// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/type_determiner.h" #include #include #include #include "src/ast/array_accessor_expression.h" #include "src/ast/assignment_statement.h" #include "src/ast/binary_expression.h" #include "src/ast/bitcast_expression.h" #include "src/ast/block_statement.h" #include "src/ast/break_statement.h" #include "src/ast/call_expression.h" #include "src/ast/call_statement.h" #include "src/ast/case_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/discard_statement.h" #include "src/ast/else_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/identifier_expression.h" #include "src/ast/if_statement.h" #include "src/ast/loop_statement.h" #include "src/ast/member_accessor_expression.h" #include "src/ast/return_statement.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/switch_statement.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/program_builder.h" #include "src/semantic/call.h" #include "src/semantic/expression.h" #include "src/semantic/function.h" #include "src/semantic/intrinsic.h" #include "src/semantic/variable.h" #include "src/type/array_type.h" #include "src/type/bool_type.h" #include "src/type/depth_texture_type.h" #include "src/type/f32_type.h" #include "src/type/i32_type.h" #include "src/type/matrix_type.h" #include "src/type/multisampled_texture_type.h" #include "src/type/pointer_type.h" #include "src/type/sampled_texture_type.h" #include "src/type/storage_texture_type.h" #include "src/type/struct_type.h" #include "src/type/texture_type.h" #include "src/type/u32_type.h" #include "src/type/vector_type.h" #include "src/type/void_type.h" namespace tint { TypeDeterminer::TypeDeterminer(ProgramBuilder* builder) : builder_(builder) {} TypeDeterminer::~TypeDeterminer() = default; diag::List TypeDeterminer::Run(Program* program) { ProgramBuilder builder = program->CloneAsBuilder(); TypeDeterminer td(&builder); if (!td.Determine()) { diag::List diagnostics; diagnostics.add_error(td.error()); return diagnostics; } *program = Program(std::move(builder)); return {}; } void TypeDeterminer::set_error(const Source& src, const std::string& msg) { error_ = ""; if (src.range.begin.line > 0) { error_ += std::to_string(src.range.begin.line) + ":" + std::to_string(src.range.begin.column) + ": "; } error_ += msg; } void TypeDeterminer::set_referenced_from_function_if_needed(VariableInfo* var, bool local) { if (current_function_ == nullptr) { return; } if (var->storage_class == ast::StorageClass::kNone || var->storage_class == ast::StorageClass::kFunction) { return; } current_function_->referenced_module_vars.Add(var); if (local) { current_function_->local_referenced_module_vars.Add(var); } } bool TypeDeterminer::Determine() { bool result = DetermineInternal(); // Even if resolving failed, create all the semantic nodes for information we // did generate. CreateSemanticNodes(); return result; } bool TypeDeterminer::DetermineInternal() { for (auto* var : builder_->AST().GlobalVariables()) { variable_stack_.set_global(var->symbol(), CreateVariableInfo(var)); if (var->has_constructor()) { if (!DetermineResultType(var->constructor())) { return false; } } } if (!DetermineFunctions(builder_->AST().Functions())) { return false; } // Walk over the caller to callee information and update functions with // which entry points call those functions. for (auto* func : builder_->AST().Functions()) { if (!func->IsEntryPoint()) { continue; } for (const auto& callee : caller_to_callee_[func->symbol()]) { set_entry_points(callee, func->symbol()); } } return true; } void TypeDeterminer::set_entry_points(const Symbol& fn_sym, Symbol ep_sym) { auto* info = symbol_to_function_.at(fn_sym); info->ancestor_entry_points.Add(ep_sym); for (const auto& callee : caller_to_callee_[fn_sym]) { set_entry_points(callee, ep_sym); } } bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { for (auto* func : funcs) { if (!DetermineFunction(func)) { return false; } } return true; } bool TypeDeterminer::DetermineFunction(ast::Function* func) { current_function_ = function_infos_.Create(func); symbol_to_function_[func->symbol()] = current_function_; function_to_info_.emplace(func, current_function_); variable_stack_.push_scope(); for (auto* param : func->params()) { variable_stack_.set(param->symbol(), CreateVariableInfo(param)); } if (!DetermineStatements(func->body())) { return false; } variable_stack_.pop_scope(); current_function_ = nullptr; return true; } bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) { for (auto* stmt : *stmts) { if (!DetermineVariableStorageClass(stmt)) { return false; } if (!DetermineResultType(stmt)) { return false; } } return true; } bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { auto* var_decl = stmt->As(); if (var_decl == nullptr) { return true; } auto* var = var_decl->variable(); auto* info = CreateVariableInfo(var); variable_to_info_.emplace(var, info); // Nothing to do for const if (var->is_const()) { return true; } if (info->storage_class == ast::StorageClass::kFunction) { return true; } if (info->storage_class != ast::StorageClass::kNone) { set_error(stmt->source(), "function variable has a non-function storage class"); return false; } info->storage_class = ast::StorageClass::kFunction; return true; } bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { if (auto* a = stmt->As()) { return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); } if (auto* b = stmt->As()) { return DetermineStatements(b); } if (stmt->Is()) { return true; } if (auto* c = stmt->As()) { return DetermineResultType(c->expr()); } if (auto* c = stmt->As()) { return DetermineStatements(c->body()); } if (stmt->Is()) { return true; } if (stmt->Is()) { return true; } if (auto* e = stmt->As()) { return DetermineResultType(e->condition()) && DetermineStatements(e->body()); } if (stmt->Is()) { return true; } if (auto* i = stmt->As()) { if (!DetermineResultType(i->condition()) || !DetermineStatements(i->body())) { return false; } for (auto* else_stmt : i->else_statements()) { if (!DetermineResultType(else_stmt)) { return false; } } return true; } if (auto* l = stmt->As()) { return DetermineStatements(l->body()) && DetermineStatements(l->continuing()); } if (auto* r = stmt->As()) { return DetermineResultType(r->value()); } if (auto* s = stmt->As()) { if (!DetermineResultType(s->condition())) { return false; } for (auto* case_stmt : s->body()) { if (!DetermineResultType(case_stmt)) { return false; } } return true; } if (auto* v = stmt->As()) { variable_stack_.set(v->variable()->symbol(), variable_to_info_.at(v->variable())); return DetermineResultType(v->variable()->constructor()); } set_error(stmt->source(), "unknown statement type for type determination: " + builder_->str(stmt)); return false; } bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { for (auto* expr : list) { if (!DetermineResultType(expr)) { return false; } } return true; } bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { // This is blindly called above, so in some cases the expression won't exist. if (!expr) { return true; } if (TypeOf(expr)) { return true; // Already resolved } if (auto* a = expr->As()) { return DetermineArrayAccessor(a); } if (auto* b = expr->As()) { return DetermineBinary(b); } if (auto* b = expr->As()) { return DetermineBitcast(b); } if (auto* c = expr->As()) { return DetermineCall(c); } if (auto* c = expr->As()) { return DetermineConstructor(c); } if (auto* i = expr->As()) { return DetermineIdentifier(i); } if (auto* m = expr->As()) { return DetermineMemberAccessor(m); } if (auto* u = expr->As()) { return DetermineUnaryOp(u); } set_error(expr->source(), "unknown expression for type determination"); return false; } bool TypeDeterminer::DetermineArrayAccessor( ast::ArrayAccessorExpression* expr) { if (!DetermineResultType(expr->array())) { return false; } if (!DetermineResultType(expr->idx_expr())) { return false; } auto* res = TypeOf(expr->array()); auto* parent_type = res->UnwrapAll(); type::Type* ret = nullptr; if (auto* arr = parent_type->As()) { ret = arr->type(); } else if (auto* vec = parent_type->As()) { ret = vec->type(); } else if (auto* mat = parent_type->As()) { ret = builder_->create(mat->type(), mat->rows()); } else { set_error(expr->source(), "invalid parent type (" + parent_type->type_name() + ") in array accessor"); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } else if (auto* arr = parent_type->As()) { if (!arr->type()->is_scalar()) { // If we extract a non-scalar from an array then we also get a pointer. We // will generate a Function storage class variable to store this // into. ret = builder_->create(ret, ast::StorageClass::kFunction); } } SetType(expr, ret); return true; } bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) { if (!DetermineResultType(expr->expr())) { return false; } SetType(expr, expr->type()); return true; } bool TypeDeterminer::DetermineCall(ast::CallExpression* call) { if (!DetermineResultType(call->func())) { return false; } if (!DetermineResultType(call->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. auto* ident = call->func()->As(); if (!ident) { set_error(call->source(), "call target is not an identifier"); return false; } auto name = builder_->Symbols().NameFor(ident->symbol()); auto intrinsic = MatchIntrinsic(name); if (intrinsic != semantic::Intrinsic::kNone) { if (!DetermineIntrinsicCall(call, intrinsic)) { return false; } } else { if (current_function_) { caller_to_callee_[current_function_->declaration->symbol()].push_back( ident->symbol()); auto callee_func_it = symbol_to_function_.find(ident->symbol()); if (callee_func_it == symbol_to_function_.end()) { set_error(call->source(), "unable to find called function: " + name); return false; } auto* callee_func = callee_func_it->second; // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_vars) { set_referenced_from_function_if_needed(var, false); } } auto iter = symbol_to_function_.find(ident->symbol()); if (iter == symbol_to_function_.end()) { set_error(call->source(), "v-0005: function must be declared before use: '" + name + "'"); return false; } auto* function = iter->second; auto* return_ty = function->declaration->return_type(); auto* sem = builder_->create(return_ty); builder_->Sem().Add(call, sem); } return true; } namespace { enum class IntrinsicDataType { kDependent, kSignedInteger, kUnsignedInteger, kFloat, kBool, }; struct IntrinsicData { semantic::Intrinsic intrinsic; IntrinsicDataType result_type; uint8_t result_vector_width; uint8_t param_for_result_type; }; // Note, this isn't all the intrinsics. Some are handled specially before // we get to the generic code. See the DetermineIntrinsic code below. constexpr const IntrinsicData kIntrinsicData[] = { {semantic::Intrinsic::kAbs, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kAcos, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kAll, IntrinsicDataType::kBool, 1, 0}, {semantic::Intrinsic::kAny, IntrinsicDataType::kBool, 1, 0}, {semantic::Intrinsic::kArrayLength, IntrinsicDataType::kUnsignedInteger, 1, 0}, {semantic::Intrinsic::kAsin, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kAtan, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kAtan2, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kCeil, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kClamp, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kCos, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kCosh, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kCountOneBits, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kCross, IntrinsicDataType::kFloat, 3, 0}, {semantic::Intrinsic::kDeterminant, IntrinsicDataType::kFloat, 1, 0}, {semantic::Intrinsic::kDistance, IntrinsicDataType::kFloat, 1, 0}, {semantic::Intrinsic::kDpdx, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kDpdxCoarse, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kDpdxFine, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kDpdy, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kDpdyCoarse, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kDpdyFine, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kDot, IntrinsicDataType::kFloat, 1, 0}, {semantic::Intrinsic::kExp, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kExp2, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFaceForward, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFloor, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFwidth, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFwidthCoarse, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFwidthFine, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFma, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFract, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kFrexp, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kInverseSqrt, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kLdexp, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kLength, IntrinsicDataType::kFloat, 1, 