicTable::Create(*builder)) {} Resolver::~Resolver() = default; bool Resolver::Resolve() { if (builder_->Diagnostics().contains_errors()) { return false; } if (!DependencyGraph::Build(builder_->AST(), builder_->Symbols(), builder_->Diagnostics(), dependencies_, /* allow_out_of_order_decls*/ false)) { return false; } bool result = ResolveInternal(); if (!result && !diagnostics_.contains_errors()) { TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised"; return false; } return result; } bool Resolver::ResolveInternal() { Mark(&builder_->AST()); // Process everything else in the order they appear in the module. This is // necessary for validation of use-before-declaration. for (auto* decl : builder_->AST().GlobalDeclarations()) { if (auto* td = decl->As()) { Mark(td); if (!TypeDecl(td)) { return false; } } else if (auto* func = decl->As()) { Mark(func); if (!Function(func)) { return false; } } else if (auto* var = decl->As()) { Mark(var); if (!GlobalVariable(var)) { return false; } } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled global declaration: " << decl->TypeInfo().name; return false; } } AllocateOverridableConstantIds(); SetShadows(); if (!ValidatePipelineStages()) { return false; } bool result = true; for (auto* node : builder_->ASTNodes().Objects()) { if (marked_.count(node) == 0) { TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" << "At: " << node->source << "\n" << "Pointer: " << node; result = false; } } return result; } sem::Type* Resolver::Type(const ast::Type* ty) { Mark(ty); auto* s = [&]() -> sem::Type* { if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (ty->Is()) { return builder_->create(); } if (auto* t = ty->As()) { if (!t->type) { AddError("missing vector element type", t->source.End()); return nullptr; } if (auto* el = Type(t->type)) { if (auto* vector = builder_->create(el, t->width)) { if (ValidateVector(vector, t->source)) { return vector; } } } return nullptr; } if (auto* t = ty->As()) { if (!t->type) { AddError("missing matrix element type", t->source.End()); return nullptr; } if (auto* el = Type(t->type)) { if (auto* column_type = builder_->create(el, t->rows)) { if (auto* matrix = builder_->create(column_type, t->columns)) { if (ValidateMatrix(matrix, t->source)) { return matrix; } } } } return nullptr; } if (auto* t = ty->As()) { return Array(t); } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { auto* a = builder_->create(el); if (!ValidateAtomic(t, a)) { return nullptr; } return a; } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { auto access = t->access; if (access == ast::kUndefined) { access = DefaultAccessForStorageClass(t->storage_class); } return builder_->create(el, t->storage_class, access); } return nullptr; } if (auto* t = ty->As()) { return builder_->create(t->kind); } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { return builder_->create(t->dim, el); } return nullptr; } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { return builder_->create(t->dim, el); } return nullptr; } if (auto* t = ty->As()) { return builder_->create(t->dim); } if (auto* t = ty->As()) { return builder_->create(t->dim); } if (auto* t = ty->As()) { if (auto* el = Type(t->type)) { if (!ValidateStorageTexture(t)) { return nullptr; } return builder_->create(t->dim, t->format, t->access, el); } return nullptr; } if (ty->As()) { return builder_->create(); } if (auto* type = ResolvedSymbol(ty)) { return type; } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled ast::Type: " << ty->TypeInfo().name; return nullptr; }(); if (s) { builder_->Sem().Add(ty, s); } return s; } sem::Variable* Resolver::Variable(const ast::Variable* var, VariableKind kind, uint32_t index /* = 0 */) { const sem::Type* storage_ty = nullptr; // If the variable has a declared type, resolve it. if (auto* ty = var->type) { storage_ty = Type(ty); if (!storage_ty) { return nullptr; } } const sem::Expression* rhs = nullptr; // Does the variable have a constructor? if (var->constructor) { rhs = Expression(var->constructor); if (!rhs) { return nullptr; } // If the variable has no declared type, infer it from the RHS if (!storage_ty) { if (!var->is_const && kind == VariableKind::kGlobal) { AddError("global var declaration must specify a type", var->source); return nullptr; } storage_ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS } } else if (var->is_const && kind != VariableKind::kParameter && !ast::HasDecoration(var->decorations)) { AddError("let declaration must have an initializer", var->source); return nullptr; } else if (!var->type) { AddError( (kind == VariableKind::kGlobal) ? "module scope var declaration requires a type and initializer" : "function scope var declaration requires a type or initializer", var->source); return nullptr; } if (!storage_ty) { TINT_ICE(Resolver, diagnostics_) << "failed to determine storage type for variable '" + builder_->Symbols().NameFor(var->symbol) + "'\n" << "Source: " << var->source; return nullptr; } auto storage_class = var->declared_storage_class; if (storage_class == ast::StorageClass::kNone && !var->is_const) { // No declared storage class. Infer from usage / type. if (kind == VariableKind::kLocal) { storage_class = ast::StorageClass::kFunction; } else if (storage_ty->UnwrapRef()->is_handle()) { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // If the store type is a texture type or a sampler type, then the // variable declaration must not have a storage class decoration. The // storage class will always be handle. storage_class = ast::StorageClass::kUniformConstant; } } if (kind == VariableKind::kLocal && !var->is_const && storage_class != ast::StorageClass::kFunction && IsValidationEnabled(var->decorations, ast::DisabledValidation::kIgnoreStorageClass)) { AddError("function variable has a non-function storage class", var->source); return nullptr; } auto access = var->declared_access; if (access == ast::Access::kUndefined) { access = DefaultAccessForStorageClass(storage_class); } auto* var_ty = storage_ty; if (!var->is_const) { // Variable declaration. Unlike `let`, `var` has storage. // Variables are always of a reference type to the declared storage type. var_ty = builder_->create(storage_ty, storage_class, access); } if (rhs && !ValidateVariableConstructorOrCast(var, storage_class, storage_ty, rhs->Type())) { return nullptr; } if (!ApplyStorageClassUsageToType( storage_class, const_cast(var_ty), var->source)) { AddNote( std::string("while instantiating ") + ((kind == VariableKind::kParameter) ? "parameter " : "variable ") + builder_->Symbols().NameFor(var->symbol), var->source); return nullptr; } if (kind == VariableKind::kParameter) { if (auto* ptr = var_ty->As()) { // For MSL, we push module-scope variables into the entry point as pointer // parameters, so we also need to handle their store type. if (!ApplyStorageClassUsageToType( ptr->StorageClass(), const_cast(ptr->StoreType()), var->source)) { AddNote("while instantiating parameter " + builder_->Symbols().NameFor(var->symbol), var->source); return nullptr; } } } switch (kind) { case VariableKind::kGlobal: { sem::BindingPoint binding_point; if (auto bp = var->BindingPoint()) { binding_point = {bp.group->value, bp.binding->value}; } auto* override = ast::GetDecoration(var->decorations); bool has_const_val = rhs && var->is_const && !override; auto* global = builder_->create( var, var_ty, storage_class, access, has_const_val ? rhs->ConstantValue() : sem::Constant{}, binding_point); if (override) { global->SetIsOverridable(); if (override->has_value) { global->SetConstantId(static_cast(override->value)); } } global->SetConstructor(rhs); builder_->Sem().Add(var, global); return global; } case VariableKind::kLocal: { auto* local = builder_->create( var, var_ty, storage_class, access, current_statement_, (rhs && var->is_const) ? rhs->ConstantValue() : sem::Constant{}); builder_->Sem().Add(var, local); local->SetConstructor(rhs); return local; } case VariableKind::kParameter: { auto* param = builder_->create(var, index, var_ty, storage_class, access); builder_->Sem().Add(var, param); return param; } } TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled VariableKind " << static_cast(kind); return nullptr; } ast::Access Resolver::DefaultAccessForStorageClass( ast::StorageClass storage_class) { // https://gpuweb.github.io/gpuweb/wgsl/#storage-class switch (storage_class) { case ast::StorageClass::kStorage: case ast::StorageClass::kUniform: case ast::StorageClass::kUniformConstant: return ast::Access::kRead; default: break; } return ast::Access::kReadWrite; } void Resolver::AllocateOverridableConstantIds() { // The next pipeline constant ID to try to allocate. uint16_t next_constant_id = 0; // Allocate constant IDs in global declaration order, so that they are // deterministic. // TODO(crbug.com/tint/1192): If a transform changes the order or removes an // unused constant, the allocation may change on the next Resolver pass. for (auto* decl : builder_->AST().GlobalDeclarations()) { auto* var = decl->As(); if (!var) { continue; } auto* override_deco = ast::GetDecoration(var->decorations); if (!override_deco) { continue; } uint16_t constant_id; if (override_deco->has_value) { constant_id = static_cast(override_deco->value); } else { // No ID was specified, so allocate the next available ID. constant_id = next_constant_id; while (constant_ids_.count(constant_id)) { if (constant_id == UINT16_MAX) { TINT_ICE(Resolver, builder_->Diagnostics()) << "no more pipeline constant IDs available"; return; } constant_id++; } next_constant_id = constant_id + 1; } auto* sem = Sem(var); const_cast(sem)->SetConstantId(constant_id); } } void Resolver::SetShadows() { for (auto it : dependencies_.shadows) { auto* var = Sem(it.first); if (auto* local = var->As()) { local->SetShadows(Sem(it.second)); } if (auto* param = var->As()) { param->SetShadows(Sem(it.second)); } } } // namespace resolver bool Resolver::GlobalVariable(const ast::Variable* var) { auto* sem = Variable(var, VariableKind::kGlobal); if (!sem) { return false; } auto storage_class = sem->StorageClass(); if (!var->is_const && storage_class == ast::StorageClass::kNone) { AddError("global variables must have a storage class", var->source); return false; } if (var->is_const && storage_class != ast::StorageClass::kNone) { AddError("global constants shouldn't have a storage class", var->source); return false; } for (auto* deco : var->decorations) { Mark(deco); if (auto* override_deco = deco->As()) { // Track the constant IDs that are specified in the shader. if (override_deco->has_value) { constant_ids_.emplace(override_deco->value, sem); } } } if (!ValidateNoDuplicateDecorations(var->decorations)) { return false; } if (!ValidateGlobalVariable(sem)) { return false; } // TODO(bclayton): Call this at the end of resolve on all uniform and storage // referenced structs if (!ValidateStorageClassLayout(sem)) { return false; } return true; } sem::Function* Resolver::Function(const ast::Function* decl) { uint32_t parameter_index = 0; std::unordered_map parameter_names; std::vector parameters; // Resolve all the parameters for (auto* param : decl->params) { Mark(param); { // Check the parameter name is unique for the function auto emplaced = parameter_names.emplace(param->symbol, param->source); if (!emplaced.second) { auto name = builder_->Symbols().NameFor(param->symbol); AddError("redefinition of parameter '" + name + "'", param->source); AddNote("previous definition is here", emplaced.first->second); return nullptr; } } auto* var = As( Variable(param, VariableKind::kParameter, parameter_index++)); if (!var) { return nullptr; } for (auto* deco : param->decorations) { Mark(deco); } if (!ValidateNoDuplicateDecorations(param->decorations)) { return nullptr; } parameters.emplace_back(var); auto* var_ty = const_cast(var->Type()); if (auto* str = var_ty->As()) { switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexInput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentInput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeInput); break; case ast::PipelineStage::kNone: break; } } } // Resolve the return type sem::Type* return_type = nullptr; if (auto* ty = decl->return_type) { return_type = Type(ty); if (!return_type) { return nullptr; } } else { return_type = builder_->create(); } if (auto* str = return_type->As()) { if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, decl->source)) { AddNote("while instantiating return type for " + builder_->Symbols().NameFor(decl->symbol), decl->source); return nullptr; } switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexOutput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentOutput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeOutput); break; case ast::PipelineStage::kNone: break; } } auto* func = builder_->create(decl, return_type, parameters); builder_->Sem().Add(decl, func); TINT_SCOPED_ASSIGNMENT(current_function_, func); if (!WorkgroupSize(decl)) { return nullptr; } if (decl->IsEntryPoint()) { entry_points_.emplace_back(func); } if (decl->body) { Mark(decl->body); if (current_compound_statement_) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Function() called with a current compound statement"; return nullptr; } auto* body = StatementScope( decl->body, builder_->create(func), [&] { return Statements(decl->body->statements); }); if (!body) { return nullptr; } func->Behaviors() = body->Behaviors(); if (func->Behaviors().Contains(sem::Behavior::kReturn)) { // https://www.w3.org/TR/WGSL/#behaviors-rules // We assign a behavior to each function: it is its body’s behavior // (treating the body as a regular statement), with any "Return" replaced // by "Next". func->Behaviors().Remove(sem::Behavior::kReturn); func->Behaviors().Add(sem::Behavior::kNext); } } for (auto* deco : decl->decorations) { Mark(deco); } if (!ValidateNoDuplicateDecorations(decl->decorations)) { return nullptr; } for (auto* deco : decl->return_type_decorations) { Mark(deco); } if (!ValidateNoDuplicateDecorations(decl->return_type_decorations)) { return nullptr; } if (!ValidateFunction(func)) { return nullptr; } // If this is an entry point, mark all transitively called functions as being // used by this entry point. if (decl->IsEntryPoint()) { for (auto* f : func->TransitivelyCalledFunctions()) { const_cast(f)->AddAncestorEntryPoint(func); } } return func; } bool Resolver::WorkgroupSize(const ast::Function* func) { // Set work-group size defaults. sem::WorkgroupSize ws; for (int i = 0; i < 3; i++) { ws[i].value = 1; ws[i].overridable_const = nullptr; } auto* deco = ast::GetDecoration(func->decorations); if (!deco) { return true; } auto values = deco->Values(); auto any_i32 = false; auto any_u32 = false; for (int i = 0; i < 3; i++) { // Each argument to this decoration can either be a literal, an // identifier for a module-scope constants, or nullptr if not specified. auto* expr = values[i]; if (!expr) { // Not specified, just use the default. continue; } auto* expr_sem = Expression(expr); if (!expr_sem) { return false; } constexpr const char* kErrBadType = "workgroup_size argument must be either literal or module-scope " "constant of type i32 or u32"; constexpr const char* kErrInconsistentType = "workgroup_size arguments must be of the same type, either i32 " "or u32"; auto* ty = TypeOf(expr); bool is_i32 = ty->UnwrapRef()->Is(); bool is_u32 = ty->UnwrapRef()->Is(); if (!is_i32 && !is_u32) { AddError(kErrBadType, expr->source); return false; } any_i32 = any_i32 || is_i32; any_u32 = any_u32 || is_u32; if (any_i32 && any_u32) { AddError(kErrInconsistentType, expr->source); return false; } sem::Constant value; if (auto* user = Sem(expr)->As()) { // We have an variable of a module-scope constant. auto* decl = user->Variable()->Declaration(); if (!decl->is_const) { AddError(kErrBadType, expr->source); return false; } // Capture the constant if an [[override]] attribute is present. if (ast::HasDecoration(decl->decorations)) { ws[i].overridable_const = decl; } if (decl->constructor) { value = Sem(decl->constructor)->ConstantValue(); } else { // No