// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/resolver/resolver.h" #include #include "gmock/gmock.h" #include "gtest/gtest-spi.h" #include "src/ast/assignment_statement.h" #include "src/ast/bitcast_expression.h" #include "src/ast/break_statement.h" #include "src/ast/call_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/if_statement.h" #include "src/ast/intrinsic_texture_helper_test.h" #include "src/ast/loop_statement.h" #include "src/ast/return_statement.h" #include "src/ast/stage_decoration.h" #include "src/ast/struct_block_decoration.h" #include "src/ast/switch_statement.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/resolver/resolver_test_helper.h" #include "src/sem/call.h" #include "src/sem/function.h" #include "src/sem/member_accessor_expression.h" #include "src/sem/sampled_texture_type.h" #include "src/sem/statement.h" #include "src/sem/variable.h" using ::testing::ElementsAre; using ::testing::HasSubstr; namespace tint { namespace resolver { namespace { // Helpers and typedefs using i32 = ProgramBuilder::i32; using u32 = ProgramBuilder::u32; using f32 = ProgramBuilder::f32; using Op = ast::BinaryOp; TEST_F(ResolverTest, Stmt_Assign) { auto* v = Var("v", ty.f32()); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = Assign(lhs, rhs); WrapInFunction(v, assign); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); } TEST_F(ResolverTest, Stmt_Case) { auto* v = Var("v", ty.f32()); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = Assign(lhs, rhs); auto* block = Block(assign); ast::CaseSelectorList lit; lit.push_back(create(3)); auto* cse = create(lit, block); auto* cond_var = Var("c", ty.i32()); auto* sw = Switch(cond_var, cse, DefaultCase()); WrapInFunction(v, cond_var, sw); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); EXPECT_EQ(BlockOf(assign), block); } TEST_F(ResolverTest, Stmt_Block) { auto* v = Var("v", ty.f32()); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = Assign(lhs, rhs); auto* block = Block(assign); WrapInFunction(v, block); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); EXPECT_EQ(BlockOf(lhs), block); EXPECT_EQ(BlockOf(rhs), block); EXPECT_EQ(BlockOf(assign), block); } TEST_F(ResolverTest, Stmt_If) { auto* v = Var("v", ty.f32()); auto* else_lhs = Expr("v"); auto* else_rhs = Expr(2.3f); auto* else_body = Block(Assign(else_lhs, else_rhs)); auto* else_cond = Expr(true); auto* else_stmt = create(else_cond, else_body); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* assign = Assign(lhs, rhs); auto* body = Block(assign); auto* cond = Expr(true); auto* stmt = create(cond, body, ast::ElseStatementList{else_stmt}); WrapInFunction(v, stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(stmt->condition()), nullptr); ASSERT_NE(TypeOf(else_lhs), nullptr); ASSERT_NE(TypeOf(else_rhs), nullptr); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(stmt->condition())->Is()); EXPECT_TRUE(TypeOf(else_lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(else_rhs)->Is()); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(StmtOf(lhs), assign); EXPECT_EQ(StmtOf(rhs), assign); EXPECT_EQ(StmtOf(cond), stmt); EXPECT_EQ(StmtOf(else_cond), else_stmt); EXPECT_EQ(BlockOf(lhs), body); EXPECT_EQ(BlockOf(rhs), body); EXPECT_EQ(BlockOf(else_lhs), else_body); EXPECT_EQ(BlockOf(else_rhs), else_body); } TEST_F(ResolverTest, Stmt_Loop) { auto* v = Var("v", ty.f32()); auto* body_lhs = Expr("v"); auto* body_rhs = Expr(2.3f); auto* body = Block(Assign(body_lhs, body_rhs)); auto* continuing_lhs = Expr("v"); auto* continuing_rhs = Expr(2.3f); auto* continuing = Block(Assign(continuing_lhs, continuing_rhs)); auto* stmt = Loop(body, continuing); WrapInFunction(v, stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(body_lhs), nullptr); ASSERT_NE(TypeOf(body_rhs), nullptr); ASSERT_NE(TypeOf(continuing_lhs), nullptr); ASSERT_NE(TypeOf(continuing_rhs), nullptr); EXPECT_TRUE(TypeOf(body_lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(body_rhs)->Is()); EXPECT_TRUE(TypeOf(continuing_lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(continuing_rhs)->Is()); EXPECT_EQ(BlockOf(body_lhs), body); EXPECT_EQ(BlockOf(body_rhs), body); EXPECT_EQ(BlockOf(continuing_lhs), continuing); EXPECT_EQ(BlockOf(continuing_rhs), continuing); } TEST_F(ResolverTest, Stmt_Return) { auto* cond = Expr(2); auto* ret = Return(cond); Func("test", {}, ty.i32(), {ret}, {}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(cond), nullptr); EXPECT_TRUE(TypeOf(cond)->Is()); } TEST_F(ResolverTest, Stmt_Return_WithoutValue) { auto* ret = Return(); WrapInFunction(ret); EXPECT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverTest, Stmt_Switch) { auto* v = Var("v", ty.f32()); auto* lhs = Expr("v"); auto* rhs = Expr(2.3f); auto* case_block = Block(Assign(lhs, rhs)); auto* stmt = Switch(Expr(2), Case(Literal(3), case_block), DefaultCase()); WrapInFunction(v, stmt); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(stmt->condition()), nullptr); ASSERT_NE(TypeOf(lhs), nullptr); ASSERT_NE(TypeOf(rhs), nullptr); EXPECT_TRUE(TypeOf(stmt->condition())->Is()); EXPECT_TRUE(TypeOf(lhs)->UnwrapAll()->Is()); EXPECT_TRUE(TypeOf(rhs)->Is()); EXPECT_EQ(BlockOf(lhs), case_block); EXPECT_EQ(BlockOf(rhs), case_block); } TEST_F(ResolverTest, Stmt_Call) { ast::VariableList params; Func("my_func", params, ty.f32(), {Return(0.0f)}, ast::DecorationList{}); auto* expr = Call("my_func"); auto* call = create(expr); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); EXPECT_TRUE(TypeOf(expr)->Is()); EXPECT_EQ(StmtOf(expr), call); } TEST_F(ResolverTest, Stmt_VariableDecl) { auto* var = Var("my_var", ty.i32(), ast::StorageClass::kNone, Expr(2)); auto* init = var->constructor(); auto* decl = Decl(var); WrapInFunction(decl); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(init), nullptr); EXPECT_TRUE(TypeOf(init)->Is()); } TEST_F(ResolverTest, Stmt_VariableDecl_Alias) { auto* my_int = ty.alias("MyInt", ty.i32()); AST().AddConstructedType(my_int); auto* var = Var("my_var", my_int, ast::StorageClass::kNone, Expr(2)); auto* init = var->constructor(); auto* decl = Decl(var); WrapInFunction(decl); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(init), nullptr); EXPECT_TRUE(TypeOf(init)->Is()); } TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScope) { auto* init = Expr(2); Global("my_var", ty.i32(), ast::StorageClass::kInput, init); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(init), nullptr); EXPECT_TRUE(TypeOf(init)->Is()); EXPECT_EQ(StmtOf(init), nullptr); } TEST_F(ResolverTest, Stmt_VariableDecl_OuterScopeAfterInnerScope) { // fn func_i32() { // { // var foo : i32 = 2; // var bar : i32 = foo; // } // var foo : f32 = 2.0; // var bar : f32 = foo; // } ast::VariableList params; // Declare i32 "foo" inside a block auto* foo_i32 = Var("foo", ty.i32(), ast::StorageClass::kNone, Expr(2)); auto* foo_i32_init = foo_i32->constructor(); auto* foo_i32_decl = Decl(foo_i32); // Reference "foo" inside the block auto* bar_i32 = Var("bar", ty.i32(), ast::StorageClass::kNone, Expr("foo")); auto* bar_i32_init = bar_i32->constructor(); auto* bar_i32_decl = Decl(bar_i32); auto* inner = Block(foo_i32_decl, bar_i32_decl); // Declare f32 "foo" at function scope auto* foo_f32 = Var("foo", ty.f32(), ast::StorageClass::kNone, Expr(2.f)); auto* foo_f32_init = foo_f32->constructor(); auto* foo_f32_decl = Decl(foo_f32); // Reference "foo" at function scope auto* bar_f32 = Var("bar", ty.f32(), ast::StorageClass::kNone, Expr("foo")); auto* bar_f32_init = bar_f32->constructor(); auto* bar_f32_decl = Decl(bar_f32); Func("func", params, ty.void_(), {inner, foo_f32_decl, bar_f32_decl}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(foo_i32_init), nullptr); EXPECT_TRUE(TypeOf(foo_i32_init)->Is()); ASSERT_NE(TypeOf(foo_f32_init), nullptr); EXPECT_TRUE(TypeOf(foo_f32_init)->Is()); ASSERT_NE(TypeOf(bar_i32_init), nullptr); EXPECT_TRUE(TypeOf(bar_i32_init)->UnwrapAll()->Is()); ASSERT_NE(TypeOf(bar_f32_init), nullptr); EXPECT_TRUE(TypeOf(bar_f32_init)->UnwrapAll()->Is()); EXPECT_EQ(StmtOf(foo_i32_init), foo_i32_decl); EXPECT_EQ(StmtOf(bar_i32_init), bar_i32_decl); EXPECT_EQ(StmtOf(foo_f32_init), foo_f32_decl); EXPECT_EQ(StmtOf(bar_f32_init), bar_f32_decl); EXPECT_TRUE(CheckVarUsers(foo_i32, {bar_i32->constructor()})); EXPECT_TRUE(CheckVarUsers(foo_f32, {bar_f32->constructor()})); ASSERT_NE(VarOf(bar_i32->constructor()), nullptr); EXPECT_EQ(VarOf(bar_i32->constructor())->Declaration(), foo_i32); ASSERT_NE(VarOf(bar_f32->constructor()), nullptr); EXPECT_EQ(VarOf(bar_f32->constructor())->Declaration(), foo_f32); } TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScopeAfterFunctionScope) { // fn func_i32() { // var foo : i32 = 2; // } // var foo : f32 = 2.0; // fn func_f32() { // var bar : f32 = foo; // } ast::VariableList params; // Declare i32 "foo" inside a function auto* fn_i32 = Var("foo", ty.i32(), ast::StorageClass::kNone, Expr(2)); auto* fn_i32_init = fn_i32->constructor(); auto* fn_i32_decl = Decl(fn_i32); Func("func_i32", params, ty.void_(), {fn_i32_decl}, ast::DecorationList{}); // Declare f32 "foo" at module scope auto* mod_f32 = Var("foo", ty.f32(), ast::StorageClass::kInput, Expr(2.f)); auto* mod_init = mod_f32->constructor(); AST().AddGlobalVariable(mod_f32); // Reference "foo" in another function auto* fn_f32 = Var("bar", ty.f32(), ast::StorageClass::kNone, Expr("foo")); auto* fn_f32_init = fn_f32->constructor(); auto* fn_f32_decl = Decl(fn_f32); Func("func_f32", params, ty.void_(), {fn_f32_decl}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mod_init), nullptr); EXPECT_TRUE(TypeOf(mod_init)->Is()); ASSERT_NE(TypeOf(fn_i32_init), nullptr); EXPECT_TRUE(TypeOf(fn_i32_init)->Is()); ASSERT_NE(TypeOf(fn_f32_init), nullptr); EXPECT_TRUE(TypeOf(fn_f32_init)->UnwrapAll()->Is()); EXPECT_EQ(StmtOf(fn_i32_init), fn_i32_decl); EXPECT_EQ(StmtOf(mod_init), nullptr); EXPECT_EQ(StmtOf(fn_f32_init), fn_f32_decl); EXPECT_TRUE(CheckVarUsers(fn_i32, {})); EXPECT_TRUE(CheckVarUsers(mod_f32, {fn_f32->constructor()})); ASSERT_NE(VarOf(fn_f32->constructor()), nullptr); EXPECT_EQ(VarOf(fn_f32->constructor())->Declaration(), mod_f32); } TEST_F(ResolverTest, Expr_ArrayAccessor_Array) { auto* idx = Expr(2); Global("my_var", ty.array(), ast::StorageClass::kPrivate); auto* acc = IndexAccessor("my_var", idx); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_ArrayAccessor_Alias_Array) { auto* aary = ty.alias("myarrty", ty.array()); AST().AddConstructedType(aary); Global("my_var", aary, ast::StorageClass::kPrivate); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_ArrayAccessor_Array_Constant) { GlobalConst("my_var", ty.array(), array()); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); EXPECT_TRUE(TypeOf(acc)->Is()) << TypeOf(acc)->type_name(); } TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix) { Global("my_var", ty.mat2x3(), ast::StorageClass::kInput); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); ASSERT_TRUE(ptr->type()->Is()); EXPECT_EQ(ptr->type()->As()->size(), 