0}, {semantic::Intrinsic::kLog, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kLog2, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kMax, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kMin, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kMix, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kModf, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kNormalize, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kPow, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kReflect, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kReverseBits, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kRound, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kSelect, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kSign, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kSin, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kSinh, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kSmoothStep, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kSqrt, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kStep, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kTan, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kTanh, IntrinsicDataType::kDependent, 0, 0}, {semantic::Intrinsic::kTrunc, IntrinsicDataType::kDependent, 0, 0}, }; constexpr const uint32_t kIntrinsicDataCount = sizeof(kIntrinsicData) / sizeof(IntrinsicData); } // namespace bool TypeDeterminer::DetermineIntrinsicCall(ast::CallExpression* call, semantic::Intrinsic intrinsic) { auto create_sem = [&](type::Type* result) { auto* sem = builder_->create(result, intrinsic); builder_->Sem().Add(call, sem); }; std::string name = semantic::intrinsic::str(intrinsic); if (semantic::intrinsic::IsFloatClassificationIntrinsic(intrinsic)) { if (call->params().size() != 1) { set_error(call->source(), "incorrect number of parameters for " + name); return false; } auto* bool_type = builder_->create(); auto* param_type = TypeOf(call->params()[0])->UnwrapPtrIfNeeded(); if (auto* vec = param_type->As()) { create_sem(builder_->create(bool_type, vec->size())); } else { create_sem(bool_type); } return true; } if (semantic::intrinsic::IsTextureIntrinsic(intrinsic)) { semantic::TextureIntrinsicCall::Parameters param; auto* texture_param = call->params()[0]; if (!TypeOf(texture_param)->UnwrapAll()->Is()) { set_error(call->source(), "invalid first argument for " + name); return false; } type::Texture* texture = TypeOf(texture_param)->UnwrapAll()->As(); bool is_array = type::IsTextureArray(texture->dim()); bool is_multisampled = texture->Is(); switch (intrinsic) { case semantic::Intrinsic::kTextureDimensions: param.idx.texture = param.count++; if (call->params().size() > param.count) { param.idx.level = param.count++; } break; case semantic::Intrinsic::kTextureNumLayers: case semantic::Intrinsic::kTextureNumLevels: case semantic::Intrinsic::kTextureNumSamples: param.idx.texture = param.count++; break; case semantic::Intrinsic::kTextureLoad: param.idx.texture = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } if (call->params().size() > param.count) { if (is_multisampled) { param.idx.sample_index = param.count++; } else { param.idx.level = param.count++; } } break; case semantic::Intrinsic::kTextureSample: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } if (call->params().size() > param.count) { param.idx.offset = param.count++; } break; case semantic::Intrinsic::kTextureSampleBias: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.bias = param.count++; if (call->params().size() > param.count) { param.idx.offset = param.count++; } break; case semantic::Intrinsic::kTextureSampleLevel: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.level = param.count++; if (call->params().size() > param.count) { param.idx.offset = param.count++; } break; case semantic::Intrinsic::kTextureSampleCompare: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.depth_ref = param.count++; if (call->params().size() > param.count) { param.idx.offset = param.count++; } break; case semantic::Intrinsic::kTextureSampleGrad: param.idx.texture = param.count++; param.idx.sampler = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.ddx = param.count++; param.idx.ddy = param.count++; if (call->params().size() > param.count) { param.idx.offset = param.count++; } break; case semantic::Intrinsic::kTextureStore: param.idx.texture = param.count++; param.idx.coords = param.count++; if (is_array) { param.idx.array_index = param.count++; } param.idx.value = param.count++; break; default: set_error(call->source(), "Internal compiler error: Unreachable intrinsic " + std::to_string(static_cast(intrinsic))); return false; } if (call->params().size() != param.count) { set_error(call->source(), "incorrect number of parameters for " + name + ", got " + std::to_string(call->params().size()) + " and expected " + std::to_string(param.count)); return false; } // Set the function return type type::Type* return_type = nullptr; switch (intrinsic) { case semantic::Intrinsic::kTextureDimensions: { auto* i32 = builder_->create(); switch (texture->dim()) { default: set_error(call->source(), "invalid texture dimensions"); break; case type::TextureDimension::k1d: case type::TextureDimension::k1dArray: return_type = i32; break; case type::TextureDimension::k2d: case type::TextureDimension::k2dArray: return_type = builder_->create(i32, 2); break; case type::TextureDimension::k3d: case type::TextureDimension::kCube: case type::TextureDimension::kCubeArray: return_type = builder_->create(i32, 3); break; } break; } case semantic::Intrinsic::kTextureNumLayers: case semantic::Intrinsic::kTextureNumLevels: case semantic::Intrinsic::kTextureNumSamples: return_type = builder_->create(); break; case semantic::Intrinsic::kTextureStore: return_type = builder_->create(); break; default: { if (texture->Is()) { return_type = builder_->create(); } else { type::Type* type = nullptr; if (auto* storage = texture->As()) { type = storage->type(); } else if (auto* sampled = texture->As()) { type = sampled->type(); } else if (auto* msampled = texture->As()) { type = msampled->type(); } else { set_error(call->source(), "unknown texture type for texture sampling"); return false; } return_type = builder_->create(type, 4); } } } auto* sem = builder_->create( return_type, intrinsic, param); builder_->Sem().Add(call, sem); return true; } const IntrinsicData* data = nullptr; for (uint32_t i = 0; i < kIntrinsicDataCount; ++i) { if (intrinsic == kIntrinsicData[i].intrinsic) { data = &kIntrinsicData[i]; break; } } if (data == nullptr) { error_ = "unable to find intrinsic " + name; return false; } if (data->result_type == IntrinsicDataType::kDependent) { const auto param_idx = data->param_for_result_type; if (call->params().size() <= param_idx) { set_error(call->source(), "missing parameter " + std::to_string(param_idx) + " required for type determination in builtin " + name); return false; } create_sem(TypeOf(call->params()[param_idx])->UnwrapPtrIfNeeded()); } else { // The result type is not dependent on the parameter types. type::Type* type = nullptr; switch (data->result_type) { case IntrinsicDataType::kSignedInteger: type = builder_->create(); break; case IntrinsicDataType::kUnsignedInteger: type = builder_->create(); break; case IntrinsicDataType::kFloat: type = builder_->create(); break; case IntrinsicDataType::kBool: type = builder_->create(); break; default: error_ = "unhandled intrinsic data type for " + name; return false; } if (data->result_vector_width > 1) { type = builder_->create(type, data->result_vector_width); } create_sem(type); } return true; } bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { if (auto* ty = expr->As()) { for (auto* value : ty->values()) { if (!DetermineResultType(value)) { return false; } } SetType(expr, ty->type()); } else { SetType(expr, expr->As()->literal()->type()); } return true; } bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { auto symbol = expr->symbol(); VariableInfo* var; if (variable_stack_.get(symbol, &var)) { // A constant is the type, but a variable is always a pointer so synthesize // the pointer around the variable type. if (var->declaration->is_const()) { SetType(expr, var->declaration->type()); } else if (var->declaration->type()->Is()) { SetType(expr, var->declaration->type()); } else { SetType(expr, builder_->create(var->declaration->type(), var->storage_class)); } set_referenced_from_function_if_needed(var, true); return true; } auto iter = symbol_to_function_.find(symbol); if (iter != symbol_to_function_.end()) { // Identifier is to a function, which has no type (currently). return true; } std::string name = builder_->Symbols().NameFor(symbol); if (MatchIntrinsic(name) != semantic::Intrinsic::kNone) { // Identifier is to an intrinsic function, which has no type (currently). return true; } set_error(expr->source(), "v-0006: identifier must be declared before use: " + name); return false; } semantic::Intrinsic TypeDeterminer::MatchIntrinsic(const std::string& name) { if (name == "abs") { return semantic::Intrinsic::kAbs; } else if (name == "acos") { return semantic::Intrinsic::kAcos; } else if (name == "all") { return semantic::Intrinsic::kAll; } else if (name == "any") { return semantic::Intrinsic::kAny; } else if (name == "arrayLength") { return semantic::Intrinsic::kArrayLength; } else if (name == "asin") { return semantic::Intrinsic::kAsin; } else if (name == "atan") { return semantic::Intrinsic::kAtan; } else if (name == "atan2") { return semantic::Intrinsic::kAtan2; } else if (name == "ceil") { return