constructor means this value must be overriden by the user. ws[i].value = 0; continue; } } else if (expr->Is()) { value = Sem(expr)->ConstantValue(); } else { AddError( "workgroup_size argument must be either a literal or a " "module-scope constant", values[i]->source); return false; } if (!value) { TINT_ICE(Resolver, diagnostics_) << "could not resolve constant workgroup_size constant value"; continue; } // Validate and set the default value for this dimension. if (is_i32 ? value.Elements()[0].i32 < 1 : value.Elements()[0].u32 < 1) { AddError("workgroup_size argument must be at least 1", values[i]->source); return false; } ws[i].value = is_i32 ? static_cast(value.Elements()[0].i32) : value.Elements()[0].u32; } current_function_->SetWorkgroupSize(std::move(ws)); return true; } bool Resolver::Statements(const ast::StatementList& stmts) { sem::Behaviors behaviors{sem::Behavior::kNext}; bool reachable = true; for (auto* stmt : stmts) { Mark(stmt); auto* sem = Statement(stmt); if (!sem) { return false; } // s1 s2:(B1∖{Next}) ∪ B2 sem->SetIsReachable(reachable); if (reachable) { behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors(); } reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext); } current_statement_->Behaviors() = behaviors; if (!ValidateStatements(stmts)) { return false; } return true; } sem::Statement* Resolver::Statement(const ast::Statement* stmt) { if (stmt->Is()) { AddError("case statement can only be used inside a switch statement", stmt->source); return nullptr; } if (stmt->Is()) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Statement() encountered an Else statement. Else " "statements are embedded in If statements, so should never be " "encountered as top-level statements"; return nullptr; } // Compound statements. These create their own sem::CompoundStatement // bindings. if (auto* b = stmt->As()) { return BlockStatement(b); } if (auto* l = stmt->As()) { return ForLoopStatement(l); } if (auto* l = stmt->As()) { return LoopStatement(l); } if (auto* i = stmt->As()) { return IfStatement(i); } if (auto* s = stmt->As()) { return SwitchStatement(s); } // Non-Compound statements if (auto* a = stmt->As()) { return AssignmentStatement(a); } if (auto* b = stmt->As()) { return BreakStatement(b); } if (auto* c = stmt->As()) { return CallStatement(c); } if (auto* c = stmt->As()) { return ContinueStatement(c); } if (auto* d = stmt->As()) { return DiscardStatement(d); } if (auto* f = stmt->As()) { return FallthroughStatement(f); } if (auto* r = stmt->As()) { return ReturnStatement(r); } if (auto* v = stmt->As()) { return VariableDeclStatement(v); } AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), stmt->source); return nullptr; } sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { for (auto* sel : stmt->selectors) { Mark(sel); } Mark(stmt->body); auto* body = BlockStatement(stmt->body); if (!body) { return false; } sem->SetBlock(body); sem->Behaviors() = body->Behaviors(); return true; }); } sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* cond = Expression(stmt->condition); if (!cond) { return false; } sem->SetCondition(cond); sem->Behaviors() = cond->Behaviors(); sem->Behaviors().Remove(sem::Behavior::kNext); Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } sem->Behaviors().Add(body->Behaviors()); for (auto* else_stmt : stmt->else_statements) { Mark(else_stmt); auto* else_sem = ElseStatement(else_stmt); if (!else_sem) { return false; } sem->Behaviors().Add(else_sem->Behaviors()); } if (stmt->else_statements.empty() || stmt->else_statements.back()->condition != nullptr) { // https://www.w3.org/TR/WGSL/#behaviors-rules // if statements without an else branch are treated as if they had an // empty else branch (which adds Next to their behavior) sem->Behaviors().Add(sem::Behavior::kNext); } return ValidateIfStatement(sem); }); } sem::ElseStatement* Resolver::ElseStatement(const ast::ElseStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { if (auto* cond_expr = stmt->condition) { auto* cond = Expression(cond_expr); if (!cond) { return false; } sem->SetCondition(cond); // https://www.w3.org/TR/WGSL/#behaviors-rules // if statements with else if branches are treated as if they were nested // simple if/else statements sem->Behaviors() = cond->Behaviors(); } sem->Behaviors().Remove(sem::Behavior::kNext); Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } sem->Behaviors().Add(body->Behaviors()); return ValidateElseStatement(sem); }); } sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) { auto* sem = builder_->create( stmt->As(), current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { return Statements(stmt->statements); }); } sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); return StatementScope(stmt->body, body, [&] { if (!Statements(stmt->body->statements)) { return false; } auto& behaviors = sem->Behaviors(); behaviors = body->Behaviors(); if (stmt->continuing) { Mark(stmt->continuing); if (!stmt->continuing->Empty()) { auto* continuing = StatementScope( stmt->continuing, builder_->create( stmt->continuing, current_compound_statement_, current_function_), [&] { return Statements(stmt->continuing->statements); }); if (!continuing) { return false; } behaviors.Add(continuing->Behaviors()); } } if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? behaviors.Add(sem::Behavior::kNext); } else { behaviors.Remove(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); return true; }); }); } sem::ForLoopStatement* Resolver::ForLoopStatement( const ast::ForLoopStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = sem->Behaviors(); if (auto* initializer = stmt->initializer) { Mark(initializer); auto* init = Statement(initializer); if (!init) { return false; } behaviors.Add(init->Behaviors()); } if (auto* cond_expr = stmt->condition) { auto* cond = Expression(cond_expr); if (!cond) { return false; } sem->SetCondition(cond); behaviors.Add(cond->Behaviors()); } if (auto* continuing = stmt->continuing) { Mark(continuing); auto* cont = Statement(continuing); if (!cont) { return false; } behaviors.Add(cont->Behaviors()); } Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } behaviors.Add(body->Behaviors()); if (stmt->condition || behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? behaviors.Add(sem::Behavior::kNext); } else { behaviors.Remove(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); return ValidateForLoopStatement(sem); }); } sem::Expression* Resolver::Expression(const ast::Expression* root) { std::vector sorted; bool mark_failed = false; if (!ast::TraverseExpressions( root, diagnostics_, [&](const ast::Expression* expr) { if (!Mark(expr)) { mark_failed = true; return ast::TraverseAction::Stop; } sorted.emplace_back(expr); return ast::TraverseAction::Descend; })) { return nullptr; } if (mark_failed) { return nullptr; } for (auto* expr : utils::Reverse(sorted)) { sem::Expression* sem_expr = nullptr; if (auto* array = expr->As()) { sem_expr = IndexAccessor(array); } else if (auto* bin_op = expr->As()) { sem_expr = Binary(bin_op); } else if (auto* bitcast = expr->As()) { sem_expr = Bitcast(bitcast); } else if (auto* call = expr->As()) { sem_expr = Call(call); } else if (auto* ident = expr->As()) { sem_expr = Identifier(ident); } else if (auto* literal = expr->As()) { sem_expr = Literal(literal); } else if (auto* member = expr->As()) { sem_expr = MemberAccessor(member); } else if (auto* unary = expr->As()) { sem_expr = UnaryOp(unary); } else if (expr->Is()) { sem_expr = builder_->create( expr, builder_->create(), current_statement_, sem::Constant{}); } else { TINT_ICE(Resolver, diagnostics_) << "unhandled expression type: " << expr->TypeInfo().name; return nullptr; } if (!sem_expr) { return nullptr; } // https://www.w3.org/TR/WGSL/#behaviors-rules // an expression behavior is always either {Next} or {Next, Discard} if (sem_expr->Behaviors() != sem::Behavior::kNext && sem_expr->Behaviors() != sem::Behaviors{sem::Behavior::kNext, // NOLINT sem::Behavior::kDiscard} && !IsCallStatement(expr)) { TINT_ICE(Resolver, diagnostics_) << expr->TypeInfo().name << " behaviors are: " << sem_expr->Behaviors(); return nullptr; } builder_->Sem().Add(expr, sem_expr); if (expr == root) { return sem_expr; } } TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node"; return nullptr; } sem::Expression* Resolver::IndexAccessor( const ast::IndexAccessorExpression* expr) { auto* idx = Sem(expr->index); auto* obj = Sem(expr->object); auto* obj_raw_ty = obj->Type(); auto* obj_ty = obj_raw_ty->UnwrapRef(); const sem::Type* ty = nullptr; if (auto* arr = obj_ty->As()) { ty = arr->ElemType(); } else if (auto* vec = obj_ty->As()) { ty = vec->type(); } else if (auto* mat = obj_ty->As()) { ty = builder_->create(mat->type(), mat->rows()); } else { AddError("cannot index type '" + TypeNameOf(obj_ty) + "'", expr->source); return nullptr; } auto* idx_ty = idx->Type()->UnwrapRef(); if (!idx_ty->IsAnyOf()) { AddError("index must be of type 'i32' or 'u32', found: '" + TypeNameOf(idx_ty) + "'", idx->Declaration()->source); return nullptr; } // If we're extracting from a reference, we return a reference. if (auto* ref = obj_raw_ty->As()) { ty = builder_->create(ty, ref->StorageClass(), ref->Access()); } auto val = EvaluateConstantValue(expr, ty); auto* sem = builder_->create(expr, ty, current_statement_, val); sem->Behaviors() = idx->Behaviors() + obj->Behaviors(); return sem; } sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) { auto* inner = Sem(expr->expr); auto* ty = Type(expr->type); if (!ty) { return nullptr; } auto val = EvaluateConstantValue(expr, ty); auto* sem = builder_->create(expr, ty, current_statement_, val); sem->Behaviors() = inner->Behaviors(); if (!ValidateBitcast(expr, ty)) { return nullptr; } return sem; } sem::Call* Resolver::Call(const ast::CallExpression* expr) { std::vector args(expr->args.size()); std::vector arg_tys(args.size()); sem::Behaviors arg_behaviors; // The element type of all the arguments. Nullptr if argument types are // different. const sem::Type* arg_el_ty = nullptr; for (size_t i = 0; i < expr->args.size(); i++) { auto* arg = Sem(expr->args[i]); if (!arg) { return nullptr; } args[i] = arg; arg_tys[i] = args[i]->Type(); arg_behaviors.Add(arg->Behaviors()); // Determine the common argument element type auto* el_ty = arg_tys[i]->UnwrapRef(); if (auto* vec = el_ty->As()) { el_ty = vec->type(); } else if (auto* mat = el_ty->As()) { el_ty = mat->type(); } if (i == 0) { arg_el_ty = el_ty; } else if (arg_el_ty != el_ty) { arg_el_ty = nullptr; } } arg_behaviors.Remove(sem::Behavior::kNext); auto type_ctor_or_conv = [&](const sem::Type* ty) -> sem::Call* { // The call has resolved to a type constructor or cast. if (args.size() == 1) { auto* target = ty; auto* source = args[0]->Type()->UnwrapRef(); if ((source != target) && // ((source->is_scalar() && target->is_scalar()) || (source->Is() && target->Is()) || (source->Is() && target->Is()))) { // Note: Matrix types currently cannot be converted (the element type // must only be f32). We implement this for the day we support other // matrix element types. return TypeConversion(expr, ty, args[0], arg_tys[0]); } } return TypeConstructor(expr, ty, std::move(args), std::move(arg_tys)); }; // Resolve the target of the CallExpression to determine whether this is a // function call, cast or type constructor expression. if (expr->target.type) { const sem::Type* ty = nullptr; auto err_cannot_infer_el_ty = [&](std::string name) { AddError( "cannot infer " + name + " element type, as constructor arguments have different types", expr->source); for (size_t i = 0; i < args.size(); i++) { auto* arg = args[i]; AddNote("argument " + std::to_string(i) + " has type " + arg->Type()->FriendlyName(builder_->Symbols()), arg->Declaration()->source); } }; if (!expr->args.empty()) { // vecN() without explicit element type? // Try to infer element type from args if (auto* vec = expr->target.type->As()) { if (!vec->type) { if (!arg_el_ty) { err_cannot_infer_el_ty("vector"); return nullptr; } Mark(vec); auto* v = builder_->create( arg_el_ty, static_cast(vec->width)); if (!ValidateVector(v, vec->source)) { return nullptr; } builder_->Sem().Add(vec, v); ty = v; } } // matNxM() without explicit element type? // Try to infer element type from args if (auto* mat = expr->target.type->As()) { if (!mat->type) { if (!arg_el_ty) { err_cannot_infer_el_ty("matrix"); return nullptr; } Mark(mat); auto* column_type = builder_->create(arg_el_ty, mat->rows); auto* m = builder_->create(column_type, mat->columns); if (!ValidateMatrix(m, mat->source)) { return nullptr; } builder_->Sem().Add(mat, m); ty = m; } } } if (ty == nullptr) { ty = Type(expr->target.type); if (!ty) { return nullptr; } } return type_ctor_or_conv(ty); } auto* ident = expr->target.name; Mark(ident); auto* resolved = ResolvedSymbol(ident); if (auto* ty = As(resolved)) { return type_ctor_or_conv(ty); } if (auto* fn = As(resolved)) { return FunctionCall(expr, fn, std::move(args), arg_behaviors); } auto name = builder_->Symbols().NameFor(ident->symbol); auto intrinsic_type = sem::ParseIntrinsicType(name); if (intrinsic_type != sem::IntrinsicType::kNone) { return IntrinsicCall(expr, intrinsic_type, std::move(args), std::move(arg_tys)); } TINT_ICE(Resolver, diagnostics_) << expr->source << " unresolved CallExpression target:\n" << "resolved: " << (resolved ? resolved->TypeInfo().name : "") << "\n" << "name: " << builder_->Symbols().NameFor(ident->symbol); return nullptr; } sem::Call* Resolver::IntrinsicCall( const ast::CallExpression* expr, sem::IntrinsicType intrinsic_type, const std::vector args, const std::vector arg_tys) { auto* intrinsic = intrinsic_table_->Lookup(intrinsic_type, std::move(arg_tys), expr->source); if (!intrinsic) { return nullptr; } if (intrinsic->IsDeprecated()) { AddWarning("use of deprecated intrinsic", expr->source); } auto* call = builder_->create(expr, intrinsic, std::move(args), current_statement_, sem::Constant{}); current_function_->AddDirectlyCalledIntrinsic(intrinsic); if (IsTextureIntrinsic(intrinsic_type) && !ValidateTextureIntrinsicFunction(call)) { return nullptr; } if (!ValidateIntrinsicCall(call)) { return nullptr; } current_function_->AddDirectCall(call); return call; } sem::Call* Resolver::FunctionCall( const ast::CallExpression* expr, sem::Function* target, const std::vector args, sem::Behaviors arg_behaviors) { auto sym = expr->target.name->symbol; auto name = builder_->Symbols().NameFor(sym); auto* call = builder_->create(expr, target, std::move(args), current_statement_, sem::Constant{}); if (current_function_) { // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before // use. current_function_->AddTransitivelyCalledFunction(target); current_function_->AddDirectCall(call); for (auto* transitive_call : target->TransitivelyCalledFunctions()) { current_function_->AddTransitivelyCalledFunction(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : target->TransitivelyReferencedGlobals()) { current_function_->AddTransitivelyReferencedGlobal(var); } } target->AddCallSite(call); call->Behaviors() = arg_behaviors + target->Behaviors(); if (!ValidateFunctionCall(call)) { return nullptr; } return call; } sem::Call* Resolver::TypeConversion(const ast::CallExpression* expr, const sem::Type* target, const sem::Expression* arg, const sem::Type* source) { // It is not valid to have a type-cast call expression inside a call // statement. if (IsCallStatement(expr)) { AddError("type cast evaluated but not used", expr->source); return nullptr; } auto* call_target = utils::GetOrCreate( type_conversions_, TypeConversionSig{target, source}, [&]() -> sem::TypeConversion* { // Now that the argument types have been determined, make sure that // they obey the conversion rules laid out in // https://gpuweb.github.io/gpuweb/wgsl/#conversion-expr. bool ok = true; if (auto* vec_type = target->As()) { ok = ValidateVectorConstructorOrCast(expr, vec_type); } else if (auto* mat_type = target->As()) { // Note: Matrix types currently cannot be converted (the element // type must only be f32). We implement this