3u); } TEST_F(ResolverTest, Expr_ArrayAccessor_Matrix_BothDimensions) { Global("my_var", ty.mat2x3(), ast::StorageClass::kInput); auto* acc = IndexAccessor(IndexAccessor("my_var", 2), 1); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_ArrayAccessor_Vector) { Global("my_var", ty.vec3(), ast::StorageClass::kInput); auto* acc = IndexAccessor("my_var", 2); WrapInFunction(acc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(acc), nullptr); ASSERT_TRUE(TypeOf(acc)->Is()); auto* ptr = TypeOf(acc)->As(); EXPECT_TRUE(ptr->type()->Is()); } TEST_F(ResolverTest, Expr_Bitcast) { Global("name", ty.f32(), ast::StorageClass::kPrivate); auto* bitcast = create(ty.f32(), Expr("name")); WrapInFunction(bitcast); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(bitcast), nullptr); EXPECT_TRUE(TypeOf(bitcast)->Is()); } TEST_F(ResolverTest, Expr_Call) { ast::VariableList params; Func("my_func", params, ty.f32(), {Return(0.0f)}, ast::DecorationList{}); auto* call = Call("my_func"); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(call), nullptr); EXPECT_TRUE(TypeOf(call)->Is()); } TEST_F(ResolverTest, Expr_Call_InBinaryOp) { ast::VariableList params; Func("func", params, ty.f32(), {Return(0.0f)}, ast::DecorationList{}); auto* expr = Add(Call("func"), Call("func")); WrapInFunction(expr); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); EXPECT_TRUE(TypeOf(expr)->Is()); } TEST_F(ResolverTest, Expr_Call_WithParams) { ast::VariableList params; Func("my_func", params, ty.void_(), {}, ast::DecorationList{}); auto* param = Expr(2.4f); auto* call = Call("my_func", param); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(param), nullptr); EXPECT_TRUE(TypeOf(param)->Is()); } TEST_F(ResolverTest, Expr_Call_Intrinsic) { auto* call = Call("round", 2.4f); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(call), nullptr); EXPECT_TRUE(TypeOf(call)->Is()); } TEST_F(ResolverTest, Expr_Cast) { Global("name", ty.f32(), ast::StorageClass::kPrivate); auto* cast = Construct(ty.f32(), "name"); WrapInFunction(cast); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(cast), nullptr); EXPECT_TRUE(TypeOf(cast)->Is()); } TEST_F(ResolverTest, Expr_Constructor_Scalar) { auto* s = Expr(1.0f); WrapInFunction(s); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(s), nullptr); EXPECT_TRUE(TypeOf(s)->Is()); } TEST_F(ResolverTest, Expr_Constructor_Type_Vec2) { auto* tc = vec2(1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 2u); } TEST_F(ResolverTest, Expr_Constructor_Type_Vec3) { auto* tc = vec3(1.0f, 1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 3u); } TEST_F(ResolverTest, Expr_Constructor_Type_Vec4) { auto* tc = vec4(1.0f, 1.0f, 1.0f, 1.0f); WrapInFunction(tc); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(tc), nullptr); ASSERT_TRUE(TypeOf(tc)->Is()); EXPECT_TRUE(TypeOf(tc)->As()->type()->Is()); EXPECT_EQ(TypeOf(tc)->As()->size(), 4u); } TEST_F(ResolverTest, Expr_Identifier_GlobalVariable) { auto* my_var = Global("my_var", ty.f32(), ast::StorageClass::kInput); auto* ident = Expr("my_var"); WrapInFunction(ident); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(ident), nullptr); EXPECT_TRUE(TypeOf(ident)->Is()); EXPECT_TRUE(TypeOf(ident)->As()->type()->Is()); EXPECT_TRUE(CheckVarUsers(my_var, {ident})); ASSERT_NE(VarOf(ident), nullptr); EXPECT_EQ(VarOf(ident)->Declaration(), my_var); } TEST_F(ResolverTest, Expr_Identifier_GlobalConstant) { auto* my_var = GlobalConst("my_var", ty.f32(), Construct(ty.f32())); auto* ident = Expr("my_var"); WrapInFunction(ident); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(ident), nullptr); EXPECT_TRUE(TypeOf(ident)->Is()); EXPECT_TRUE(CheckVarUsers(my_var, {ident})); ASSERT_NE(VarOf(ident), nullptr); EXPECT_EQ(VarOf(ident)->Declaration(), my_var); } TEST_F(ResolverTest, Expr_Identifier_FunctionVariable_Const) { auto* my_var_a = Expr("my_var"); auto* var = Const("my_var", ty.f32(), Construct(ty.f32())); auto* decl = Decl(Var("b", ty.f32(), ast::StorageClass::kNone, my_var_a)); Func("my_func", ast::VariableList{}, ty.void_(), { Decl(var), decl, }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(my_var_a), nullptr); EXPECT_TRUE(TypeOf(my_var_a)->Is()); EXPECT_EQ(StmtOf(my_var_a), decl); EXPECT_TRUE(CheckVarUsers(var, {my_var_a})); ASSERT_NE(VarOf(my_var_a), nullptr); EXPECT_EQ(VarOf(my_var_a)->Declaration(), var); } TEST_F(ResolverTest, Expr_Identifier_FunctionVariable) { auto* my_var_a = Expr("my_var"); auto* my_var_b = Expr("my_var"); auto* assign = Assign(my_var_a, my_var_b); auto* var = Var("my_var", ty.f32(), ast::StorageClass::kNone, nullptr, { create(0), create(0), }); Func("my_func", ast::VariableList{}, ty.void_(), { Decl(var), assign, }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(my_var_a), nullptr); EXPECT_TRUE(TypeOf(my_var_a)->Is()); EXPECT_TRUE(TypeOf(my_var_a)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_a), assign); ASSERT_NE(TypeOf(my_var_b), nullptr); EXPECT_TRUE(TypeOf(my_var_b)->Is()); EXPECT_TRUE(TypeOf(my_var_b)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_b), assign); EXPECT_TRUE(CheckVarUsers(var, {my_var_a, my_var_b})); ASSERT_NE(VarOf(my_var_a), nullptr); EXPECT_EQ(VarOf(my_var_a)->Declaration(), var); ASSERT_NE(VarOf(my_var_b), nullptr); EXPECT_EQ(VarOf(my_var_b)->Declaration(), var); } TEST_F(ResolverTest, Expr_Identifier_Function_Ptr) { auto* my_var_a = Expr("my_var"); auto* my_var_b = Expr("my_var"); auto* assign = Assign(my_var_a, my_var_b); Func("my_func", ast::VariableList{}, ty.void_(), { Decl(Var("my_var", ty.pointer(ast::StorageClass::kFunction))), assign, }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(my_var_a), nullptr); EXPECT_TRUE(TypeOf(my_var_a)->Is()); EXPECT_TRUE(TypeOf(my_var_a)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_a), assign); ASSERT_NE(TypeOf(my_var_b), nullptr); EXPECT_TRUE(TypeOf(my_var_b)->Is()); EXPECT_TRUE(TypeOf(my_var_b)->As()->type()->Is()); EXPECT_EQ(StmtOf(my_var_b), assign); } TEST_F(ResolverTest, Expr_Call_Function) { Func("my_func", ast::VariableList{}, ty.f32(), {Return(0.0f)}, ast::DecorationList{}); auto* call = Call("my_func"); WrapInFunction(call); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(call), nullptr); EXPECT_TRUE(TypeOf(call)->Is()); } TEST_F(ResolverTest, Expr_Identifier_Unknown) { auto* a = Expr("a"); WrapInFunction(a); EXPECT_FALSE(r()->Resolve()); } TEST_F(ResolverTest, Function_Parameters) { auto* param_a = Param("a", ty.f32()); auto* param_b = Param("b", ty.i32()); auto* param_c = Param("c", ty.u32()); auto* func = Func("my_func", ast::VariableList{ param_a, param_b, param_c, }, ty.void_(), {}); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->Parameters().size(), 3u); EXPECT_EQ(func_sem->Parameters()[0]->Type(), ty.f32()); EXPECT_EQ(func_sem->Parameters()[1]->Type(), ty.i32()); EXPECT_EQ(func_sem->Parameters()[2]->Type(), ty.u32()); EXPECT_EQ(func_sem->Parameters()[0]->Declaration(), param_a); EXPECT_EQ(func_sem->Parameters()[1]->Declaration(), param_b); EXPECT_EQ(func_sem->Parameters()[2]->Declaration(), param_c); EXPECT_TRUE(func_sem->ReturnType()->Is()); } TEST_F(ResolverTest, Function_RegisterInputOutputVariables) { auto* s = Structure("S", {Member("m", ty.u32())}, {create()}); auto* a = ty.access(ast::AccessControl::kReadOnly, s); auto* in_var = Global("in_var", ty.f32(), ast::StorageClass::kInput); auto* out_var = Global("out_var", ty.f32(), ast::StorageClass::kOutput); auto* sb_var = Global("sb_var", a, ast::StorageClass::kStorage, nullptr, { create(0), create(0), }); auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup); auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate); auto* func = Func("my_func", ast::VariableList{}, ty.void_(), { Assign("out_var", "in_var"), Assign("wg_var", "wg_var"), Assign("sb_var", "sb_var"), Assign("priv_var", "priv_var"), }); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->Parameters().size(), 0u); EXPECT_TRUE(func_sem->ReturnType()->Is()); const auto& vars = func_sem->ReferencedModuleVariables(); ASSERT_EQ(vars.size(), 5u); EXPECT_EQ(vars[0]->Declaration(), out_var); EXPECT_EQ(vars[1]->Declaration(), in_var); EXPECT_EQ(vars[2]->Declaration(), wg_var); EXPECT_EQ(vars[3]->Declaration(), sb_var); EXPECT_EQ(vars[4]->Declaration(), priv_var); } TEST_F(ResolverTest, Function_RegisterInputOutputVariables_SubFunction) { auto* s = Structure("S", {Member("m", ty.u32())}, {create()}); auto* a = ty.access(ast::AccessControl::kReadOnly, s); auto* in_var = Global("in_var", ty.f32(), ast::StorageClass::kInput); auto* out_var = Global("out_var", ty.f32(), ast::StorageClass::kOutput); auto* sb_var = Global("sb_var", a, ast::StorageClass::kStorage, nullptr, { create(0), create(0), }); auto* wg_var = Global("wg_var", ty.f32(), ast::StorageClass::kWorkgroup); auto* priv_var = Global("priv_var", ty.f32(), ast::StorageClass::kPrivate); Func("my_func", ast::VariableList{}, ty.f32(), {Assign("out_var", "in_var"), Assign("wg_var", "wg_var"), Assign("sb_var", "sb_var"), Assign("priv_var", "priv_var"), Return(0.0f)}, ast::DecorationList{}); auto* func2 = Func("func", ast::VariableList{}, ty.void_(), { Assign("out_var", Call("my_func")), }, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func2_sem = Sem().Get(func2); ASSERT_NE(func2_sem, nullptr); EXPECT_EQ(func2_sem->Parameters().size(), 0u); const auto& vars = func2_sem->ReferencedModuleVariables(); ASSERT_EQ(vars.size(), 5u); EXPECT_EQ(vars[0]->Declaration(), out_var); EXPECT_EQ(vars[1]->Declaration(), in_var); EXPECT_EQ(vars[2]->Declaration(), wg_var); EXPECT_EQ(vars[3]->Declaration(), sb_var); EXPECT_EQ(vars[4]->Declaration(), priv_var); } TEST_F(ResolverTest, Function_NotRegisterFunctionVariable) { auto* func = Func("my_func", ast::VariableList{}, ty.void_(), { Decl(Var("var", ty.f32())), Assign("var", 1.f), }); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->ReferencedModuleVariables().size(), 0u); EXPECT_TRUE(func_sem->ReturnType()->Is()); } TEST_F(ResolverTest, Function_ReturnStatements) { auto* var = Var("foo", ty.f32()); auto* ret_1 = Return(1.f); auto* ret_foo = Return("foo"); auto* func = Func("my_func", ast::VariableList{}, ty.f32(), { Decl(var), If(true, Block(ret_1)), ret_foo, }); EXPECT_TRUE(r()->Resolve()) << r()->error(); auto* func_sem = Sem().Get(func); ASSERT_NE(func_sem, nullptr); EXPECT_EQ(func_sem->Parameters().size(), 0u); EXPECT_EQ(func_sem->ReturnStatements().size(), 2u); EXPECT_EQ(func_sem->ReturnStatements()[0], ret_1); EXPECT_EQ(func_sem->ReturnStatements()[1], ret_foo); EXPECT_TRUE(func_sem->ReturnType()->Is()); } TEST_F(ResolverTest, Expr_MemberAccessor_Struct) { auto* st = Structure("S", {Member("first_member", ty.i32()), Member("second_member", ty.f32())}); Global("my_struct", st, ast::StorageClass::kInput); auto* mem = MemberAccessor("my_struct", "second_member"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); auto* ptr = TypeOf(mem)->As(); EXPECT_TRUE(ptr->type()->Is()); auto* sma = Sem().Get(mem)->As(); ASSERT_NE(sma, nullptr); EXPECT_EQ(sma->Member()->Type(), ty.f32()); EXPECT_EQ(sma->Member()->Index(), 