// Copyright 2020 The Dawn Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "tests/DawnTest.h" #include "utils/ComboRenderPipelineDescriptor.h" #include "utils/WGPUHelpers.h" namespace { struct CreatePipelineAsyncTask { wgpu::ComputePipeline computePipeline = nullptr; wgpu::RenderPipeline renderPipeline = nullptr; bool isCompleted = false; std::string message; }; } // anonymous namespace class CreatePipelineAsyncTest : public DawnTest { protected: void ValidateCreateComputePipelineAsync(CreatePipelineAsyncTask* currentTask) { wgpu::BufferDescriptor bufferDesc; bufferDesc.size = sizeof(uint32_t); bufferDesc.usage = wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc; wgpu::Buffer ssbo = device.CreateBuffer(&bufferDesc); wgpu::CommandBuffer commands; { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::ComputePassEncoder pass = encoder.BeginComputePass(); while (!currentTask->isCompleted) { WaitABit(); } ASSERT_TRUE(currentTask->message.empty()); ASSERT_NE(nullptr, currentTask->computePipeline.Get()); wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, currentTask->computePipeline.GetBindGroupLayout(0), { {0, ssbo, 0, sizeof(uint32_t)}, }); pass.SetBindGroup(0, bindGroup); pass.SetPipeline(currentTask->computePipeline); pass.Dispatch(1); pass.EndPass(); commands = encoder.Finish(); } queue.Submit(1, &commands); constexpr uint32_t kExpected = 1u; EXPECT_BUFFER_U32_EQ(kExpected, ssbo, 0); } void ValidateCreateComputePipelineAsync() { ValidateCreateComputePipelineAsync(&task); } void ValidateCreateRenderPipelineAsync(CreatePipelineAsyncTask* currentTask) { constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm; wgpu::TextureDescriptor textureDescriptor; textureDescriptor.size = {1, 1, 1}; textureDescriptor.format = kRenderAttachmentFormat; textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc; wgpu::Texture outputTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor({outputTexture.CreateView()}); renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; renderPassDescriptor.cColorAttachments[0].clearColor = {1.f, 0.f, 0.f, 1.f}; wgpu::CommandBuffer commands; { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor); while (!currentTask->isCompleted) { WaitABit(); } ASSERT_TRUE(currentTask->message.empty()); ASSERT_NE(nullptr, currentTask->renderPipeline.Get()); renderPassEncoder.SetPipeline(currentTask->renderPipeline); renderPassEncoder.Draw(1); renderPassEncoder.EndPass(); commands = encoder.Finish(); } queue.Submit(1, &commands); EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 255, 0, 255), outputTexture, 0, 0); } void ValidateCreateRenderPipelineAsync() { ValidateCreateRenderPipelineAsync(&task); } void DoCreateRenderPipelineAsync( const utils::ComboRenderPipelineDescriptor& renderPipelineDescriptor) { device.CreateRenderPipelineAsync( &renderPipelineDescriptor, [](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); } CreatePipelineAsyncTask task; }; // Verify the basic use of CreateComputePipelineAsync works on all backends. TEST_P(CreatePipelineAsyncTest, BasicUseOfCreateComputePipelineAsync) { wgpu::ComputePipelineDescriptor csDesc; csDesc.compute.module = utils::CreateShaderModule(device, R"( struct SSBO { value : u32; }; [[group(0), binding(0)]] var ssbo : SSBO; [[stage(compute), workgroup_size(1)]] fn main() { ssbo.value = 1u; })"); csDesc.compute.entryPoint = "main"; device.CreateComputePipelineAsync( &csDesc, [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); ValidateCreateComputePipelineAsync(); } // This is a regression test for a bug on the member "entryPoint" of FlatComputePipelineDescriptor. TEST_P(CreatePipelineAsyncTest, ReleaseEntryPointAfterCreatComputePipelineAsync) { wgpu::ComputePipelineDescriptor csDesc; csDesc.compute.module = utils::CreateShaderModule(device, R"( struct SSBO { value : u32; }; [[group(0), binding(0)]] var ssbo : SSBO; [[stage(compute), workgroup_size(1)]] fn main() { ssbo.value = 1u; })"); std::string entryPoint = "main"; csDesc.compute.entryPoint = entryPoint.c_str(); device.CreateComputePipelineAsync( &csDesc, [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); entryPoint = ""; ValidateCreateComputePipelineAsync(); } // Verify CreateComputePipelineAsync() works as expected when there is any error that happens during // the creation of the compute pipeline. The SPEC requires that during the call of // CreateComputePipelineAsync() any error won't be forwarded to the error scope / unhandled error // callback. TEST_P(CreatePipelineAsyncTest, CreateComputePipelineFailed) { DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("skip_validation")); wgpu::ComputePipelineDescriptor