for the day we support // other matrix element types. ok = ValidateMatrixConstructorOrCast(expr, mat_type); } else if (target->is_scalar()) { ok = ValidateScalarConstructorOrCast(expr, target); } else if (auto* arr_type = target->As()) { ok = ValidateArrayConstructorOrCast(expr, arr_type); } else if (auto* struct_type = target->As()) { ok = ValidateStructureConstructorOrCast(expr, struct_type); } else { AddError("type is not constructible", expr->source); return nullptr; } if (!ok) { return nullptr; } auto* param = builder_->create( nullptr, // declaration 0, // index source->UnwrapRef(), // type ast::StorageClass::kNone, // storage_class ast::Access::kUndefined); // access return builder_->create(target, param); }); if (!call_target) { return nullptr; } auto val = EvaluateConstantValue(expr, target); return builder_->create(expr, call_target, std::vector{arg}, current_statement_, val); } sem::Call* Resolver::TypeConstructor( const ast::CallExpression* expr, const sem::Type* ty, const std::vector args, const std::vector arg_tys) { // It is not valid to have a type-constructor call expression as a call // statement. if (IsCallStatement(expr)) { AddError("type constructor evaluated but not used", expr->source); return nullptr; } auto* call_target = utils::GetOrCreate( type_ctors_, TypeConstructorSig{ty, arg_tys}, [&]() -> sem::TypeConstructor* { // Now that the argument types have been determined, make sure that // they obey the constructor type rules laid out in // https://gpuweb.github.io/gpuweb/wgsl/#type-constructor-expr. bool ok = true; if (auto* vec_type = ty->As()) { ok = ValidateVectorConstructorOrCast(expr, vec_type); } else if (auto* mat_type = ty->As()) { ok = ValidateMatrixConstructorOrCast(expr, mat_type); } else if (ty->is_scalar()) { ok = ValidateScalarConstructorOrCast(expr, ty); } else if (auto* arr_type = ty->As()) { ok = ValidateArrayConstructorOrCast(expr, arr_type); } else if (auto* struct_type = ty->As()) { ok = ValidateStructureConstructorOrCast(expr, struct_type); } else { AddError("type is not constructible", expr->source); return nullptr; } if (!ok) { return nullptr; } return builder_->create( ty, utils::Transform( arg_tys, [&](const sem::Type* t, size_t i) -> const sem::Parameter* { return builder_->create( nullptr, // declaration static_cast(i), // index t->UnwrapRef(), // type ast::StorageClass::kNone, // storage_class ast::Access::kUndefined); // access })); }); if (!call_target) { return nullptr; } auto val = EvaluateConstantValue(expr, ty); return builder_->create(expr, call_target, std::move(args), current_statement_, val); } sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) { auto* ty = TypeOf(literal); if (!ty) { return nullptr; } auto val = EvaluateConstantValue(literal, ty); return builder_->create(literal, ty, current_statement_, val); } sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) { auto symbol = expr->symbol; auto* resolved = ResolvedSymbol(expr); if (auto* var = As(resolved)) { auto* user = builder_->create(expr, current_statement_, var); if (current_statement_) { // If identifier is part of a loop continuing block, make sure it // doesn't refer to a variable that is bypassed by a continue statement // in the loop's body block. if (auto* continuing_block = current_statement_ ->FindFirstParent()) { auto* loop_block = continuing_block->FindFirstParent(); if (loop_block->FirstContinue()) { auto& decls = loop_block->Decls(); // If our identifier is in loop_block->decls, make sure its index is // less than first_continue auto iter = std::find_if(decls.begin(), decls.end(), [&symbol](auto* v) { return v->symbol == symbol; }); if (iter != decls.end()) { auto var_decl_index = static_cast(std::distance(decls.begin(), iter)); if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) { AddError("continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "'", loop_block->FirstContinue()->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' declared here", (*iter)->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' referenced in continuing block here", expr->source); return nullptr; } } } } } if (current_function_) { if (auto* global = var->As()) { current_function_->AddDirectlyReferencedGlobal(global); } } var->AddUser(user); return user; } if (Is(resolved)) { AddError("missing '(' for function call", expr->source.End()); return nullptr; } if (IsIntrinsic(symbol)) { AddError("missing '(' for intrinsic call", expr->source.End()); return nullptr; } if (resolved->Is()) { AddError("missing '(' for type constructor or cast", expr->source.End()); return nullptr; } TINT_ICE(Resolver, diagnostics_) << expr->source << " unresolved identifier:\n" << "resolved: " << (resolved ? resolved->TypeInfo().name : "") << "\n" << "name: " << builder_->Symbols().NameFor(symbol); return nullptr; } sem::Expression* Resolver::MemberAccessor( const ast::MemberAccessorExpression* expr) { auto* structure = TypeOf(expr->structure); auto* storage_ty = structure->UnwrapRef(); const sem::Type* ret = nullptr; std::vector swizzle; if (auto* str = storage_ty->As()) { Mark(expr->member); auto symbol = expr->member->symbol; const sem::StructMember* member = nullptr; for (auto* m : str->Members()) { if (m->Name() == symbol) { ret = m->Type(); member = m; break; } } if (ret == nullptr) { AddError( "struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source); return nullptr; } // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } return builder_->create( expr, ret, current_statement_, member); } if (auto* vec = storage_ty->As()) { Mark(expr->member); std::string s = builder_->Symbols().NameFor(expr->member->symbol); auto size = s.size(); swizzle.reserve(s.size()); for (auto c : s) { switch (c) { case 'x': case 'r': swizzle.emplace_back(0); break; case 'y': case 'g': swizzle.emplace_back(1); break; case 'z': case 'b': swizzle.emplace_back(2); break; case 'w': case 'a': swizzle.emplace_back(3); break; default: AddError("invalid vector swizzle character", expr->member->source.Begin() + swizzle.size()); return nullptr; } if (swizzle.back() >= vec->Width()) { AddError("invalid vector swizzle member", expr->member->source); return nullptr; } } if (size < 1 || size > 4) { AddError("invalid vector swizzle size", expr->member->source); return nullptr; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(s.begin(), s.end(), is_rgba) && !std::all_of(s.begin(), s.end(), is_xyzw)) { AddError("invalid mixing of vector swizzle characters rgba with xyzw", expr->member->source); return nullptr; } if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } } else { // The vector will have a number of components equal to the length of // the swizzle. ret = builder_->create(vec->type(), static_cast(size)); } return builder_->create(expr, ret, current_statement_, std::move(swizzle)); } AddError( "invalid member accessor expression. Expected vector or struct, got '" + TypeNameOf(storage_ty) + "'", expr->structure->source); return nullptr; } sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) { using Bool = sem::Bool; using F32 = sem::F32; using I32 = sem::I32; using U32 = sem::U32; using Matrix = sem::Matrix; using Vector = sem::Vector; auto* lhs = Sem(expr->lhs); auto* rhs = Sem(expr->rhs); auto* lhs_ty = lhs->Type()->UnwrapRef(); auto* rhs_ty = rhs->Type()->UnwrapRef(); auto* lhs_vec = lhs_ty->As(); auto* lhs_vec_elem_type = lhs_vec ? lhs_vec->type() : nullptr; auto* rhs_vec = rhs_ty->As(); auto* rhs_vec_elem_type = rhs_vec ? rhs_vec->type() : nullptr; const bool matching_vec_elem_types = lhs_vec_elem_type && rhs_vec_elem_type && (lhs_vec_elem_type == rhs_vec_elem_type) && (lhs_vec->Width() == rhs_vec->Width()); const bool matching_types = matching_vec_elem_types || (lhs_ty == rhs_ty); auto build = [&](const sem::Type* ty) { auto val = EvaluateConstantValue(expr, ty); auto* sem = builder_->create(expr, ty, current_statement_, val); sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors(); return sem; }; // Binary logical expressions if (expr->IsLogicalAnd() || expr->IsLogicalOr()) { if (matching_types && lhs_ty->Is()) { return build(lhs_ty); } } if (expr->IsOr() || expr->IsAnd()) { if (matching_types && lhs_ty->Is()) { return build(lhs_ty); } if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->Is()) { return build(lhs_ty); } } // Arithmetic expressions if (expr->IsArithmetic()) { // Binary arithmetic expressions over scalars if (matching_types && lhs_ty->is_numeric_scalar()) { return build(lhs_ty); } // Binary arithmetic expressions over vectors if (matching_types && lhs_vec_elem_type && lhs_vec_elem_type->is_numeric_scalar()) { return build(lhs_ty); } // Binary arithmetic expressions with mixed scalar and vector operands if (lhs_vec_elem_type && (lhs_vec_elem_type == rhs_ty)) { if (expr->IsModulo()) { if (rhs_ty->is_integer_scalar()) { return build(lhs_ty); } } else if (rhs_ty->is_numeric_scalar()) { return build(lhs_ty); } } if (rhs_vec_elem_type && (rhs_vec_elem_type == lhs_ty)) { if (expr->IsModulo()) { if (lhs_ty->is_integer_scalar()) { return build(rhs_ty); } } else if (lhs_ty->is_numeric_scalar()) { return build(rhs_ty); } } } // Matrix arithmetic auto* lhs_mat = lhs_ty->As(); auto* lhs_mat_elem_type = lhs_mat ? lhs_mat->type() : nullptr; auto* rhs_mat = rhs_ty->As(); auto* rhs_mat_elem_type = rhs_mat ? rhs_mat->type() : nullptr; // Addition and subtraction of float matrices if ((expr->IsAdd() || expr->IsSubtract()) && lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_mat->columns() == rhs_mat->columns()) && (lhs_mat->rows() == rhs_mat->rows())) { return build(rhs_ty); } if (expr->IsMultiply()) { // Multiplication of a matrix and a scalar if (lhs_ty->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is()) { return build(rhs_ty); } if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_ty->Is()) { return build(lhs_ty); } // Vector times matrix if (lhs_vec_elem_type && lhs_vec_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_vec->Width() == rhs_mat->rows())) { return build( builder_->create(lhs_vec->type(), rhs_mat->columns())); } // Matrix times vector if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_vec_elem_type && rhs_vec_elem_type->Is() && (lhs_mat->columns() == rhs_vec->Width())) { return build( builder_->create(rhs_vec->type(), lhs_mat->rows())); } // Matrix times matrix if (lhs_mat_elem_type && lhs_mat_elem_type->Is() && rhs_mat_elem_type && rhs_mat_elem_type->Is() && (lhs_mat->columns() == rhs_mat->rows())) { return build(builder_->create( builder_->create(lhs_mat_elem_type, lhs_mat->rows()), rhs_mat->columns())); } } // Comparison expressions if (expr->IsComparison()) { if (matching_types) { // Special case for bools: only == and != if (lhs_ty->Is() && (expr->IsEqual() || expr->IsNotEqual())) { return build(builder_->create()); } // For the rest, we can compare i32, u32, and f32 if (lhs_ty->IsAnyOf()) { return build(builder_->create()); } } // Same for vectors if (matching_vec_elem_types) { if (lhs_vec_elem_type->Is() && (expr->IsEqual() || expr->IsNotEqual())) { return build(builder_->create( builder_->create(), lhs_vec->Width())); } if (lhs_vec_elem_type->is_numeric_scalar()) { return build(builder_->create( builder_->create(), lhs_vec->Width())); } } } // Binary bitwise operations if (expr->IsBitwise()) { if (matching_types && lhs_ty->is_integer_scalar_or_vector()) { return build(lhs_ty); } } // Bit shift expressions if (expr->IsBitshift()) { // Type validation rules are the same for left or right shift, despite // differences in computation rules (i.e. right shift can be arithmetic or // logical depending on lhs type). if (lhs_ty->IsAnyOf() && rhs_ty->Is()) { return build(lhs_ty); } if (lhs_vec_elem_type && lhs_vec_elem_type->IsAnyOf() && rhs_vec_elem_type && rhs_vec_elem_type->Is()) { return build(lhs_ty); } } AddError("Binary expression operand types are invalid for this operation: " + TypeNameOf(lhs_ty) + " " + FriendlyName(expr->op) + " " + TypeNameOf(rhs_ty), expr->source); return nullptr; } sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) { auto* expr = Sem(unary->expr); auto* expr_ty = expr->Type(); if (!expr_ty) { return nullptr; } const sem::Type* ty = nullptr; switch (unary->op) { case ast::UnaryOp::kNot: // Result type matches the deref'd inner type. ty = expr_ty->UnwrapRef(); if (!ty->Is() && !ty->is_bool_vector()) { AddError( "cannot logical negate expression of type '" + TypeNameOf(expr_ty), unary->expr->source); return nullptr; } break; case ast::UnaryOp::kComplement: // Result type matches the deref'd inner type. ty = expr_ty->UnwrapRef(); if (!ty->is_integer_scalar_or_vector()) { AddError("cannot bitwise complement expression of type '" + TypeNameOf(expr_ty), unary->expr->source); return nullptr; } break; case ast::UnaryOp::kNegation: // Result type matches the deref'd inner type. ty = expr_ty->UnwrapRef(); if (!(ty->IsAnyOf() || ty->is_signed_integer_vector() || ty->is_float_vector())) { AddError("cannot negate expression of type '" + TypeNameOf(expr_ty), unary->expr->source); return nullptr; } break; case ast::UnaryOp::kAddressOf: if (auto* ref = expr_ty->As()) { if (ref->StoreType()->UnwrapRef()->is_handle()) { AddError( "cannot take the address of expression in handle storage class", unary->expr->source); return nullptr; } auto* array = unary->expr->As(); auto* member = unary->expr->As(); if ((array && TypeOf(array->object)->UnwrapRef()->Is()) || (member && TypeOf(member->structure)->UnwrapRef()->Is())) { AddError("cannot take the address of a vector component", unary->expr->source); return nullptr; } ty = builder_->create(ref->StoreType(), ref->StorageClass(), ref->Access()); } else { AddError("cannot take the address of expression", unary->expr->source); return nullptr; } break; case ast::UnaryOp::kIndirection: if (auto* ptr = expr_ty->As()) { ty = builder_->create( ptr->StoreType(), ptr->StorageClass(), ptr->Access()); } else { AddError("cannot dereference expression of type '" + TypeNameOf(expr_ty) + "'", unary->expr->source); return nullptr; } break; } auto val = EvaluateConstantValue(unary, ty); auto* sem = builder_->create(unary, ty, current_statement_, val); sem->Behaviors() = expr->Behaviors(); return sem; } sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { sem::Type* result = nullptr; if (auto* alias = named_type->As()) { result = Alias(alias); } else if (auto* str = named_type->As()) { result = Structure(str); } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; } if (!result) { return nullptr; } builder_->Sem().Add(named_type, result); return result; } sem::Type* Resolver::TypeOf(const ast::Expression* expr) { auto* sem = Sem(expr); return sem ? const_cast(sem->Type()) : nullptr; } std::string Resolver::TypeNameOf(const sem::Type* ty) { return RawTypeNameOf(ty->UnwrapRef()); } std::string Resolver::RawTypeNameOf(const sem::Type* ty) { return ty->FriendlyName(builder_->Symbols()); } sem::Type* Resolver::TypeOf(const ast::LiteralExpression* lit) { if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } if (lit->Is()) { return builder_->create(); } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled literal type: " << lit->TypeInfo().name; return nullptr; } sem::Array* Resolver::Array(const ast::Array* arr) { auto source = arr->source; auto* elem_type = Type(arr->type); if (!elem_type) { return nullptr; } if (!IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize() AddError(TypeNameOf(elem_type) + " cannot be used as an element type of an array", source); return nullptr; } uint32_t el_align = elem_type->Align(); uint32_t el_size = elem_type->Size(); if (!ValidateNoDuplicateDecorations(arr->decorations)) { return nullptr; } // Look for explicit stride via [[stride(n)]] decoration uint32_t explicit_stride = 0; for (auto* deco : arr->decorations) { Mark(deco); if (auto* sd = deco->As()) { explicit_stride = sd->stride; if (!ValidateArrayStrideDecoration(sd, el_size, el_align, source)) { return nullptr; } continue; } AddError("decoration is not valid for array types", deco->source); return nullptr; } // Calculate implicit stride uint64_t implicit_stride = utils::RoundUp(el_align, el_size); uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; // Evaluate the constant array size expression. // sem::Array uses a size of 0 for a runtime-sized array. uint32_t count = 0; if (auto* count_expr = arr->count) { auto* count_sem = Expression(count_expr); if (!count_sem) { return nullptr; } auto size_source = count_expr->source; auto* ty = count_sem->Type()->UnwrapRef(); if (!ty->is_integer_scalar()) { AddError("array size must be integer scalar", size_source); return nullptr; } if (auto* ident = count_expr->As()) { // Make sure the identifier is a non-overridable module-scope constant. auto* var = ResolvedSymbol(ident); if (!var || !var->Is() || !var->Declaration()->is_const) { AddError("array size identifier must be a module-scope constant", size_source); return nullptr; } if (ast::HasDecoration( var->Declaration()->decorations)) { AddError("array size expression must not be pipeline-overridable", size_source); return nullptr; } count_expr = var->Declaration()->constructor; } else if (!count_expr->Is()) { AddError( "array size expression must be either a literal or a module-scope " "constant", size_source); return nullptr; } auto count_val = count_sem->ConstantValue(); if (!count_val) { TINT_ICE(Resolver, diagnostics_) << "could not resolve array size expression"; return nullptr; } if (ty->is_signed_integer_scalar() ? count_val.Elements()[0].i32 < 1 : count_val.Elements()[0].u32 < 1u) { AddError("array size must be at least 1", size_source); return nullptr; } count = count_val.Elements()[0].u32; } auto size = std::max(count, 1) * stride; if (size > std::numeric_limits::max()) { std::stringstream msg; msg << "array size in bytes must not exceed 0x" << std::hex << std::numeric_limits::max() << ", but is 0x" << std::hex << size; AddError(msg.str(), arr->source); return nullptr; } if (stride > std::numeric_limits::max() || implicit_stride > std::numeric_limits::max()) { TINT_ICE(Resolver, diagnostics_) << "calculated array stride exceeds uint32"; return nullptr; } auto* out = builder_->create( elem_type, count, el_align, static_cast(size), static_cast(stride), static_cast(implicit_stride)); if (!ValidateArray(out, source)) { return nullptr; } if (elem_type->Is()) { atomic_composite_info_.emplace(out, arr->type->source); } else { auto found = atomic_composite_info_.find(elem_type); if (found != atomic_composite_info_.end()) { atomic_composite_info_.emplace(out, found->second); } } return out; } sem::Type* Resolver::Alias(const ast::Alias* alias) { auto* ty = Type(alias->type); if (!ty) { return nullptr; } if (!ValidateAlias(alias)) { return nullptr; } return ty; } sem::Struct* Resolver::Structure(const ast::Struct* str) { if (!ValidateNoDuplicateDecorations(str->decorations)) { return nullptr; } for (auto* deco : str->decorations) { Mark(deco); } sem::StructMemberList sem_members; sem_members.reserve(str->members.size()); // Calculate the effective size and alignment of each field, and the overall // size of the structure. // For size, use the size attribute if provided, otherwise use the default // size for the type. // For alignment, use the alignment attribute if provided, otherwise use the // default alignment for the member type. // Diagnostic errors are raised if a basic rule is violated. // Validation of storage-class rules requires analysing the actual variable // usage of the structure, and so is performed as part of the variable // validation. uint64_t struct_size = 0; uint64_t struct_align = 1; std::unordered_map member_map; for (auto* member : str->members) { Mark(member); auto result = member_map.emplace(member->symbol, member); if (!result.second) { AddError("redefinition of '" + builder_->Symbols().NameFor(member->symbol) + "'", member->source); AddNote("previous definition is here", result.first->second->source); return nullptr; } // Resolve member type auto* type = Type(member->type); if (!type) { return nullptr; } // Validate member type if (!IsPlain(type)) { AddError(TypeNameOf(type) + " cannot be used as the type of a structure member", member->source); return nullptr; } uint64_t offset = struct_size; uint64_t align = type->Align(); uint64_t size = type->Size(); if (!ValidateNoDuplicateDecorations(member->decorations)) { return nullptr; } bool has_offset_deco = false; bool has_align_deco = false; bool has_size_deco = false; for (auto* deco : member->decorations) { Mark(deco); if (auto* o = deco->As()) { // Offset decorations are not part of the WGSL spec, but are emitted // by the SPIR-V reader. if (o->offset < struct_size) { AddError("offsets must be in ascending order", o->source); return nullptr; } offset = o->offset; align = 1; has_offset_deco = true; } else if (auto* a = deco->As()) { if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) { AddError("align value must be a positive, power-of-two integer", a->source); return nullptr; } align = a->align; has_align_deco = true; } else if (auto* s = deco->As()) { if (s->size < size) { AddError("size must be at least as big as the type's size (" + std::to_string(size) + ")", s->source); return nullptr; } size = s->size; has_size_deco = true; } } if (has_offset_deco && (has_align_deco || has_size_deco)) { AddError( "offset decorations cannot be used with align or size decorations", member->source); return nullptr; } offset = utils::RoundUp(align, offset); if (offset > std::numeric_limits::max()) { std::stringstream msg; msg << "struct member has byte offset 0x" << std::hex << offset << ", but must not exceed 0x" << std::hex << std::numeric_limits::max(); AddError(msg.str(), member->source); return nullptr; } auto* sem_member = builder_->create( member, member->symbol, type, static_cast(sem_members.size()), static_cast(offset), static_cast(align), static_cast(size)); builder_->Sem().Add(member, sem_member); sem_members.emplace_back(sem_member); struct_size = offset + size; struct_align = std::max(struct_align, align); } uint64_t size_no_padding = struct_size; struct_size = utils::RoundUp(struct_align, struct_size); if (struct_size > std::numeric_limits::max()) { std::stringstream msg; msg << "struct size in bytes must not exceed 0x" << std::hex << std::numeric_limits::max() << ", but is 0x" << std::hex << struct_size; AddError(msg.str(), str->source); return nullptr; } if (struct_align > std::numeric_limits::max()) { TINT_ICE(Resolver, diagnostics_) << "calculated struct stride exceeds uint32"; return nullptr; } auto* out = builder_->create( str, str->name, sem_members, static_cast(struct_align), static_cast(struct_size), static_cast(size_no_padding)); for (size_t i = 0; i < sem_members.size(); i++) { auto* mem_type = sem_members[i]->Type(); if (mem_type->Is()) { atomic_composite_info_.emplace(out, sem_members[i]->Declaration()->source); break; } else { auto found = atomic_composite_info_.find(mem_type); if (found != atomic_composite_info_.end()) { atomic_composite_info_.emplace(out, found->second); break; } } } if (!ValidateStructure(out)) { return nullptr; } return out; } sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = current_statement_->Behaviors(); behaviors = sem::Behavior::kReturn; if (auto* value = stmt->value) { auto* expr = Expression(value); if (!expr) { return false; } behaviors.Add(expr->Behaviors() - sem::Behavior::kNext); } // Validate after processing the return value expression so that its type // is available for validation. return ValidateReturn(stmt); }); } sem::SwitchStatement* Resolver::SwitchStatement( const ast::SwitchStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = sem->Behaviors(); auto* cond = Expression(stmt->condition); if (!cond) { return false; } behaviors = cond->Behaviors() - sem::Behavior::kNext; for (auto* case_stmt : stmt->body) { Mark(case_stmt); auto* c = CaseStatement(case_stmt); if (!c) { return false; } behaviors.Add(c->Behaviors()); } if (behaviors.Contains(sem::Behavior::kBreak)) { behaviors.Add(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kFallthrough); return ValidateSwitch(stmt); }); } sem::Statement* Resolver::VariableDeclStatement( const