1u); EXPECT_EQ(sma->Member()->Declaration()->symbol(), Symbols().Get("second_member")); } TEST_F(ResolverTest, Expr_MemberAccessor_Struct_Alias) { auto* st = Structure("S", {Member("first_member", ty.i32()), Member("second_member", ty.f32())}); auto* alias = ty.alias("alias", st); AST().AddConstructedType(alias); Global("my_struct", alias, ast::StorageClass::kInput); auto* mem = MemberAccessor("my_struct", "second_member"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); auto* ptr = TypeOf(mem)->As(); EXPECT_TRUE(ptr->type()->Is()); auto* sma = Sem().Get(mem)->As(); ASSERT_NE(sma, nullptr); EXPECT_EQ(sma->Member()->Type(), ty.f32()); EXPECT_EQ(sma->Member()->Index(), 1u); } TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle) { Global("my_vec", ty.vec3(), ast::StorageClass::kInput); auto* mem = MemberAccessor("my_vec", "xzyw"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); EXPECT_TRUE(TypeOf(mem)->As()->type()->Is()); EXPECT_EQ(TypeOf(mem)->As()->size(), 4u); ASSERT_TRUE(Sem().Get(mem)->Is()); EXPECT_THAT(Sem().Get(mem)->As()->Indices(), ElementsAre(0, 2, 1, 3)); } TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle_SingleElement) { Global("my_vec", ty.vec3(), ast::StorageClass::kInput); auto* mem = MemberAccessor("my_vec", "b"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); auto* ptr = TypeOf(mem)->As(); ASSERT_TRUE(ptr->type()->Is()); ASSERT_TRUE(Sem().Get(mem)->Is()); EXPECT_THAT(Sem().Get(mem)->As()->Indices(), ElementsAre(2)); } TEST_F(ResolverTest, Expr_Accessor_MultiLevel) { // struct b { // vec4 foo // } // struct A { // vec3 mem // } // var c : A // c.mem[0].foo.yx // -> vec2 // // MemberAccessor{ // MemberAccessor{ // ArrayAccessor{ // MemberAccessor{ // Identifier{c} // Identifier{mem} // } // ScalarConstructor{0} // } // Identifier{foo} // } // Identifier{yx} // } // auto* stB = Structure("B", {Member("foo", ty.vec4())}); auto* stA = Structure("A", {Member("mem", ty.vec(stB, 3))}); Global("c", stA, ast::StorageClass::kInput); auto* mem = MemberAccessor( MemberAccessor(IndexAccessor(MemberAccessor("c", "mem"), 0), "foo"), "yx"); WrapInFunction(mem); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(mem), nullptr); ASSERT_TRUE(TypeOf(mem)->Is()); EXPECT_TRUE(TypeOf(mem)->As()->type()->Is()); EXPECT_EQ(TypeOf(mem)->As()->size(), 2u); ASSERT_TRUE(Sem().Get(mem)->Is()); } TEST_F(ResolverTest, Expr_MemberAccessor_InBinaryOp) { auto* st = Structure("S", {Member("first_member", ty.f32()), Member("second_member", ty.f32())}); Global("my_struct", st, ast::StorageClass::kInput); auto* expr = Add(MemberAccessor("my_struct", "first_member"), MemberAccessor("my_struct", "second_member")); WrapInFunction(expr); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); EXPECT_TRUE(TypeOf(expr)->Is()); } namespace ExprBinaryTest { struct Params { ast::BinaryOp op; create_ast_type_func_ptr create_lhs_type; create_ast_type_func_ptr create_rhs_type; create_sem_type_func_ptr create_result_type; }; static constexpr create_ast_type_func_ptr all_create_type_funcs[] = { ast_bool, ast_u32, ast_i32, ast_f32, ast_vec3, ast_vec3, ast_vec3, ast_vec3, ast_mat3x3, ast_mat3x3, ast_mat3x3}; // A list of all valid test cases for 'lhs op rhs', except that for vecN and // matNxN, we only test N=3. static constexpr Params all_valid_cases[] = { // Logical expressions // https://gpuweb.github.io/gpuweb/wgsl.html#logical-expr // Binary logical expressions Params{Op::kLogicalAnd, ast_bool, ast_bool, sem_bool}, Params{Op::kLogicalOr, ast_bool, ast_bool, sem_bool}, Params{Op::kAnd, ast_bool, ast_bool, sem_bool}, Params{Op::kOr, ast_bool, ast_bool, sem_bool}, Params{Op::kAnd, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kOr, ast_vec3, ast_vec3, sem_vec3}, // Arithmetic expressions // https://gpuweb.github.io/gpuweb/wgsl.html#arithmetic-expr // Binary arithmetic expressions over scalars Params{Op::kAdd, ast_i32, ast_i32, sem_i32}, Params{Op::kSubtract, ast_i32, ast_i32, sem_i32}, Params{Op::kMultiply, ast_i32, ast_i32, sem_i32}, Params{Op::kDivide, ast_i32, ast_i32, sem_i32}, Params{Op::kModulo, ast_i32, ast_i32, sem_i32}, Params{Op::kAdd, ast_u32, ast_u32, sem_u32}, Params{Op::kSubtract, ast_u32, ast_u32, sem_u32}, Params{Op::kMultiply, ast_u32, ast_u32, sem_u32}, Params{Op::kDivide, ast_u32, ast_u32, sem_u32}, Params{Op::kModulo, ast_u32, ast_u32, sem_u32}, Params{Op::kAdd, ast_f32, ast_f32, sem_f32}, Params{Op::kSubtract, ast_f32, ast_f32, sem_f32}, Params{Op::kMultiply, ast_f32, ast_f32, sem_f32}, Params{Op::kDivide, ast_f32, ast_f32, sem_f32}, Params{Op::kModulo, ast_f32, ast_f32, sem_f32}, // Binary arithmetic expressions over vectors Params{Op::kAdd, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kSubtract, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kMultiply, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kDivide, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kModulo, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kAdd, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kSubtract, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kMultiply, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kDivide, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kModulo, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kAdd, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kSubtract, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kMultiply, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kDivide, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kModulo, ast_vec3, ast_vec3, sem_vec3}, // Binary