#include using namespace metal; template struct tint_array { const constant T& operator[](size_t i) const constant { return elements[i]; } device T& operator[](size_t i) device { return elements[i]; } const device T& operator[](size_t i) const device { return elements[i]; } thread T& operator[](size_t i) thread { return elements[i]; } const thread T& operator[](size_t i) const thread { return elements[i]; } threadgroup T& operator[](size_t i) threadgroup { return elements[i]; } const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; } T elements[N]; }; struct tint_packed_vec3_f32_array_element { /* 0x0000 */ packed_float3 elements; /* 0x000c */ tint_array tint_pad; }; void assign_and_preserve_padding(device tint_array* const dest, float3x3 value) { (*(dest))[0u].elements = packed_float3(value[0u]); (*(dest))[1u].elements = packed_float3(value[1u]); (*(dest))[2u].elements = packed_float3(value[2u]); } void transpose_854336(device tint_array* const tint_symbol_1) { float3x3 arg_0 = float3x3(float3(1.0f), float3(1.0f), float3(1.0f)); float3x3 res = transpose(arg_0); assign_and_preserve_padding(tint_symbol_1, res); } struct tint_symbol { float4 value [[position]]; }; float4 vertex_main_inner(device tint_array* const tint_symbol_2) { transpose_854336(tint_symbol_2); return float4(0.0f); } vertex tint_symbol vertex_main(device tint_array* tint_symbol_3 [[buffer(0)]]) { float4 const inner_result = vertex_main_inner(tint_symbol_3); tint_symbol wrapper_result = {}; wrapper_result.value = inner_result; return wrapper_result; } fragment void fragment_main(device tint_array* tint_symbol_4 [[buffer(0)]]) { transpose_854336(tint_symbol_4); return; } kernel void compute_main(device tint_array* tint_symbol_5 [[buffer(0)]]) { transpose_854336(tint_symbol_5); return; }