ast::VariableDeclStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { Mark(stmt->variable); auto* var = Variable(stmt->variable, VariableKind::kLocal); if (!var) { return false; } for (auto* deco : stmt->variable->decorations) { Mark(deco); if (!deco->Is()) { AddError("decorations are not valid on local variables", deco->source); return false; } } if (current_block_) { // Not all statements are inside a block current_block_->AddDecl(stmt->variable); } if (auto* ctor = var->Constructor()) { sem->Behaviors() = ctor->Behaviors(); } return ValidateVariable(var); }); } sem::Statement* Resolver::AssignmentStatement( const ast::AssignmentStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* lhs = Expression(stmt->lhs); if (!lhs) { return false; } auto* rhs = Expression(stmt->rhs); if (!rhs) { return false; } auto& behaviors = sem->Behaviors(); behaviors = rhs->Behaviors(); if (!stmt->lhs->Is()) { behaviors.Add(lhs->Behaviors()); } return ValidateAssignment(stmt); }); } sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kBreak; return ValidateBreakStatement(sem); }); } sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { if (auto* expr = Expression(stmt->expr)) { sem->Behaviors() = expr->Behaviors(); return true; } return false; }); } sem::Statement* Resolver::ContinueStatement( const ast::ContinueStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kContinue; // Set if we've hit the first continue statement in our parent loop if (auto* block = sem->FindFirstParent()) { if (!block->FirstContinue()) { const_cast(block)->SetFirstContinue( stmt, block->Decls().size()); } } return ValidateContinueStatement(sem); }); } sem::Statement* Resolver::DiscardStatement(const ast::DiscardStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kDiscard; current_function_->SetHasDiscard(); return ValidateDiscardStatement(sem); }); } sem::Statement* Resolver::FallthroughStatement( const ast::FallthroughStatement* stmt) { auto* sem = builder_->create( stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kFallthrough; return ValidateFallthroughStatement(sem); }); } bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc, sem::Type* ty, const Source& usage) { ty = const_cast(ty->UnwrapRef()); if (auto* str = ty->As()) { if (str->StorageClassUsage().count(sc)) { return true; // Already applied } str->AddUsage(sc); for (auto* member : str->Members()) { if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) { std::stringstream err; err << "while analysing structure member " << TypeNameOf(str) << "." << builder_->Symbols().NameFor(member->Declaration()->symbol); AddNote(err.str(), member->Declaration()->source); return false; } } return true; } if (auto* arr = ty->As()) { return ApplyStorageClassUsageToType( sc, const_cast(arr->ElemType()), usage); } if (ast::IsHostShareable(sc) && !IsHostShareable(ty)) { std::stringstream err; err << "Type '" << TypeNameOf(ty) << "' cannot be used in storage class '" << sc << "' as it is non-host-shareable"; AddError(err.str(), usage); return false; } return true; } template SEM* Resolver::StatementScope(const ast::Statement* ast, SEM* sem, F&& callback) { builder_->Sem().Add(ast, sem); auto* as_compound = As(sem); auto* as_block = As(sem); TINT_SCOPED_ASSIGNMENT(current_statement_, sem); TINT_SCOPED_ASSIGNMENT( current_compound_statement_, as_compound ? as_compound : current_compound_statement_); TINT_SCOPED_ASSIGNMENT(current_block_, as_block ? as_block : current_block_); if (!callback()) { return nullptr; } return sem; } std::string Resolver::VectorPretty(uint32_t size, const sem::Type* element_type) { sem::Vector vec_type(element_type, size); return vec_type.FriendlyName(builder_->Symbols()); } bool Resolver::Mark(const ast::Node* node) { if (node == nullptr) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr"; return false; } if (marked_.emplace(node).second) { return true; } TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was encountered twice in the same AST of a Program\n" << "At: " << node->source << "\n" << "Pointer: " << node; return false; } void Resolver::AddError(const std::string& msg, const Source& source) const { diagnostics_.add_error(diag::System::Resolver, msg, source); } void Resolver::AddWarning(const std::string& msg, const Source& source) const { diagnostics_.add_warning(diag::System::Resolver, msg, source); } void Resolver::AddNote(const std::string& msg, const Source& source) const { diagnostics_.add_note(diag::System::Resolver, msg, source); } // https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section bool Resolver::IsPlain(const sem::Type* type) const { return type->is_scalar() || type->IsAnyOf(); } // https://gpuweb.github.io/gpuweb/wgsl/#fixed-footprint-types bool Resolver::IsFixedFootprint(const sem::Type* type) const { if (type->is_scalar()) { return true; } if (type->Is()) { return true; } if (type->Is()) { return true; } if (type->Is()) { return true; } if (auto* arr = type->As()) { return !arr->IsRuntimeSized() && IsFixedFootprint(arr->ElemType()); } if (auto* str = type->As()) { for (auto* member : str->Members()) { if (!IsFixedFootprint(member->Type())) { return false; } } return true; } return false; } // https://gpuweb.github.io/gpuweb/wgsl.html#storable-types bool Resolver::IsStorable(const sem::Type* type) const { return IsPlain(type) || type->IsAnyOf(); } // https://gpuweb.github.io/gpuweb/wgsl.html#host-shareable-types bool Resolver::IsHostShareable(const sem::Type* type) const { if (type->IsAnyOf()) { return true; } if (auto* vec = type->As()) { return IsHostShareable(vec->type()); } if (auto* mat = type->As()) { return IsHostShareable(mat->type()); } if (auto* arr = type->As()) { return IsHostShareable(arr->ElemType()); } if (auto* str = type->As()) { for (auto* member : str->Members()) { if (!IsHostShareable(member->Type())) { return false; } } return true; } if (auto* atomic = type->As()) { return IsHostShareable(atomic->Type()); } return false; } bool Resolver::IsIntrinsic(Symbol symbol) const { std::string name = builder_->Symbols().NameFor(symbol); return sem::ParseIntrinsicType(name) != sem::IntrinsicType::kNone; } bool Resolver::IsCallStatement(const ast::Expression* expr) const { return current_statement_ && Is(current_statement_->Declaration(), [&](auto* stmt) { return stmt->expr == expr; }); } const ast::Statement* Resolver::ClosestContinuing(bool stop_at_loop) const { for (const auto* s = current_statement_; s != nullptr; s = s->Parent()) { if (stop_at_loop && s->Is()) { break; } if (s->Is()) { return s->Declaration(); } if (auto* f = As(s->Parent())) { if (f->Declaration()->continuing == s->Declaration()) { return s->Declaration(); } if (stop_at_loop) { break; } } } return nullptr; } //////////////////////////////////////////////////////////////////////////////// // Resolver::TypeConversionSig //////////////////////////////////////////////////////////////////////////////// bool Resolver::TypeConversionSig::operator==( const TypeConversionSig& rhs) const { return target == rhs.target && source == rhs.source; } std::size_t Resolver::TypeConversionSig::Hasher::operator()( const TypeConversionSig& sig) const { return utils::Hash(sig.target, sig.source); } //////////////////////////////////////////////////////////////////////////////// // Resolver::TypeConstructorSig //////////////////////////////////////////////////////////////////////////////// Resolver::TypeConstructorSig::TypeConstructorSig( const sem::Type* ty, const std::vector params) : type(ty), parameters(params) {} Resolver::TypeConstructorSig::TypeConstructorSig(const TypeConstructorSig&) = default; Resolver::TypeConstructorSig::~TypeConstructorSig() = default; bool Resolver::TypeConstructorSig::operator==( const TypeConstructorSig& rhs) const { return type == rhs.type && parameters == rhs.parameters; } std::size_t Resolver::TypeConstructorSig::Hasher::operator()( const TypeConstructorSig& sig) const { return utils::Hash(sig.type, sig.parameters); } } // namespace resolver } // namespace tint