arithmetic expressions with mixed scalar, vector, and matrix // operands Params{Op::kMultiply, ast_vec3, ast_f32, sem_vec3}, Params{Op::kMultiply, ast_f32, ast_vec3, sem_vec3}, Params{Op::kMultiply, ast_mat3x3, ast_f32, sem_mat3x3}, Params{Op::kMultiply, ast_f32, ast_mat3x3, sem_mat3x3}, Params{Op::kMultiply, ast_vec3, ast_mat3x3, sem_vec3}, Params{Op::kMultiply, ast_mat3x3, ast_vec3, sem_vec3}, Params{Op::kMultiply, ast_mat3x3, ast_mat3x3, sem_mat3x3}, // Comparison expressions // https://gpuweb.github.io/gpuweb/wgsl.html#comparison-expr // Comparisons over scalars Params{Op::kEqual, ast_bool, ast_bool, sem_bool}, Params{Op::kNotEqual, ast_bool, ast_bool, sem_bool}, Params{Op::kEqual, ast_i32, ast_i32, sem_bool}, Params{Op::kNotEqual, ast_i32, ast_i32, sem_bool}, Params{Op::kLessThan, ast_i32, ast_i32, sem_bool}, Params{Op::kLessThanEqual, ast_i32, ast_i32, sem_bool}, Params{Op::kGreaterThan, ast_i32, ast_i32, sem_bool}, Params{Op::kGreaterThanEqual, ast_i32, ast_i32, sem_bool}, Params{Op::kEqual, ast_u32, ast_u32, sem_bool}, Params{Op::kNotEqual, ast_u32, ast_u32, sem_bool}, Params{Op::kLessThan, ast_u32, ast_u32, sem_bool}, Params{Op::kLessThanEqual, ast_u32, ast_u32, sem_bool}, Params{Op::kGreaterThan, ast_u32, ast_u32, sem_bool}, Params{Op::kGreaterThanEqual, ast_u32, ast_u32, sem_bool}, Params{Op::kEqual, ast_f32, ast_f32, sem_bool}, Params{Op::kNotEqual, ast_f32, ast_f32, sem_bool}, Params{Op::kLessThan, ast_f32, ast_f32, sem_bool}, Params{Op::kLessThanEqual, ast_f32, ast_f32, sem_bool}, Params{Op::kGreaterThan, ast_f32, ast_f32, sem_bool}, Params{Op::kGreaterThanEqual, ast_f32, ast_f32, sem_bool}, // Comparisons over vectors Params{Op::kEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kNotEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kNotEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kLessThan, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kLessThanEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kGreaterThan, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kGreaterThanEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kNotEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kLessThan, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kLessThanEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kGreaterThan, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kGreaterThanEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kNotEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kLessThan, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kLessThanEqual, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kGreaterThan, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kGreaterThanEqual, ast_vec3, ast_vec3, sem_vec3}, // Bit expressions // https://gpuweb.github.io/gpuweb/wgsl.html#bit-expr // Binary bitwise operations Params{Op::kOr, ast_i32, ast_i32, sem_i32}, Params{Op::kAnd, ast_i32, ast_i32, sem_i32}, Params{Op::kXor, ast_i32, ast_i32, sem_i32}, Params{Op::kOr, ast_u32, ast_u32, sem_u32}, Params{Op::kAnd, ast_u32, ast_u32, sem_u32}, Params{Op::kXor, ast_u32, ast_u32, sem_u32}, // Bit shift expressions Params{Op::kShiftLeft, ast_i32, ast_u32, sem_i32}, Params{Op::kShiftLeft, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kShiftLeft, ast_u32, ast_u32, sem_u32}, Params{Op::kShiftLeft, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kShiftRight, ast_i32, ast_u32, sem_i32}, Params{Op::kShiftRight, ast_vec3, ast_vec3, sem_vec3}, Params{Op::kShiftRight, ast_u32, ast_u32, sem_u32}, Params{Op::kShiftRight, ast_vec3, ast_vec3, sem_vec3}}; using Expr_Binary_Test_Valid = ResolverTestWithParam; TEST_P(Expr_Binary_Test_Valid, All) { auto& params = GetParam(); auto* lhs_type = params.create_lhs_type(ty); auto* rhs_type = params.create_rhs_type(ty); auto* result_type = params.create_result_type(ty); std::stringstream ss; ss << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type); SCOPED_TRACE(ss.str()); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = create(params.op, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); ASSERT_TRUE(TypeOf(expr) == result_type); } INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Valid, testing::ValuesIn(all_valid_cases)); enum class BinaryExprSide { Left, Right, Both }; using Expr_Binary_Test_WithAlias_Valid = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_WithAlias_Valid, All) { const Params& params = std::get<0>(GetParam()); BinaryExprSide side = std::get<1>(GetParam()); auto* lhs_type = params.create_lhs_type(ty); auto* rhs_type = params.create_rhs_type(ty); std::stringstream ss; ss << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type); // For vectors and matrices, wrap the sub type in an alias auto make_alias = [this](ast::Type* type) -> ast::Type* { if (auto* v = type->As()) { auto* alias = ty.alias(Symbols().New(), v->type()); AST().AddConstructedType(alias); return ty.vec(alias, v->size()); } if (auto* m = type->As()) { auto* alias = ty.alias(Symbols().New(), m->type()); AST().AddConstructedType(alias); return ty.mat(alias, m->columns(), m->rows()); } auto* alias = ty.alias(Symbols().New(), type); AST().AddConstructedType(alias); return ty.type_name(alias->name()); }; // Wrap in alias if (side == BinaryExprSide::Left || side == BinaryExprSide::Both) { lhs_type = make_alias(lhs_type); } if (side == BinaryExprSide::Right || side == BinaryExprSide::Both) { rhs_type = make_alias(rhs_type); } ss << ", After aliasing: " << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type); SCOPED_TRACE(ss.str()); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = create(params.op, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(expr), nullptr); // TODO(amaiorano): Bring this back once we have a way to get the canonical // type // auto* *result_type = params.create_result_type(ty); // ASSERT_TRUE(TypeOf(expr) == result_type); } INSTANTIATE_TEST_SUITE_P( ResolverTest, Expr_Binary_Test_WithAlias_Valid, testing::Combine(testing::ValuesIn(all_valid_cases), testing::Values(BinaryExprSide::Left, BinaryExprSide::Right, BinaryExprSide::Both))); using Expr_Binary_Test_Invalid = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_Invalid, All) { const Params& params = std::get<0>(GetParam()); auto& create_type_func = std::get<1>(GetParam()); // Currently, for most operations, for a given lhs type, there is exactly one // rhs type allowed. The only exception is for multiplication, which allows // any permutation of f32, vecN, and matNxN. We are fed valid inputs // only via `params`, and all possible types via `create_type_func`, so we // test invalid combinations by testing every other rhs type, modulo // exceptions. // Skip valid rhs type if (params.create_rhs_type == create_type_func) { return; } auto* lhs_type = params.create_lhs_type(ty); auto* rhs_type = create_type_func(ty); // Skip exceptions: multiplication of f32, vecN, and matNxN if (params.op == Op::kMultiply && lhs_type->is_float_scalar_or_vector_or_matrix() && rhs_type->is_float_scalar_or_vector_or_matrix()) { return; } std::stringstream ss; ss << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type); SCOPED_TRACE(ss.str()); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = create(Source{{12, 34}}, params.op, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); ASSERT_FALSE(r()->Resolve()); ASSERT_EQ(r()->error(), "12:34 error: Binary expression operand types are invalid for " "this operation: " + FriendlyName(lhs_type) + " " + ast::FriendlyName(expr->op()) + " " + FriendlyName(rhs_type)); } INSTANTIATE_TEST_SUITE_P( ResolverTest, Expr_Binary_Test_Invalid, testing::Combine(testing::ValuesIn(all_valid_cases), testing::ValuesIn(all_create_type_funcs))); using Expr_Binary_Test_Invalid_VectorMatrixMultiply = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_Invalid_VectorMatrixMultiply, All) { bool vec_by_mat = std::get<0>(GetParam()); uint32_t vec_size = std::get<1>(GetParam()); uint32_t mat_rows = std::get<2>(GetParam()); uint32_t mat_cols = std::get<3>(GetParam()); typ::Type lhs_type; typ::Type rhs_type; typ::Type result_type; bool is_valid_expr; if (vec_by_mat) { lhs_type = ty.vec(vec_size); rhs_type = ty.mat(mat_cols, mat_rows); result_type = ty.vec(mat_cols); is_valid_expr = vec_size == mat_rows; } else { lhs_type = ty.mat(mat_cols, mat_rows); rhs_type = ty.vec(vec_size); result_type = ty.vec(mat_rows); is_valid_expr = vec_size == mat_cols; } Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); if (is_valid_expr) { ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(expr) == result_type); } else { ASSERT_FALSE(r()->Resolve()); ASSERT_EQ(r()->error(), "12:34 error: Binary expression operand types are invalid for " "this operation: " + FriendlyName(lhs_type) + " " + ast::FriendlyName(expr->op()) + " " + FriendlyName(rhs_type)); } } auto all_dimension_values = testing::Values(2u, 3u, 4u); INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Invalid_VectorMatrixMultiply, testing::Combine(testing::Values(true, false), all_dimension_values, all_dimension_values, all_dimension_values)); using Expr_Binary_Test_Invalid_MatrixMatrixMultiply = ResolverTestWithParam>; TEST_P(Expr_Binary_Test_Invalid_MatrixMatrixMultiply, All) { uint32_t lhs_mat_rows = std::get<0>(GetParam()); uint32_t lhs_mat_cols = std::get<1>(GetParam()); uint32_t rhs_mat_rows = std::get<2>(GetParam()); uint32_t rhs_mat_cols = std::get<3>(GetParam()); auto lhs_type = ty.mat(lhs_mat_cols, lhs_mat_rows); auto rhs_type = ty.mat(rhs_mat_cols, rhs_mat_rows); auto result_type = ty.mat(rhs_mat_cols, lhs_mat_rows); Global("lhs", lhs_type, ast::StorageClass::kInput); Global("rhs", rhs_type, ast::StorageClass::kInput); auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs")); WrapInFunction(expr); bool is_valid_expr = lhs_mat_cols == rhs_mat_rows; if (is_valid_expr) { ASSERT_TRUE(r()->Resolve()) << r()->error(); ASSERT_TRUE(TypeOf(expr) == result_type); } else { ASSERT_FALSE(r()->Resolve()); ASSERT_EQ(r()->error(), "12:34 error: Binary expression operand types are invalid for " "this operation: " + FriendlyName(lhs_type) + " " + ast::FriendlyName(expr->op()) + " " + FriendlyName(rhs_type)); } } INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Invalid_MatrixMatrixMultiply, testing::Combine(all_dimension_values, all_dimension_values, all_dimension_values, all_dimension_values)); } // namespace ExprBinaryTest using UnaryOpExpressionTest = ResolverTestWithParam; TEST_P(UnaryOpExpressionTest, Expr_UnaryOp) { auto op = GetParam(); Global("ident", ty.vec4(), ast::StorageClass::kInput); auto* der = create(op, Expr("ident")); WrapInFunction(der); EXPECT_TRUE(r()->Resolve()) << r()->error(); ASSERT_NE(TypeOf(der), nullptr); ASSERT_TRUE(TypeOf(der)->Is()); EXPECT_TRUE(TypeOf(der)->As()->type()->Is()); EXPECT_EQ(TypeOf(der)->As()->size(), 4u); } INSTANTIATE_TEST_SUITE_P(ResolverTest, UnaryOpExpressionTest, testing::Values(ast::UnaryOp::kNegation, ast::UnaryOp::kNot)); TEST_F(ResolverTest, StorageClass_SetsIfMissing) { auto* var = Var("var", ty.i32(), ast::StorageClass::kNone, nullptr, { create(0), create(0), }); auto* stmt = Decl(var); Func("func", ast::VariableList{}, ty.void_(), {stmt}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kFunction); } TEST_F(ResolverTest, StorageClass_SetForSampler) { auto t = ty.sampler(ast::SamplerKind::kSampler); auto* var = Global("var", t, ast::StorageClass::kNone, nullptr, { create(0), create(0), }); EXPECT_TRUE(r()->Resolve()) << r()->error(); EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kUniformConstant); } TEST_F(ResolverTest, StorageClass_SetForTexture) { auto t = ty.sampled_texture(ast::TextureDimension::k1d, ty.f32()); auto* ac = ty.access(ast::AccessControl::kReadOnly, t); auto* var = Global("var", ac, ast::StorageClass::kNone, nullptr, { create(0), create(0), }); EXPECT_TRUE(r()->Resolve()) << r()->error(); EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kUniformConstant); } TEST_F(ResolverTest, StorageClass_DoesNotSetOnConst) { auto* var = Const("var", ty.i32(), Construct(ty.i32())); auto* stmt = Decl(var); Func("func", ast::VariableList{}, ty.void_(), {stmt}, ast::DecorationList{}); EXPECT_TRUE(r()->Resolve()) << r()->error(); EXPECT_EQ(Sem().Get(var)->StorageClass(), ast::StorageClass::kNone); } TEST_F(ResolverTest, Function_EntryPoints_StageDecoration) { // fn b() {} // fn c() { b(); } // fn a() { c(); } // fn ep_1() { a(); b(); } // fn ep_2() { c();} // // c -> {ep_1, ep_2} // a -> {ep_1} // b -> {ep_1, ep_2} // ep_1 -> {} // ep_2 -> {} Global("first", ty.f32(), ast::StorageClass::kPrivate); Global("second", ty.f32(), ast::StorageClass::kPrivate); Global("call_a", ty.f32(), ast::StorageClass::kPrivate); Global("call_b", ty.f32(), ast::StorageClass::kPrivate); Global("call_c", ty.f32(), ast::StorageClass::kPrivate); ast::VariableList params; auto* func_b = Func("b", params, ty.f32(), {Return(0.0f)}, ast::DecorationList{}); auto* func_c = Func("c", params, ty.f32(), {Assign("second", Call("b")), Return(0.0f)}, ast::DecorationList{}); auto* func_a = Func("a", params, ty.f32(), {Assign("first", Call("c")), Return(0.0f)}, ast::DecorationList{}); auto* ep_1 = Func("ep_1", params, ty.void_(), { Assign("call_a", Call("a")), Assign("call_b", Call("b")), }, ast::DecorationList{ Stage(ast::PipelineStage::kCompute), }); auto* ep_2 = Func("ep_2", params, ty.void_(), { Assign("call_c", Call("c")), }, ast::DecorationList{ Stage(ast::PipelineStage::kCompute), }); ASSERT_TRUE(r()->Resolve()) << r()->error(); auto* func_b_sem = Sem().Get(func_b); auto* func_a_sem = Sem().Get(func_a); auto* func_c_sem = Sem().Get(func_c); auto* ep_1_sem = Sem().Get(ep_1); auto* ep_2_sem = Sem().Get(ep_2); ASSERT_NE(func_b_sem, nullptr); ASSERT_NE(func_a_sem, nullptr); ASSERT_NE(func_c_sem, nullptr); ASSERT_NE(ep_1_sem, nullptr); ASSERT_NE(ep_2_sem, nullptr); EXPECT_EQ(func_b_sem->Parameters().size(), 0u); EXPECT_EQ(func_a_sem->Parameters().size(), 0u); EXPECT_EQ(func_c_sem->Parameters().size(), 0u); const auto& b_eps = func_b_sem->AncestorEntryPoints(); ASSERT_EQ(2u, b_eps.size()); EXPECT_EQ(Symbols().Register("ep_1"), b_eps[0]); EXPECT_EQ(Symbols().Register("ep_2"), b_eps[1]); const auto& a_eps = func_a_sem->AncestorEntryPoints(); ASSERT_EQ(1u, a_eps.size()); EXPECT_EQ(Symbols().Register("ep_1"), a_eps[0]); const auto& c_eps = func_c_sem->AncestorEntryPoints(); ASSERT_EQ(2u, c_eps.size()); EXPECT_EQ(Symbols().Register("ep_1"), c_eps[0]); EXPECT_EQ(Symbols().Register("ep_2"), c_eps[1]); EXPECT_TRUE(ep_1_sem->AncestorEntryPoints().empty()); EXPECT_TRUE(ep_2_sem->AncestorEntryPoints().empty()); } // Check for linear-time traversal of functions reachable from entry points. // See: crbug.com/tint/245 TEST_F(ResolverTest, Function_EntryPoints_LinearTime) { // fn lNa() { } // fn lNb() { } // ... // fn l2a() { l3a(); l3b(); } // fn l2b() { l3a(); l3b(); } // fn l1a() { l2a(); l2b(); } // fn l1b() { l2a(); l2b(); } // fn main() { l1a(); l1b(); } static constexpr int levels = 64; auto fn_a = [](int level) { return "l" + std::to_string(level + 1) + "a"; }; auto fn_b = [](int level) { return "l" + std::to_string(level + 1) + "b"; }; Func(fn_a(levels), {}, ty.void_(), {}, {}); Func(fn_b(levels), {}, ty.void_(), {}, {}); for (int i = levels - 1; i >= 0; i--) { Func(fn_a(i), {}, ty.void_(), { create(Call(fn_a(i + 1))), create(Call(fn_b(i + 1))), }, {}); Func(fn_b(i), {}, ty.void_(), { create(Call(fn_a(i + 1))), create(Call(fn_b(i + 1))), }, {}); } Func("main", {}, ty.void_(), { create(Call(fn_a(0))), create(Call(fn_b(0))), }, { Stage(ast::PipelineStage::kCompute), }); ASSERT_TRUE(r()->Resolve()) << r()->error(); } // Test for crbug.com/tint/728 TEST_F(ResolverTest, ASTNodesAreReached) { Structure("A", {Member("x", ty.array(4))}); Structure("B", {Member("x", ty.array(4))}); ASSERT_TRUE(r()->Resolve()) << r()->error(); } TEST_F(ResolverTest, ASTNodeNotReached) { EXPECT_FATAL_FAILURE( { ProgramBuilder builder; builder.Expr("1"); Resolver(&builder).Resolve(); }, "internal compiler error: AST node 'tint::ast::IdentifierExpression' was " "not reached by the resolver"); } TEST_F(ResolverTest, ASTNodeReachedTwice) { EXPECT_FATAL_FAILURE( { ProgramBuilder builder; auto* expr = builder.Expr("1"); auto* usesExprTwice = builder.Add(expr, expr); builder.Global("g", builder.ty.i32(), ast::StorageClass::kPrivate, usesExprTwice); Resolver(&builder).Resolve(); }, "internal compiler error: AST node 'tint::ast::IdentifierExpression' was " "encountered twice in the same AST of a Program"); } } // namespace } // namespace resolver } // namespace tint