csDesc; csDesc.compute.module = utils::CreateShaderModule(device, R"( struct SSBO { value : u32; }; [[group(0), binding(0)]] var ssbo : SSBO; [[stage(compute), workgroup_size(1)]] fn main() { ssbo.value = 1u; })"); csDesc.compute.entryPoint = "main0"; device.CreateComputePipelineAsync( &csDesc, [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Error, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); while (!task.isCompleted) { WaitABit(); } ASSERT_FALSE(task.message.empty()); ASSERT_EQ(nullptr, task.computePipeline.Get()); } // Verify the basic use of CreateRenderPipelineAsync() works on all backends. TEST_P(CreatePipelineAsyncTest, BasicUseOfCreateRenderPipelineAsync) { constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm; utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); renderPipelineDescriptor.vertex.module = vsModule; renderPipelineDescriptor.cFragment.module = fsModule; renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat; renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; DoCreateRenderPipelineAsync(renderPipelineDescriptor); ValidateCreateRenderPipelineAsync(); } // Verify the render pipeline created with CreateRenderPipelineAsync() still works when the entry // points are released after the creation of the render pipeline. TEST_P(CreatePipelineAsyncTest, ReleaseEntryPointsAfterCreateRenderPipelineAsync) { constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm; utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); renderPipelineDescriptor.vertex.module = vsModule; renderPipelineDescriptor.cFragment.module = fsModule; renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat; renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; std::string vertexEntryPoint = "main"; std::string fragmentEntryPoint = "main"; renderPipelineDescriptor.vertex.entryPoint = vertexEntryPoint.c_str(); renderPipelineDescriptor.cFragment.entryPoint = fragmentEntryPoint.c_str(); DoCreateRenderPipelineAsync(renderPipelineDescriptor); vertexEntryPoint = ""; fragmentEntryPoint = ""; wgpu::TextureDescriptor textureDescriptor; textureDescriptor.size = {1, 1, 1}; textureDescriptor.format = kRenderAttachmentFormat; textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc; wgpu::Texture outputTexture = device.CreateTexture(&textureDescriptor); utils::ComboRenderPassDescriptor renderPassDescriptor({outputTexture.CreateView()}); renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; renderPassDescriptor.cColorAttachments[0].clearColor = {1.f, 0.f, 0.f, 1.f}; wgpu::CommandBuffer commands; { wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor); while (!task.isCompleted) { WaitABit(); } ASSERT_TRUE(task.message.empty()); ASSERT_NE(nullptr, task.renderPipeline.Get()); renderPassEncoder.SetPipeline(task.renderPipeline); renderPassEncoder.Draw(1); renderPassEncoder.EndPass(); commands = encoder.Finish(); } queue.Submit(1, &commands); EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 255, 0, 255), outputTexture, 0, 0); } // Verify CreateRenderPipelineAsync() works as expected when there is any error that happens during // the creation of the render pipeline. The SPEC requires that during the call of // CreateRenderPipelineAsync() any error won't be forwarded to the error scope / unhandled error // callback. TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineFailed) { DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("skip_validation")); constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::Depth32Float; utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); renderPipelineDescriptor.vertex.module = vsModule; renderPipelineDescriptor.cFragment.module = fsModule; renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat; renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; device.CreateRenderPipelineAsync( &renderPipelineDescriptor, [](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Error, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); while (!task.isCompleted) { WaitABit(); } ASSERT_FALSE(task.message.empty()); ASSERT_EQ(nullptr, task.computePipeline.Get()); } // Verify there is no error when the device is released before the callback of // CreateComputePipelineAsync() is called. TEST_P(CreatePipelineAsyncTest, ReleaseDeviceBeforeCallbackOfCreateComputePipelineAsync) { wgpu::ComputePipelineDescriptor csDesc; csDesc.compute.module = utils::CreateShaderModule(device, R"( [[stage(compute), workgroup_size(1)]] fn main() { })"); csDesc.compute.entryPoint = "main"; device.CreateComputePipelineAsync( &csDesc, [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_DeviceDestroyed, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); } // Verify there is no error when the device is released before the callback of // CreateRenderPipelineAsync() is called. TEST_P(CreatePipelineAsyncTest, ReleaseDeviceBeforeCallbackOfCreateRenderPipelineAsync) { utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); renderPipelineDescriptor.vertex.module = vsModule; renderPipelineDescriptor.cFragment.module = fsModule; renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; device.CreateRenderPipelineAsync( &renderPipelineDescriptor, [](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_DeviceDestroyed, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); } // Verify there is no error when the device is destroyed before the callback of // CreateComputePipelineAsync() is called. TEST_P(CreatePipelineAsyncTest, DestroyDeviceBeforeCallbackOfCreateComputePipelineAsync) { wgpu::ComputePipelineDescriptor csDesc; csDesc.compute.module = utils::CreateShaderModule(device, R"( [[stage(compute), workgroup_size(1)]] fn main() { })"); csDesc.compute.entryPoint = "main"; device.CreateComputePipelineAsync( &csDesc, [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_DeviceDestroyed, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); ExpectDeviceDestruction(); device.Destroy(); } // Verify there is no error when the device is destroyed before the callback of // CreateRenderPipelineAsync() is called. TEST_P(CreatePipelineAsyncTest, DestroyDeviceBeforeCallbackOfCreateRenderPipelineAsync) { utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); renderPipelineDescriptor.vertex.module = vsModule; renderPipelineDescriptor.cFragment.module = fsModule; renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; device.CreateRenderPipelineAsync( &renderPipelineDescriptor, [](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_DeviceDestroyed, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }, &task); ExpectDeviceDestruction(); device.Destroy(); } // Verify the code path of CreateComputePipelineAsync() to directly return the compute pipeline // object from cache works correctly. TEST_P(CreatePipelineAsyncTest, CreateSameComputePipelineTwice) { wgpu::ComputePipelineDescriptor csDesc; csDesc.compute.module = utils::CreateShaderModule(device, R"( struct SSBO { value : u32; }; [[group(0), binding(0)]] var ssbo : SSBO; [[stage(compute), workgroup_size(1)]] fn main() { ssbo.value = 1u; })"); csDesc.compute.entryPoint = "main"; auto callback = [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }; // Create a pipeline object and save it into anotherTask.computePipeline. CreatePipelineAsyncTask anotherTask; device.CreateComputePipelineAsync(&csDesc, callback, &anotherTask); while (!anotherTask.isCompleted) { WaitABit(); } ASSERT_TRUE(anotherTask.message.empty()); ASSERT_NE(nullptr, anotherTask.computePipeline.Get()); // Create another pipeline object task.comnputepipeline with the same compute pipeline // descriptor used in the creation of anotherTask.computePipeline. This time the pipeline // object should be directly got from the pipeline object cache. device.CreateComputePipelineAsync(&csDesc, callback, &task); ValidateCreateComputePipelineAsync(); } // Verify creating compute pipeline with same descriptor and CreateComputePipelineAsync() at the // same time works correctly. TEST_P(CreatePipelineAsyncTest, CreateSameComputePipelineTwiceAtSameTime) { wgpu::BindGroupLayoutEntry binding = {}; binding.binding = 0; binding.buffer.type = wgpu::BufferBindingType::Storage; binding.visibility = wgpu::ShaderStage::Compute; wgpu::BindGroupLayoutDescriptor desc = {}; desc.entryCount = 1; desc.entries = &binding; wgpu::BindGroupLayout bindGroupLayout = device.CreateBindGroupLayout(&desc); wgpu::PipelineLayoutDescriptor pipelineLayoutDesc = {}; pipelineLayoutDesc.bindGroupLayoutCount = 1; pipelineLayoutDesc.bindGroupLayouts = &bindGroupLayout; wgpu::PipelineLayout pipelineLayout = device.CreatePipelineLayout(&pipelineLayoutDesc); wgpu::ComputePipelineDescriptor csDesc; csDesc.layout = pipelineLayout; csDesc.compute.module = utils::CreateShaderModule(device, R"( struct SSBO { value : u32; }; [[group(0), binding(0)]] var ssbo : SSBO; [[stage(compute), workgroup_size(1)]] fn main() { ssbo.value = 1u; })"); csDesc.compute.entryPoint = "main"; auto callback = [](WGPUCreatePipelineAsyncStatus status, WGPUComputePipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->computePipeline = wgpu::ComputePipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }; // Create two pipeline objects with same descriptor. CreatePipelineAsyncTask anotherTask; device.CreateComputePipelineAsync(&csDesc, callback, &task); device.CreateComputePipelineAsync(&csDesc, callback, &anotherTask); // Verify both task.computePipeline and anotherTask.computePipeline are created correctly. ValidateCreateComputePipelineAsync(&anotherTask); ValidateCreateComputePipelineAsync(&task); // Verify task.computePipeline and anotherTask.computePipeline are pointing to the same Dawn // object. if (!UsesWire()) { EXPECT_EQ(task.computePipeline.Get(), anotherTask.computePipeline.Get()); } } // Verify the basic use of CreateRenderPipelineAsync() works on all backends. TEST_P(CreatePipelineAsyncTest, CreateSameRenderPipelineTwiceAtSameTime) { constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm; utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); renderPipelineDescriptor.vertex.module = vsModule; renderPipelineDescriptor.cFragment.module = fsModule; renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat; renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; auto callback = [](WGPUCreatePipelineAsyncStatus status, WGPURenderPipeline returnPipeline, const char* message, void* userdata) { EXPECT_EQ(WGPUCreatePipelineAsyncStatus::WGPUCreatePipelineAsyncStatus_Success, status); CreatePipelineAsyncTask* task = static_cast(userdata); task->renderPipeline = wgpu::RenderPipeline::Acquire(returnPipeline); task->isCompleted = true; task->message = message; }; // Create two render pipelines with same descriptor. CreatePipelineAsyncTask anotherTask; device.CreateRenderPipelineAsync(&renderPipelineDescriptor, callback, &task); device.CreateRenderPipelineAsync(&renderPipelineDescriptor, callback, &anotherTask); // Verify task.renderPipeline and anotherTask.renderPipeline are both created correctly. ValidateCreateRenderPipelineAsync(&task); ValidateCreateRenderPipelineAsync(&anotherTask); // Verify task.renderPipeline and anotherTask.renderPipeline are pointing to the same Dawn // object. if (!UsesWire()) { EXPECT_EQ(task.renderPipeline.Get(), anotherTask.renderPipeline.Get()); } } // Verify calling CreateRenderPipelineAsync() with valid VertexBufferLayouts works on all backends. TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncWithVertexBufferLayouts) { wgpu::TextureDescriptor textureDescriptor; textureDescriptor.size = {1, 1, 1}; textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm; textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc; wgpu::Texture renderTarget = device.CreateTexture(&textureDescriptor); wgpu::TextureView renderTargetView = renderTarget.CreateView(); utils::ComboRenderPassDescriptor renderPass({renderTargetView}); { utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"( struct VertexInput { [[location(0)]] input0: u32; [[location(1)]] input1: u32; }; struct VertexOutput { [[location(0)]] vertexColorOut: vec4; [[builtin(position)]] position: vec4; }; [[stage(vertex)]] fn main(vertexInput : VertexInput) -> VertexOutput { var vertexOutput : VertexOutput; vertexOutput.position = vec4(0.0, 0.0, 0.0, 1.0); if (vertexInput.input0 == 1u && vertexInput.input1 == 2u) { vertexOutput.vertexColorOut = vec4(0.0, 1.0, 0.0, 1.0); } else { vertexOutput.vertexColorOut = vec4(1.0, 0.0, 0.0, 1.0); } return vertexOutput; })"); renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main([[location(0)]] fragColorIn : vec4) -> [[location(0)]] vec4 { return fragColorIn; })"); renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; renderPipelineDescriptor.cFragment.targetCount = 1; renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; // Create a render pipeline with two VertexBufferLayouts renderPipelineDescriptor.vertex.buffers = renderPipelineDescriptor.cBuffers.data(); renderPipelineDescriptor.vertex.bufferCount = 2; renderPipelineDescriptor.cBuffers[0].attributeCount = 1; renderPipelineDescriptor.cBuffers[0].attributes = &renderPipelineDescriptor.cAttributes[0]; renderPipelineDescriptor.cAttributes[0].format = wgpu::VertexFormat::Uint32; renderPipelineDescriptor.cAttributes[0].shaderLocation = 0; renderPipelineDescriptor.cBuffers[1].attributeCount = 1; renderPipelineDescriptor.cBuffers[1].attributes = &renderPipelineDescriptor.cAttributes[1]; renderPipelineDescriptor.cAttributes[1].format = wgpu::VertexFormat::Uint32; renderPipelineDescriptor.cAttributes[1].shaderLocation = 1; DoCreateRenderPipelineAsync(renderPipelineDescriptor); } wgpu::Buffer vertexBuffer1 = utils::CreateBufferFromData( device, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Vertex, {1u}); wgpu::Buffer vertexBuffer2 = utils::CreateBufferFromData( device, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Vertex, {2u}); // Do the draw call with the render pipeline wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); while (!task.isCompleted) { WaitABit(); } ASSERT_TRUE(task.message.empty()); ASSERT_NE(nullptr, task.renderPipeline.Get()); pass.SetPipeline(task.renderPipeline); pass.SetVertexBuffer(0, vertexBuffer1); pass.SetVertexBuffer(1, vertexBuffer2); pass.Draw(1); pass.EndPass(); } wgpu::CommandBuffer commands = encoder.Finish(); queue.Submit(1, &commands); // The color attachment will have the expected color when the vertex attribute values are // fetched correctly. EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 255, 0, 255), renderTarget, 0, 0); } // Verify calling CreateRenderPipelineAsync() with valid depthStencilState works on all backends. TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncWithDepthStencilState) { wgpu::TextureDescriptor textureDescriptor; textureDescriptor.size = {1, 1, 1}; textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm; textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc; wgpu::Texture renderTarget = device.CreateTexture(&textureDescriptor); wgpu::TextureView renderTargetView = renderTarget.CreateView(); textureDescriptor.format = wgpu::TextureFormat::Depth24PlusStencil8; wgpu::Texture depthStencilTarget = device.CreateTexture(&textureDescriptor); wgpu::TextureView depthStencilView = depthStencilTarget.CreateView(); // Clear the color attachment to green and the stencil aspect of the depth stencil attachment // to 0. utils::ComboRenderPassDescriptor renderPass({renderTargetView}, depthStencilView); renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; renderPass.cColorAttachments[0].clearColor = {0.0, 1.0, 0.0, 1.0}; renderPass.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Clear; renderPass.cDepthStencilAttachmentInfo.clearStencil = 0u; wgpu::RenderPipeline pipeline; { utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(1.0, 0.0, 0.0, 1.0); })"); renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; renderPipelineDescriptor.cFragment.targetCount = 1; renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; // Create a render pipeline with stencil compare function "Equal". renderPipelineDescriptor.depthStencil = &renderPipelineDescriptor.cDepthStencil; renderPipelineDescriptor.cDepthStencil.stencilFront.compare = wgpu::CompareFunction::Equal; DoCreateRenderPipelineAsync(renderPipelineDescriptor); } wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); while (!task.isCompleted) { WaitABit(); } ASSERT_TRUE(task.message.empty()); ASSERT_NE(nullptr, task.renderPipeline.Get()); pass.SetPipeline(task.renderPipeline); // The stencil reference is set to 1, so there should be no pixel that can pass the stencil // test. pass.SetStencilReference(1); pass.Draw(1); pass.EndPass(); } wgpu::CommandBuffer commands = encoder.Finish(); queue.Submit(1, &commands); // The color in the color attachment should not be changed after the draw call as no pixel can // pass the stencil test. EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 255, 0, 255), renderTarget, 0, 0); } // Verify calling CreateRenderPipelineAsync() with multisample.Count > 1 works on all backends. TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineWithMultisampleState) { wgpu::TextureDescriptor textureDescriptor; textureDescriptor.size = {1, 1, 1}; textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm; textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc; wgpu::Texture resolveTarget = device.CreateTexture(&textureDescriptor); wgpu::TextureView resolveTargetView = resolveTarget.CreateView(); textureDescriptor.sampleCount = 4; wgpu::Texture renderTarget = device.CreateTexture(&textureDescriptor); wgpu::TextureView renderTargetView = renderTarget.CreateView(); // Set the multi-sampled render target, its resolve target to render pass and clear color to // (1, 0, 0, 1). utils::ComboRenderPassDescriptor renderPass({renderTargetView}); renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; renderPass.cColorAttachments[0].clearColor = {1.0, 0.0, 0.0, 1.0}; renderPass.cColorAttachments[0].resolveTarget = resolveTargetView; wgpu::RenderPipeline pipeline; { utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"( [[stage(fragment)]] fn main() -> [[location(0)]] vec4 { return vec4(0.0, 1.0, 0.0, 