semantic::Intrinsic::kCeil; } else if (name == "clamp") { return semantic::Intrinsic::kClamp; } else if (name == "cos") { return semantic::Intrinsic::kCos; } else if (name == "cosh") { return semantic::Intrinsic::kCosh; } else if (name == "countOneBits") { return semantic::Intrinsic::kCountOneBits; } else if (name == "cross") { return semantic::Intrinsic::kCross; } else if (name == "determinant") { return semantic::Intrinsic::kDeterminant; } else if (name == "distance") { return semantic::Intrinsic::kDistance; } else if (name == "dot") { return semantic::Intrinsic::kDot; } else if (name == "dpdx") { return semantic::Intrinsic::kDpdx; } else if (name == "dpdxCoarse") { return semantic::Intrinsic::kDpdxCoarse; } else if (name == "dpdxFine") { return semantic::Intrinsic::kDpdxFine; } else if (name == "dpdy") { return semantic::Intrinsic::kDpdy; } else if (name == "dpdyCoarse") { return semantic::Intrinsic::kDpdyCoarse; } else if (name == "dpdyFine") { return semantic::Intrinsic::kDpdyFine; } else if (name == "exp") { return semantic::Intrinsic::kExp; } else if (name == "exp2") { return semantic::Intrinsic::kExp2; } else if (name == "faceForward") { return semantic::Intrinsic::kFaceForward; } else if (name == "floor") { return semantic::Intrinsic::kFloor; } else if (name == "fma") { return semantic::Intrinsic::kFma; } else if (name == "fract") { return semantic::Intrinsic::kFract; } else if (name == "frexp") { return semantic::Intrinsic::kFrexp; } else if (name == "fwidth") { return semantic::Intrinsic::kFwidth; } else if (name == "fwidthCoarse") { return semantic::Intrinsic::kFwidthCoarse; } else if (name == "fwidthFine") { return semantic::Intrinsic::kFwidthFine; } else if (name == "inverseSqrt") { return semantic::Intrinsic::kInverseSqrt; } else if (name == "isFinite") { return semantic::Intrinsic::kIsFinite; } else if (name == "isInf") { return semantic::Intrinsic::kIsInf; } else if (name == "isNan") { return semantic::Intrinsic::kIsNan; } else if (name == "isNormal") { return semantic::Intrinsic::kIsNormal; } else if (name == "ldexp") { return semantic::Intrinsic::kLdexp; } else if (name == "length") { return semantic::Intrinsic::kLength; } else if (name == "log") { return semantic::Intrinsic::kLog; } else if (name == "log2") { return semantic::Intrinsic::kLog2; } else if (name == "max") { return semantic::Intrinsic::kMax; } else if (name == "min") { return semantic::Intrinsic::kMin; } else if (name == "mix") { return semantic::Intrinsic::kMix; } else if (name == "modf") { return semantic::Intrinsic::kModf; } else if (name == "normalize") { return semantic::Intrinsic::kNormalize; } else if (name == "pow") { return semantic::Intrinsic::kPow; } else if (name == "reflect") { return semantic::Intrinsic::kReflect; } else if (name == "reverseBits") { return semantic::Intrinsic::kReverseBits; } else if (name == "round") { return semantic::Intrinsic::kRound; } else if (name == "select") { return semantic::Intrinsic::kSelect; } else if (name == "sign") { return semantic::Intrinsic::kSign; } else if (name == "sin") { return semantic::Intrinsic::kSin; } else if (name == "sinh") { return semantic::Intrinsic::kSinh; } else if (name == "smoothStep") { return semantic::Intrinsic::kSmoothStep; } else if (name == "sqrt") { return semantic::Intrinsic::kSqrt; } else if (name == "step") { return semantic::Intrinsic::kStep; } else if (name == "tan") { return semantic::Intrinsic::kTan; } else if (name == "tanh") { return semantic::Intrinsic::kTanh; } else if (name == "textureDimensions") { return semantic::Intrinsic::kTextureDimensions; } else if (name == "textureNumLayers") { return semantic::Intrinsic::kTextureNumLayers; } else if (name == "textureNumLevels") { return semantic::Intrinsic::kTextureNumLevels; } else if (name == "textureNumSamples") { return semantic::Intrinsic::kTextureNumSamples; } else if (name == "textureLoad") { return semantic::Intrinsic::kTextureLoad; } else if (name == "textureStore") { return semantic::Intrinsic::kTextureStore; } else if (name == "textureSample") { return semantic::Intrinsic::kTextureSample; } else if (name == "textureSampleBias") { return semantic::Intrinsic::kTextureSampleBias; } else if (name == "textureSampleCompare") { return semantic::Intrinsic::kTextureSampleCompare; } else if (name == "textureSampleGrad") { return semantic::Intrinsic::kTextureSampleGrad; } else if (name == "textureSampleLevel") { return semantic::Intrinsic::kTextureSampleLevel; } else if (name == "trunc") { return