1.0); })"); renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; renderPipelineDescriptor.cFragment.targetCount = 1; renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; // Create a render pipeline with multisample.count == 4. renderPipelineDescriptor.multisample.count = 4; DoCreateRenderPipelineAsync(renderPipelineDescriptor); } wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); while (!task.isCompleted) { WaitABit(); } ASSERT_TRUE(task.message.empty()); ASSERT_NE(nullptr, task.renderPipeline.Get()); pass.SetPipeline(task.renderPipeline); pass.Draw(6); pass.EndPass(); } wgpu::CommandBuffer commands = encoder.Finish(); queue.Submit(1, &commands); // The color in resolveTarget should be the expected color (0, 1, 0, 1). EXPECT_PIXEL_RGBA8_EQ(RGBA8(0, 255, 0, 255), resolveTarget, 0, 0); } // Verify calling CreateRenderPipelineAsync() with valid BlendState works on all backends. TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncWithBlendState) { DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_indexed_draw_buffers")); std::array renderTargets; std::array renderTargetViews; { wgpu::TextureDescriptor textureDescriptor; textureDescriptor.size = {1, 1, 1}; textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm; textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc; for (uint32_t i = 0; i < renderTargets.size(); ++i) { renderTargets[i] = device.CreateTexture(&textureDescriptor); renderTargetViews[i] = renderTargets[i].CreateView(); } } // Prepare two color attachments utils::ComboRenderPassDescriptor renderPass({renderTargetViews[0], renderTargetViews[1]}); renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear; renderPass.cColorAttachments[0].clearColor = {0.2, 0.0, 0.0, 0.2}; renderPass.cColorAttachments[1].loadOp = wgpu::LoadOp::Clear; renderPass.cColorAttachments[1].clearColor = {0.0, 0.2, 0.0, 0.2}; { utils::ComboRenderPipelineDescriptor renderPipelineDescriptor; renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"( [[stage(vertex)]] fn main() -> [[builtin(position)]] vec4 { return vec4(0.0, 0.0, 0.0, 1.0); })"); renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"( struct FragmentOut { [[location(0)]] fragColor0 : vec4; [[location(1)]] fragColor1 : vec4; }; [[stage(fragment)]] fn main() -> FragmentOut { var output : FragmentOut; output.fragColor0 = vec4(0.4, 0.0, 0.0, 0.4); output.fragColor1 = vec4(0.0, 1.0, 0.0, 1.0); return output; })"); renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList; // Create a render pipeline with blending states renderPipelineDescriptor.cFragment.targetCount = renderTargets.size(); // The blend operation for the first render target is "add". wgpu::BlendComponent blendComponent0; blendComponent0.operation = wgpu::BlendOperation::Add; blendComponent0.srcFactor = wgpu::BlendFactor::One; blendComponent0.dstFactor = wgpu::BlendFactor::One; wgpu::BlendState blend0; blend0.color = blendComponent0; blend0.alpha = blendComponent0; // The blend operation for the first render target is "subtract". wgpu::BlendComponent blendComponent1; blendComponent1.operation = wgpu::BlendOperation::Subtract; blendComponent1.srcFactor = wgpu::BlendFactor::One; blendComponent1.dstFactor = wgpu::BlendFactor::One; wgpu::BlendState blend1; blend1.color = blendComponent1; blend1.alpha = blendComponent1; renderPipelineDescriptor.cTargets[0].blend = &blend0; renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm; renderPipelineDescriptor.cTargets[1].blend = &blend1; renderPipelineDescriptor.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm; DoCreateRenderPipelineAsync(renderPipelineDescriptor); } wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); { wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass); while (!task.isCompleted) { WaitABit(); } ASSERT_TRUE(task.message.empty()); ASSERT_NE(nullptr, task.renderPipeline.Get()); pass.SetPipeline(task.renderPipeline); pass.Draw(1); pass.EndPass(); } wgpu::CommandBuffer commands = encoder.Finish(); queue.Submit(1, &commands); // When the blend states are all set correctly, the color of renderTargets[0] should be // (0.6, 0, 0, 0.6) = colorAttachment0.clearColor + (0.4, 0.0, 0.0, 0.4), and the color of // renderTargets[1] should be (0.8, 0, 0, 0.8) = (1, 0, 0, 1) - colorAttachment1.clearColor. RGBA8 expected0 = {153, 0, 0, 153}; RGBA8 expected1 = {0, 204, 0, 204}; EXPECT_PIXEL_RGBA8_EQ(expected0, renderTargets[0], 0, 0); EXPECT_PIXEL_RGBA8_EQ(expected1, renderTargets[1], 0, 0); } DAWN_INSTANTIATE_TEST(CreatePipelineAsyncTest, D3D12Backend(), MetalBackend(), OpenGLBackend(), OpenGLESBackend(), VulkanBackend());