semantic::Intrinsic::kTrunc; } return semantic::Intrinsic::kNone; } bool TypeDeterminer::DetermineMemberAccessor( ast::MemberAccessorExpression* expr) { if (!DetermineResultType(expr->structure())) { return false; } auto* res = TypeOf(expr->structure()); auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); type::Type* ret = nullptr; if (auto* ty = data_type->As()) { auto* strct = ty->impl(); auto symbol = expr->member()->symbol(); for (auto* member : strct->members()) { if (member->symbol() == symbol) { ret = member->type(); break; } } if (ret == nullptr) { set_error(expr->source(), "struct member " + builder_->Symbols().NameFor(symbol) + " not found"); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } } else if (auto* vec = data_type->As()) { expr->SetIsSwizzle(); auto size = builder_->Symbols().NameFor(expr->member()->symbol()).size(); if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } } else { // The vector will have a number of components equal to the length of the // swizzle. This assumes the validator will check that the swizzle // is correct. ret = builder_->create(vec->type(), static_cast(size)); } } else { set_error( expr->source(), "v-0007: invalid use of member accessor on a non-vector/non-struct " + data_type->type_name()); return false; } SetType(expr, ret); return true; } bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { SetType(expr, TypeOf(expr->lhs())->UnwrapPtrIfNeeded()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = builder_->create(); auto* param_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded(); type::Type* result_type = bool_type; if (auto* vec = param_type->As()) { result_type = builder_->create(bool_type, vec->size()); } SetType(expr, result_type); return true; } if (expr->IsMultiply()) { auto* lhs_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded(); auto* rhs_type = TypeOf(expr->rhs())->UnwrapPtrIfNeeded(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. auto* lhs_mat = lhs_type->As(); auto* rhs_mat = rhs_type->As(); auto* lhs_vec = lhs_type->As(); auto* rhs_vec = rhs_type->As(); type::Type* result_type; if (lhs_mat && rhs_mat) { result_type = builder_->create( lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns()); } else if (lhs_mat && rhs_vec) { result_type = builder_->create(lhs_mat->type(), lhs_mat->rows()); } else if (lhs_vec && rhs_mat) { result_type = builder_->create(rhs_mat->type(), rhs_mat->columns()); } else if (lhs_mat) { // matrix * scalar result_type = lhs_type; } else if (rhs_mat) { // scalar * matrix result_type = rhs_type; } else if (lhs_vec && rhs_vec) { result_type = lhs_type; } else if (lhs_vec) { // Vector * scalar result_type = lhs_type; } else if (rhs_vec) { // Scalar * vector result_type = rhs_type; } else { // Scalar * Scalar result_type = lhs_type; } SetType(expr, result_type); return true; } set_error(expr->source(), "Unknown binary expression"); return false; } bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { // Result type matches the parameter type. if (!DetermineResultType(expr->expr())) { return false; } auto* result_type = TypeOf(expr->expr())->UnwrapPtrIfNeeded(); SetType(expr, result_type); return true; } TypeDeterminer::VariableInfo* TypeDeterminer::CreateVariableInfo( ast::Variable* var) { auto* info = variable_infos_.Create(var); variable_to_info_.emplace(var, info); return info; } void TypeDeterminer::SetType(ast::Expression* expr, type::Type* type) const { return builder_->Sem().Add(expr, builder_->create(type)); } void TypeDeterminer::CreateSemanticNodes() const { auto& sem = builder_->Sem(); for (auto it : variable_to_info_) { auto* var = it.first; auto* info = it.second; sem.Add(var, builder_->create(var, info->storage_class)); } auto remap_vars = [&sem](const std::vector& in) { std::vector out; out.reserve(in.size()); for (auto* info : in) { out.emplace_back(sem.Get(info->declaration)); } return out; }; for (auto it : function_to_info_) { auto* func = it.first; auto* info = it.second; sem.Add(func, builder_->create( remap_vars(info->referenced_module_vars), remap_vars(info->local_referenced_module_vars), info->ancestor_entry_points)); } } TypeDeterminer::VariableInfo::VariableInfo(ast::Variable* decl) : declaration(decl), storage_class(decl->declared_storage_class()) {} TypeDeterminer::VariableInfo::~VariableInfo() = default; TypeDeterminer::FunctionInfo::FunctionInfo(ast::Function* decl) : declaration(decl) {} TypeDeterminer::FunctionInfo::~FunctionInfo() = default; } // namespace tint